
PARALLEL
UNIT RESULTING
RESOLUTION

Diplomarbeit

am Fachbereich Informatik
der Universit�at des Saarlandes

von

Christoph Meyer

Saarbr�ucken� ����

Erkl�arung

Ich erkl�are die vorliegende Arbeit selbst�andig im Sinne der Diplompr�ufungsordnung erstellt und
ausschlie�lich die angegebenen Quellen und Hilfsmittel benutzt zu haben�

Saarbr�ucken� ��� Februar ����

Christoph Meyer

Betreuer� Priv� Doz� Dr� Hans J�urgen Ohlbach
Dr� Peter Graf

F�ur meine Eltern Karin und Ren	e Meyer�

Danksagung

Mein gr�o�ter Dank gilt meinem Betreuer Peter Graf� der sich stets Zeit nahm f�ur meine Fragen
und Probleme und mir durch seine kritischen Kommentare und Verbesserungsvorschl�age sehr
geholfen hat�

Ebenso danke ich Hans
J�urgen Ohlbach f�ur seine Anregungen und viele fruchtbare Diskus

sionen� die erheblich zur Entstehung dieser Arbeit beigetragen haben�

Ich danke den Mitarbeiterinnen und Mitarbeitern des Max
Planck
Instituts f�ur die an

genehme Atmosph�are und f�ur die gro�e Hilfsbereitschaft bei fachlichen Problemen� Besonders
erw�ahnen m�ochte ich Christoph Weidenbach und Peter Barth�

Ich danke Michael Christen� Boris Kraft� Jan
Georg Smaus und allen anderen Kommilitonen
am Max
Planck
Institut f�ur die Zusammenarbeit und f�ur die sch�one gemeinsam verbrachte Zeit�

Saarbr�ucken� Februar ���� Christoph Meyer

Preface

The term �Parallel unit resulting resolution� refers to a modied unit resulting resolution rule
working on sets of substitutions� We modied the inference rule in order to investigate term in

dexing and to exploit parallelism in automated reasoning� Term indexing supports the construc

tion of e�cient automated reasoning systems by providing rapid access to rst
order predicate
calculus terms with specic properties� The theoretical background and the implementation of
a theorem prover called Purr which implements parallel unit resulting resolution as well as
experiments with Purr are presented in this thesis� The author addresses the reader interested
in new indexing techniques and in distributed theorem proving� The reader is assumed to have
detailed knowledge of automated reasoning and logic�

II PREFACE

Contents

List of Figures � V

�� Introduction �

��� Aim of the Work �

��� Parallel Unit Resulting Resolution �

��� Structure of the Work �

�� Preliminaries �

��� Rules �

��� First
Order Logic �

��� Graphs and Trees ��

��� Algorithms ��

�� UR�Resolution ��

��� Unit Resulting Resolution ��

��� Clause Graph ��

��� UR
Resolution on Substitution Sets ��

�� Indexing ��

��� Classication of Indexing Techniques ��

��� Substitution Tree Indexing ��

��� Indexing Operations ��

����� Subsumption ��

����� Union ��

����� Multi
Merge ��

����� Selection ��

�� Parallelism ��

��� Notions of Parallelism ��

����� Parallelism in Logic ��

����� Parallelism in Practice ��

��� Parallel Programming Systems ��

����� Overview ��

����� PVM ��

IV CONTENTS

�� The Prover ��

��� Indexing Algorithms ��

����� Subsumption ��

����� Union ��

����� Multi
Merge ��

����� Selection ��

��� The Implementation ��

����� Overview ��

����� Preprocessing ��

����� Reasoning Phase ��

����� Postprocessing ��

����� Options in Purr ��

��� Techniques ��

����� Contexts ��

����� Indexing and Process Communication ��

�� Experiments 	�

��� Indexing ��

��� Parallelism ��

	� Conclusion
�

Bibliography ��

Index ���

List of Figures

�� Introduction �

��� A Clause Graph �

�� Preliminaries �

��� Presentation of Algorithms ��

�� UR�Resolution ��

��� Undirected Clause Graph ��

��� Directed Clause Graph ��

��� Directed Clause Graph ��

��� Labeled Directed Clause Graph with Test and Send Substitutions � � � � � � � � � ��

��� Test Unication and Send Instantiation ��

��� Initial State of the Search Sets ��

��� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v� � � � � � � � � � � ��

��� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v� � � � � � � � � � � ��

�� Indexing ��

��� Substitution tree ��

��� Subsumption in Weighted Substitution Trees ��

��� A Selective Substitution Tree ��

��� An Algorithm for the Transition Rule RESOLVE ��

��� Subsumption as an n�m indexing task ��

��� A Sequence of Selective Substitution Trees ��

�� Parallelism ��

��� A Parallel Programming Model ��

��� Shared
Memory Model ��

��� Message Passing Model ��

��� Communication Patterns ��

�� The Prover ��

��� Algorithm for subsume ��

��� Algorithm for union ��

��� Algorithm for multi�merge ��

��� Multi
Merge with Three Substitution Trees ��

��� Algorithm for selection ��

VI LIST OF FIGURES

��� Algorithm for partition ��

��� The Master Process ��

��� The Preprocessing ��

��� Create Clause Graph ��

���� Create all links leading to vertices in Vin ��

���� Delete tautologies ��

���� Delete clauses with pure literals ��

���� Sequential Reasoning in Purr ��

���� UR
Resolution on Link �v� ��� ��� w� ��

���� Optimized UR
Resolution on Link �v� ��� ��� w� ��

���� Optimized UR
Resolution on Literal Associated with v � � � � � � � � � � � � � � � ��

���� Termination on Clause C ��

���� Termination on Units with Predicate P ��

���� Start and Control of the Parallel System ��

���� The Postprocessing ��

���� Recursive Proof Generation ��

���� Two Contexts C� and C� with Bindings ��

���� The Multi
Merge Operation with Three Substitution Trees � � � � � � � � � � � � ��

���� Test Unication and Send Instantiation ��

���� Process Communication ��

���� Transformation of a Substitution Tree ��

���� Transformation of a Substitution ��

���� Transformation of a Term ��

�� Experiments ��

��� Clause Graph of the Problem IC
JL�IC
� ��

��� Experiments with the Implicational Propositional Calculus � � � � � � � � � � � � ��

��� Statistics of the Resolution Process in PurrLiteral
� on Problem IC
JL�IC
� � � ��

��� Experiments with the Equivalential Calculus ��

��� Experiments with the R Calculus ��

��� Experiments with PurrLiteral
� on the Two
Valued Sentential Calculus � � � � � ��

��� Clause Set in Group Theory ��

	� Conclusion ��

�
Introduction

Parallel unit resulting resolution is based on a modied unit resulting resolution rule working
on sets of substitutions� The ur
resolvents are represented by substitutions� We attach the
substitution sets to vertices and links of a clause graph �Eis��� Kow��� which is created on the
original clause set in order to associate the substitutions with the according literals and clauses�
The links of the clause graph determine possible applications of the modied inference rule� New
substitutions are created and exchanged among the substitution sets in the clause graph� The
graph structure itself does not change� Our modied ur
resolution scheme can be supported
e�ciently by indexing techniques and� moreover� can be applied to di�erent nuclei concurrently�
This concept has been implemented in our distributed theorem prover called Purr� The original
idea is based on the PhD thesis of Ulrich A�mann �A�m��� and on the work of Antoniou and
Ohlbach �AO����

��� Aim of the Work

One of the most important aspects of an automated reasoning system is the employed logic
calculus� The inference rules of a calculus often are implemented in order to examine the
properties of the calculus or to nd solutions of challenging problems� In contrast� we shall
employ the inference rule of unit resulting resolution for the investigation of indexing techniques
and for the exploitation of parallelism in automated reasoning� Both indexing and parallelism
can signicantly improve the e�ciency of a theorem prover�

Indexing� The maintenance of large databases is supported by indexing which provides fast
access to stored data� In automated reasoning we employ databases that contain rst
order
terms� Typical queries to such term indexes are� Given a database D containing terms �literals�
and a query term t� nd all terms in D that are uniable with� instances of� variants of� or more
general than t� Thus indexing can be used to support the search of partners for resolution or
subsumption�

� Chapter �� Introduction

P �d� f�a��

P �a� y� �P �z� f�y��

P �d� f�f�f�a����

�P �a� x� �P �a� f�x�� P �c� f�g�x���

�P �c� f�g�a��� �

Figure ���� A Clause Graph

Parallelism� In general� a program working on a problem which is composed of several �in

dependent� parts can be divided into concurrent processes with each process working on one
part of the problem� There are cases in which the performance of such a program can be im

proved with increasing concurrency� The possible speedup is limited by the degree of dependence
inherently to the problem and by the parallel machine employed� In automated reasoning we
can discover a large variety of such dependencies� They really complicate the investigation of
possible improvements� Concurrent processes working on dependent parts of a problem have to
solve these dependencies with communication� The more processes work on a problem� the more
communication usually is required� In sum� the main task during the design of a distributed
parallel system is to nd a reasonable balance between the degree of parallelism and the amount
of communication overhead�

��� Parallel Unit Resulting Resolution

We extend the unit resulting resolution rule to work on sets of substitutions� To this end we will
introduce a so
called clause graph� The nodes of the clause graph correspond to literals in the
clause set� Two literals are connected by a link if the literals are complementary and uniable�
In other words� connected literals are possible ur
resolution partners� Note that the clause
graph does not change during the reasoning phase� An example of a clause graph is depicted
in Figure ���� Consider for example the two literals �P �z� f�y�� and P �c� f�g�x���� They are
connected because they have opposite sign and they are uniable by the unifying substitution
� � fz �� c� y �� g�x�g�

New ur
resolvents are represented by substitutions which are collected in sets of substitutions�
These substitution sets are attached to nodes and links in the clause graph� We will show that
substitution sets can be represented by indexes in a natural manner� In Purr indexes become
the fundamental data structure instead of the usual clauses and literals� New ur
resolvents
are exchanged among substitution sets in the form of indexes� Reasoning
based operations like
subsumption and the computation of simultaneous uniers are extended to set operations based
on indexing techniques� Moreover� the unit resulting resolution rule is concurrently applied to
di�erent nuclei�

��� Structure of the Work �

��� Structure of the Work

The rst two Chapters � and � provide a general overview and introduce the main notions� In
Chapter � we present a modied unit
resulting resolution rule on sets of substitutions� The main
operations in the modied inference rule are presented as indexing methods in Chapter �� The
notions of parallelism in the eld of logic and under practical issues are introduced in Chapter ��
The next Chapter � addresses implementational apsects of this work by presenting the central
algorithms of Purr� A sequence of experiments with Purr is discussed in Chapter �� The work
is nished with a conclusion in Chapter ��

Chapter �� Introduction� The purpose of this chapter is to motivate the two main goals�
The investigation of indexing techniques and the exploitation of parallelism in automated the

orem proving� We brie�y describe our modied ur
resolution scheme as the basis to study
advanced indexing methods and parallelism in a theorem prover�

Chapter �� Preliminaries� In the preliminary Chapter � we will focus on four di�erent
subjects� First� we present rules� They will be used throughout this work for dening functions
in an elegant and simple way� In the second section the standard notions for �rst�order logic are
introduced� As the standard notations for logic are used� readers familiar with this topic may
skip the second section� Since the employed indexing technique relies on tree
like structures� we
state some notions describing graphs and trees in the third section� Finally� we describe the way
algorithms are presented in the fourth section�

Chapter �� UR�Resolution� In the rst section of Chapter � we brie�y discuss unit�resulting
resolution and reveal possible modications in order to obtain a resolution scheme whose imple

mentation can be supported by indexing methods and parallelism� Then we introduce a data
structure called clause graph containing information about possible applications of ur
resolution�
Finally� a modied ur
resolution rule working on sets of substitutions is introduced in the third
section� The substitution sets are attached to vertices and links of the clause graph� The mod

ied rule creates and exchanges substitution sets among the sets in the graph� The required
reasoning
based operations can be implemented e�ciently by indexing methods� The rule also
can be applied to substitution sets in parallel�

Chapter �� Indexing� First� we present an indexing technique called substitution tree in�
dexing which can represent sets of idempotent substitutions� In the second section the four
reasoning
based operations required by the modied ur
resolution rule are presented as indexing
operations on substitution trees� In particular� we discuss the subsumption and union operations
of two substitution sets� the multi�merge operation of arbitrary many substitution sets� and the
selection operation of �lightest� substitutions�

Chapter �� Parallelism� In addition to the presentation of the usual notions of parallelism
in logic and practice� we also compare a selection of parallel programming systems� We conclude
that the Parallel Virtual Machine �PVM� library currently seems to be the most convenient
library to support the implementation of parallelism in our theorem prover�

� Chapter �� Introduction

Since we mainly discuss the notions of parallelism and well
known parallel programming
libraries� readers familiar with these topics might want to skip this chapter�

Chapter �� The Prover� In the rst section detailed algorithms for the four indexing op

erations subsumption� union� multi
merge� and selection are presented� The implementational
aspects of Purr are discussed in the second section� The system mainly performs three phases�
The preprocessing for the creation and optimization of the clause graph� the reasoning phase
involving the distributed processing of ur
resolution� and� nally� the postprocessing for the gen

eration of a proof protocol� In the last section two important aspects of the implementation are
presented� First� variables are maintained in contexts in order to represent variable bindings�
Second� a transformation of substitution trees into a process
independent form�

Chapter �� Experiments� In this chapter the results of experiments with Purr are pre

sented� We compare the proof times obtained with di�erent settings of Purr to the proof times
of the sequential theorem prover Otter� In the rst section we use problem sets addressing the
indexing methods in Purr� Experiments involving parallelism are presented in Section ��

Chapter 	� Conclusion� We conclude that in many experiments Purr�s advanced indexing
operations achieve high inference rates and are able to handle large sets of inferences� Moreover�
indexing supports the communication of concurrent processes which exchange sets of inferences�
We discuss our experiences with parallelism in our theorem prover and point out the importance
of decentralized distributed processing and of �exible control of granularity of a distributed
theorem prover�

�
Preliminaries

In this chapter we introduce the notions of four di�erent subjects� First� we present rules� They
will be used throughout this work for dening functions in an elegant and simple way� In the
second section the standard notions for �rst�order logic are introduced� This introduction is
quite short� we merely present the notations needed in this thesis� As the standard notations for
logic are used� readers familiar with this topic may skip the second section� Since a large part
of the indexing techniques rely on tree
like structures� we state some notions describing graphs
and trees in the third section� Finally� we describe the way algorithms are presented� The whole
chapter is mainly based on the PhD thesis of Peter Graf �Gra����

��� Rules

In this text most denitions are based on sequences of rules� Each rule consists of three parts�
The rst part contains a pattern and is written at the left side of the assignment� The second
part occurs at the right side of the assignment and contains the resulting value� The third part
is preceded by the keyword �if� and contains a condition under which the rule may be applied�
Usually� a denition consists of more than a single rule� as illustrated by the following schema�

pattern� �� value� if condition�
���

���

patternn �� valuen if conditionn

The rules are read top down� The ith rule is selected if all previous rules could not be applied�
if the pattern represents the expression at issue� and if the condition is fullled� If a rule does
not include a condition� the condition is evaluated to true by default� Note that a condition
occurring in a rule that could not be satised is assumed to occur negated in all rules below�

� Chapter �� Preliminaries

In a rule that considers terms� x represents any variable� a represents any constant� f rep

resents any non
constant function symbol� and t represents any term� Consider the following
example�

is a constant�a� �� true

is a constant�t� �� false

On one hand� we see that the value of is a constant�b� is true because b is a constant and the
symbol a in the rule represents any constant� On the other hand� is a constant�x� is false because
x is a variable and therefore the rst rule could not be applied�

��� First�Order Logic

����� Signature

The standard notions for rst
order logic are used�

De�nition ����� Signature�
A signature � �� �V�F�P� consists of the following disjoint sets�

� V is a countable innite set of variable symbols�

� F is a countable innite set of function symbols� It is divided into the sets of n place
function symbols Fn �n � IN���

� P is a nite set of predicate symbols divided into the sets of n place predicate symbols
Pn�

We will name variables x� y� z� We use the symbols f � g� h for functions and a� b� c for
constants �� place function symbols�� Predicates are represented by P � Q� R�

De�nition ����� Special Symbols�
The following special symbols are available�

� The logical connectives ���������� 	�

� The auxiliary symbols ���� ���� �� �

����� Terms� Literals� and Clauses

In rst
order logic� constants and variables are used to denote objects� Predicates express prop

erties of or relations between objects� Functions describe operations to be performed on objects�
Constants� variables� and functions can be composed into terms� thus allowing arbitrarily com

plex object descriptions�

��� First�Order Logic �

De�nition ����� Terms�
The set of terms T is the least set with V � T and f�t�� � � � � tn� � T if f � Fn and t�� � � � � tn �
T� The set of variables VAR�t� occurring in a term t is dened as

VAR�x� �� fxg

VAR�a� �� �

VAR�f�t�� � � � � tn�� ��
�

��i�n

VAR�ti�

A term t with VAR�t� � � is called ground� Additionally� the function top denotes the top symbol
of a term�

top�x� �� x

top�a� �� a

top�f�t�� � � � � tn�� �� f

A term t is called linear if all variables of t occur exactly once in the term� The depth of a term
is dened as

depth�x� �� �

depth�a� �� �

depth�f�t�� � � � � tn�� �� � !maxfdepth�t��� � � � � depth�tn�g

The arity of a term is dened as

arity�x� �� �

arity�a� �� �

arity�f�t�� � � � � tn�� �� n

A typical notational variant used in theorem proving is the clause form� A set of clauses
represents a formula and each clause consists of a collection of literals�

De�nition ����� Atoms and Literals�

P �t�� � � � � tn� is an atom if P � Pn and t�� � � � � tn � T� Atoms and their negations are literals�
A literal is called negative if it consists of an atom and a negation symbol� Otherwise it is called
positive� Two literals P �s�� � � � � sn� and �P �t�� � � � � tn� are called complementary�

De�nition ����� Clauses�

A clause is a nite set of literals� The set is interpreted as the disjunction of the literals� with
the whole clause being universally quantied over all variables occurring in it� A unit clause
contains only one literal�

����� Positions

Throughout this work sequences are written in square brackets with � � denoting the empty
sequence�

� Chapter �� Preliminaries

De�nition ����� Concatenation of Sequences�
The concatenation of sequences is performed by the function j with

�X �j� � �� �X �

�X �j�i� Y � �� �X� i�j�Y �

For reasons of simplicity we often omit some of the square brackets and write X and �X ji� Y �
instead of �X � and �X �j�i� Y �� respectively� In this thesis most sequences contain natural numbers
separated by commas�

De�nition ����� Positions in a Term�
A position in a term is a nite sequence of natural numbers� The subterm of a term t at position
p is denoted by t�p and dened as follows�

t � � � �� t

f�t�� � � � � tn� � �ijp� �� ti � p

The set of positions of the term t � f�t�� � � � � tn� is dened by

O�x� �� f� �g

O�a� �� f� �g

O�f�t�� � � � � tn�� �� f� �g
�

p�O�ti�

f�ijp�g

For example� the term g�a� occurs at the positions ����� and ��� in f�g�g�a��� g�a��� Accord

ingly� we have f�g�g�a��� g�a�� " ����� � g�a� and O�h�a� g�b�� x�� � f� �� ���� ���� ������ ���g�

As positions are sequences of natural numbers� we can use the lexicographical extension of
the natural ordering � on natural numbers to sort positions�

De�nition ����	 Total Ordering on Positions�
The lexicographical extension of the natural ordering � on natural numbers is dened as follows�

p
�
� � � if p �� � �

�ijp�
�
� �jjq� if i � j � �i � j � p

�
� q�

For example� �����
�
� ������ ���

�
� ������ and �������

�
� ������ Note that p

�
� q if in the preorder

traversal of the tree that represents a term containing both positions p and q the position q is
visited before p�

����� Substitutions� Uni	cation� and Matching

De�nition ����
 Substitutions�
A substitution � � V � T is an endomorphism on the term algebra such that the set fx � V j
x� �� xg is nite� The domain of a substitution is dened as

DOM��� �� fx � V j x� �� xg

��� First�Order Logic �

The codomain of a substitution is dened as

COD��� �� fx� j x � DOM���g

The image of a substitution is dened as

IM��� �� VAR�COD����

Since every substitution � is uniquely determined by its e�ect on the variables of DOM����
it can be represented as a nite set of variable
term pairs fx� �� x��� � � � � xn �� xn�g where
DOM��� � fx�� � � � � xng� For example� the domain of the substitution � � fx �� f�a� b�� y ��
g�z�g is DOM��� � fx� yg and the codomain is COD��� � ff�a� b�� g�z�g� The set of variables
introduced by � is IM��� � fzg�

De�nition ������ Composition of Substitutions�

Let � � fx� �� s�� � � � � xn �� sng and � � fy� �� t�� � � � � ym �� tmg be two substitutions� The
composition �� of two substitutions is dened as

x���� �� �x���

for all x � V� It can be computed as

�� � fx� �� s��� � � � � xn �� sn�g fyi �� ti j yi � DOM���nDOM���g

Consider� for instance� the substitutions � � fz �� f�x�g and � � fx �� a� y �� cg� We have
�� � fz �� f�a�� x �� a� y �� cg� Note that the assignment x �� a is part of the composition�
although it was applied to the variable x in IM���� The join of � and � dened below will not
contain x �� a anymore�

De�nition ������ Join of Substitutions�

Let � � fx� �� s�� � � � � xn �� sng and � � fy� �� t�� � � � � ym �� tmg be two substitutions� The
join of the substitutions � and � is dened as

� � � �� fx� �� s��� � � � � xn �� sn�g fyi �� ti j yi � DOM���nIM���g

Obviously� for � � fz �� f�x�g and � � fx �� a� y �� cg we have � � � � fz �� f�a�� y �� cg�
The join of substitutions is closely related to the composition� The only di�erence is that�
contrary to the composition� assignments that could be applied are not contained in the result
of the join� In Section ������� the join of substitutions will be needed to dene deletion in
substitution trees�

De�nition ������ Restriction�
Let � be a substitution and U � V a set of variables� The restriction �jU is the substitution
with DOM��jU� � U which agrees with � on U �

De�nition ������ Idempotent Substitution�

The substitution � is called idempotent i� �� � ��

For idempotent substitutions we have DOM���� IM��� � ��

�� Chapter �� Preliminaries

De�nition ������ Variant Terms�
A substitution � is called a renaming if it is injective on DOM��� and if the codomain COD���
only contains variables� Two terms s and t are called variants if a renaming � exists such that
s� � t�

De�nition ������ Matcher�
A substitution � is called a matcher from term s to term t if s� � t� In this case s is called a
generalization of t and t is called an instance of s�

De�nition ������ Uni�able Terms� Most General Uni�er�
Two terms s and t are called uni�able if and only if a substitution � exists such that s� � t��
In this case the substitution � is called a uni�er of s and t� A unier � is called most general
uni�er �mgu� if for every unier � of s and t a substitution � exists such that �� � �� We dene
the function mgu�s� t� to compute the most general unier of the terms s and t� The extention
of mgu�� to compute the most general unier of atoms is straightforward�

For example� the terms f�a� y� and f�x� b� are uniable and the mgu is fx �� a� y �� bg�
Note that the most general unier for two terms is unique up to variable renamings if theories
are not involved� Terms may be non�uni�able for di�erent reasons� Clashes occur when two
non
variable symbols occurring at identical positions in the two terms are not identical� A clash
is called direct if it can be detected without considering partial substitutions� For example�
a direct clash is detected when unifying f�a� x� and f�b� y�� The detection of indirect clashes
requires the consideration of partial substitutions� The unication of f�x� x� and f�a� b� fails
because the variable x can only be bound either to the constant a or to the constant b� Failures
resulting from occur�checks also take partial substitutions into consideration� For example� the
occur
check detects the failure when unifying f�x� x� and f�y� g�y�� because a unier would have
to contain the binding y �� g�y��

De�nition ������ Merge of Substitutions�
Let � and � be two idempotent substitutions� A uni�er for � and � is a substitution � such that
�� � ��� A unier � of two substitutions is called most general if for every unier � of � and �
a substitution � exists such that �� � �� The substitutions � and � are compatible if they have
a most general unier �� In this case the merge of � and � is dened as

� � � �� ����jDOM����DOM���

Merging two substitutions corresponds to calculating the most general common instance�
The domain and the codomain of the resulting substitution are computed as follows�

DOM�� � �� � DOM��� DOM���

COD�� � �� � �DOM�� � ���mgu�DOM�� � ����DOM�� � ����

For the two substitutions � � fx �� f�a� u�� y �� cg and � � fx �� f�v� b�g we have
� � � � fx �� f�a� b�� y �� cg�

De�nition �����	 Merge of Substitution Sets�
Let ��# be two substitution sets� We extend the merge operator � to a generic merge operator
�

��# �� f�j� � �� �� � � �� � � #g

The extention to an arbitrary number of arguments is straightforward�

��� Graphs and Trees ��

����
 Normalization

Finally� we introduce the notion of a normalized term s for a term s� Normalization renames
the variables of terms s and t in such a way that s � t holds for terms equal modulo variable
renaming�

The purpose of normalization is to rename terms and substitutions before they are inserted
into a term index in order to enable more sharing of common symbols in the index�

The variables in a term are renamed to so
called indicator variables� which are denoted by
�i� The set V� of indicator variables is a subset of V�

De�nition �����
 Normalization of Terms�

Let s � f�s�� � � � � sn� be a term� The set of rst occurrences of variables in s is dened as

Ofirst�s� �� fp j p � O�s�� s�p � V� 	q � O�s�� p
�
� q� s�q �� s�pg

Let Ofirst�s� � fp�� � � � � pmg and pj
�
� pi for � � i 	 j � m� Then the substitution � � fs�p� ��

��� � � � � s�pm �� �mg with �i � V� is called normalization and

s �� s�

For example� f�x� � f�y� � f���� and h�x� x� y� � h�z� z� x� � h���� ��� ���� The next
denition extends the normalization of terms to the normalization of substitutions�

De�nition ������ Normalization of Substitutions�
Let � � fx� �� t�� � � � � xn �� tng be a substitution and t � fn�t�� � � � � tn� with fn � Fn�
Additionally� let 	 be a xed total ordering on variables and x� 	 � � � 	 xn� The normalized
substitution � is dened as

� �� fx� �� t��� � � � � xn �� t�ng

For example� if � � fx �� f�u� v�� y �� f�a� v�g and x 	 y� then � � fx �� f���� ����
y �� f�a� ���g� However� if we chose y 	 x� the normalization of � would be � � fx ��
f���� ���� y �� f�a� ���g�

��� Graphs and Trees

De�nition ����� Graph�
A graph G � �V�E� consists of a nite� nonempty set of vertices V and a set of edges E� If the
edges are ordered pairs �v� w� of vertices� then the graph is said to be directed $ v is called the tail
and w the head of the edge �v� w�� If the edges are unordered pairs �sets� of distinct vertices�
also denoted by �v� w�� then the graph is said to be undirected� A directed graph is said to be
labeled if the edges are ordered triples �v�Label� w� of two vertices and an arbitrary label�

De�nition ����� Acyclic Graph�
A path in a graph is a sequence of edges of the form �v�� v��� � � � � �vn��� vn�� A path is simple if
all edges and vertices� except possibly the rst and last vertices� are distinct� A cycle is a simple
path which begins and ends at the same vertex� An acyclic graph does not contain cycles�

�� Chapter �� Preliminaries

De�nition ����� Tree�
A tree T � �V�E� is a directed acyclic graph having the following properties�

�� There is exactly one vertex that no edges enter� This vertex is called root�

�� Every vertex except the root has one entering edge�

�� There is a unique path from the root to each vertex�

If �v� w� is in E� then v is called the father of w� and w is the son of v� If there is a path from
v to w� then v is an ancestor of w and w is a descendant of v� A vertex with no sons is called
leaf� A vertex w and all its descendants are called a subtree of v� The vertex w is called the root
of that subtree� The empty tree is denoted by
�

We introduce the following notions for a tree T � �V�E�� The set of vertices of a tree is
denoted by nodes�T � �� V � Additionally� root�T � denotes the root of the tree� Subtrees of the
tree are denoted by sons�T � �� fv j father�v� � root�T �g�

De�nition ����� Ordered Tree�

An ordered tree is a tree in which the sons of each vertex are ordered� When drawing an ordered
tree we assume that the sons of each vertex are ordered from left to right�

��� Algorithms

We use a standardized notation for presenting algorithms� An example algorithm for computing
the value of n% � � � � � � � n is shown in Figure ���� Predened commands like if and then

� algorithm fac�int n�

� begin

� if n � � then

� RESULT � �

� else

� h This is a comment� i
	 RESULT � n � fac�n� ��

 return RESULT

� end

Figure ���� Presentation of Algorithms

are written boldface� The scope of if� else� and forall commands is dened by indention�
All variables like n and RESULT are local� If global variables are needed� a comment will tell
this� The result of a function is the value returned by the command return in line �� Formal
parameters of an algorithm may be dened together with their type�

�
UR�Resolution

The Unit Resulting Resolution was introduced by McCharen� Overbeek� and Wos �MOW��a��
We shall employ this inference rule for the investigation of indexing techniques and distributed
processing in automated reasoning� To this end we extend the unit resulting resolution rule to
work on sets of substitutions� In order to detach the inference rule from the usual notion of
clauses� we introduce a clause graph on the initial clause set� The clause graph provides pre

computed information about the potential application of the modied unit resulting resolution�

In Chapter � we will show that substitution sets can be represented by indexes in a natural
manner� In Purr these indexes become the fundamental data structure instead of the usual
clauses and literals� Thus in this work an index e�ciently represents a substitution set� The
main operations like subsumption and the computation of simultaneous uniers are extended to
set operations based on indexing techniques� Moreover� the modied ur
resolution rule is con

currently applied to di�erent nuclei of the clause graph� New sets of conclusions are exchanged
among parallel processes in the form of indexes�

In the rst section we brie�y discuss the unit resulting resolution principle and motivate
possible modications� The clause graph is introduced in the second section� Finally� we discuss
our extention of unit resulting resolution to an inference rule working on substitution sets in the
third section�

��� Unit Resulting Resolution

The ur
resolution rule is applied to a set of m unit clauses fK�g� � � � � fKmg and a single nucleus
fL�� � � � � Lm	�g consisting of m ! � literals� If there is a simultaneous complementary unier
� for all m pairs of literals Ki� Li� then fLm	�g� is the unit resulting resolvent� In the general
presentation of the rules all pairs of literals Ki� Li are assumed to be complementary� i�e� to have
opposite signs� The computation of the simultaneous unier ignores the signs of the literals$ jKj

�� Chapter �� UR�Resolution

denotes the atom contained in the literal K�

fK�g
���
fKmg
fL�� � � � � Lm� Lm	�g
�� � � mgu��jK�j� � � � � jKmj�� �jL�j� � � � � jLmj��
fLm	�g�

As an example for unit resulting resolution consider the non
unit clause

f�MARRIED�x� y���MOTHER�x� z�� FATHER�y� z�g

and the two unit clauses
fMARRIED�lisa� joe�g
f�FATHER�joe� pete�g

UR
Resolution yields the clause
f�MOTHER�lisa� pete�g

Unit resulting resolution can produce both negative and positive resolvents� The ur
inference
rule is refutation complete on the class of unary refutation complete clause sets� Horn clauses
are an important subset of this class�

Exploiting that ur
resolvents fLm	�g� are unit clauses� the resolvents can be represented as
substitutions � as long as the according literal Lm	� is known� Consider a modied resolution
scheme which delays the application of simultaneous uniers �i of former resolution steps until
the computation of the current simultaneous unier �� Note that unit clauses of the initial
clause set have empty substitutions �i�

fK�g��
���
fKmg�m
fL�� � � � � Lm� Lm	�g
�� � � mgu��jK���j� � � � � jKm�mj�� �jL�j� � � � � jLmj��
fLm	�g�

In this resolution scheme� the literals Ki are always literals of the initial clause set� The
initial clause set also determines the possible combinations of literals Ki and Li� If the literals
Ki and Li are complementary and uniable� then an instance Ki�i might still be uniable with
Li� If two complementary literals Ki and Li are not uniable� then no instance Ki�i will ever
be uniable with Li�

Pairwise complementary and uniable literals of the initial clause set can be computed in
advance� The uniability of literals in a clause set is represented by a clause graph� The nodes of
the clause graph correspond to the literals of the initial clause set� The links denote uniability
and thus determine the application of ur
resolution� We attach sets of ur
resolvents represented
as substitutions to the according nodes in the clause graph� The refutation process thus consists
of the creation and the exchange of substitutions via links in a clause graph�

In the next section we develop a convenient graph structure containing information about
the uniability of literals� The graph structure will serve as a base for a modied unit
resulting
resolution rule that will solely work on substitutions�

��� Clause Graph ��

��� Clause Graph

����� Undirected Clause Graph

In a clause set some unit clauses or ur
resolvents are potential ur
resolution partners for a certain
nucleus� These relations do not change during subsequent applications of ur
resolution� One
means to represent this information explicitly is a clause graph� Each vertex of such a clause
graph denotes a literal of the clause set� Two vertices are linked if the associated literals are
complementary and uniable� This denition yields a so
called undirected clause graph� For the
sake of simplicity we also refer to the term �vertex v corresponding to literal L� as �literal v� if
the correspondence is non
ambiguous� Consider the following clause set�

fQ�a�g
fP �a�g
f�Q�x���P �a�� P �y�g
f�P �d���P �b�g
f�P �c�g

The corresponding undirected clause graph is depicted in Figure ���� The vertices� whose corre

sponding literals form a non
unit clause� are presented in groups� Each pair of complementary
and uniable literals is connected by a link�

Q�a� P �a�

�Q�x� �P �a� P �y�

�P �d� �P �b� �P �c�

Figure ���� Undirected Clause Graph

����� Directed Clause Graph

An undirected link indicates a possible application of ur
resolution� However� nothing is said
about which literals are regarded as electrons and which literals play the role of a literal of the
nucleus� Moreover� some links seem to be redundant for the refutation process� For instance� in
order to nd a refutation of the unit clause f�P �c�g in Figure ���� the clause f�P �d���P �b�g is
not needed�

�� Chapter �� UR�Resolution

In order to avoid super�uous links in a clause graph we introduce directed links and a
classication of clauses� The direction of a link determines the type of the connected literals�
The originating literal is called the sender literal� This literal corresponds to an electron which
is either a unit clause in the initial clause set or a ur
resolvent of a nucleus� The target literal
is referred to as the receiver literal which is part of a nucleus�

Chang and Slagle �CS��� introduced a classication of the clause set inventing the Set�of�
Support �SOS� strategy� Here the clause set is divided into two disjoint subsets� One subset
contains the clauses originating from the axioms� where the other subset contains the clauses
from the negated theorem� The idea is that the axiom set itself is not unsatisable� To nd
a refutation the clauses that form the theorem are also required� The SOS strategy forbids
resolvents inferred by solely using clauses from the axioms�

According to the SOS strategy some clauses in a clause graph are marked as so
called query
clauses� As a consequence some reasoning possibilities need not to be considered� A query clause
usually corresponds to a theorem in the clause set� The creation of a clause graph is a recursive
process considering the literals of the query clauses as receiver literals� If an according sender
literal belongs to a nucleus� then the remaining literals of the nucleus have to be considered as
receiver literals as well�

In addition to the SOS strategy� the sign of the literals might be used as a restriction on
directed links� For example� one could only allow links from positive to negative literals� As a
consequence every ur
resolvent would be positive� This restriction corresponds to the positive
and negative versions of hyperresolution introduced by John Alan Robinson �Rob����

Note that a directed clause graph is a generalization of the undirected approach if all clauses
are marked as query clauses� In a directed clause graph with all clauses marked as query clauses�
each linked pair of vertices has two links �v� w� and �w� v��

In Figure ��� the unit clause f�P �c�g is marked as a query clause by the question mark� The
literal P �y� of the triple clause f�Q�x���P �a�� P �y�g is an appropriate partner for the query
clause� The remaining literals �Q�x� and �P �a� match the two positive unit clauses Q�a� and
P �a� and the P �y� itself �indicated by a so
called internal link�� Such an internal link connects
literals of a single clause� The clause f�P �d���P �b�g is omitted� because there is no possible
connection with other clauses� Thus this clause is not needed for the refutation of the query
clause �P �c��

����� Labeled Directed Clause Graph

A directed clause graph mirrors ur
resolution possibilities� The direction of links distinguishes
connected literals as electron and part of a nucleus� Sender literals are considered as electrons
whereas receiver literals belong to nuclei� The representation of ur
resolvents as substitutions
also requires additional information about the uniability of linked literals� To meet these
requirements we introduce labeled links containing splitted most general uni�ers of linked literals�
As a result we obtain a labeled directed clause graph�

��� Clause Graph ��

Q�a� P �a�

�Q�x� �P �a� P �y�

�P �d� �P �b� �P �c� �

Figure ���� Directed Clause Graph

������� Examples

Consider the following fragment of a clause set�

fR�a�g
fR�b�g
f�R�x�� P �x� a�g
f�P �b� y�� Q�y�g
� � �

Assume that the literal Q�y� has been chosen as a sender literal by some query clauses� The
corresponding directed clause graph is depicted in Figure ����

R�a� R�b�

�R�x� P �x� a�

�P �b� y� Q�y� � � �

Figure ���� Directed Clause Graph

�� Chapter �� UR�Resolution

Two ur
resolvents fP �a� a�g and fP �b� a�g might be inferred by using the clauses fR�a�g�
fR�b�g� and the nucleus f�R�x�� P �x� a�g� The ur
resolvent fP �b� a�g can be used as a new
electron with the literal �P �b� y� of the nucleus f�P �b� y�� Q�y�g to resolve fQ�a�g� The other
ur
resolvent fP �a� a�g is not compatible with �P �b� y��

In order to check if a specic instance of a sender literal is uniable with the according
receiver literal we consider the most general unier of the two literals� In the example� the most
general unier of the sender literal P �x� a� and the receiver literal �P �b� y� is the substitution
� � fx �� b� y �� ag � The uniability can be checked if we also consider ur
resolvents represented
as substitutions� These substitutions correspond to the simultaneous uniers of ur
resolution�
The ur
resolvent fP �a� a�g is represented by the substitution �� � fx �� ag� The ur
resolvent
fP �b� a�g is represented by the substitution �� � fx �� bg� Obviously� only the substitution ��
is uniable with the substitution ��

We observe that only assignments of � to variables occurring in the sender literal are needed
to check if a specic instance of the sender literal is uniable with the receiver literal� In the
example that is the assignment fx �� bg of � which has to be checked for uniability with the
substitutions �� and ���

The assignments to variables occurring in the receiver literal are also needed in order to
create a simultaneous unier in subsequent ur
resolution steps� In the example� the assignment
fy �� ag of � is used to instantiate the receiver literal �P �b� y��

The next example contains clauses with more complex terms� Consider the clause set�

fQ�x� f�y��g
fP �f�f�x��� x� a�g
f�Q�f�x�� x���P �f�x�� f�y�� a�� P �x� f�y�� z�g
f�P �f�b�� f�b�� c�g is a query clause

Note that all clauses are considered variable disjoint� The corresponding clause graph is depicted
in Figure ���� Each link in the graph is labeled with a so
called splitted most general uni�er of
the connected literals� The unier is divided into two substitutions � and �� The substitution
� is called the test substitution� The substitution � is referred to as the send substitution� Note
that a test substitution only considers variables of the sender literal whereas a send substitution
only contains variables of the receiver literal in its domain�

The most general unier of the connected literals is splitted in order to support two essential
operations� The test uni�cation and the send instantiation�

� Every instantiation � of a sender literal has to be tested for uniability with the connected
receiver literal� This test corresponds to the selection of a ur
resolvent as an electron� We
also refer to this operation as the test uni�cation� The test unies the instantiation � and
the test substitution � of the corresponding link�

� The resulting unier of a successful test unication is applied to the send substitution ��
We refer to this operation as the send instantiation� The result of the send instantiation
is a substitution �� which instantiates the receiver literal� As the receiver literal belongs
to a nucleus� the according instantiation �� is used for the computation of simultaneous
uniers together with instantiations of the remaining literals in order to perform a unit
resulting resolution step�

��� Clause Graph ��

Q�x� f�y�� P �f�f�x��� x� a�

�Q�f�x�� x� �P �f�x�� f�y�� a� P �x� f�y�� z�

�P �f�b�� f�b�� c� �

���fx��f�f�ys��g

���fx��f�ys�g

���fx��f�yr �g

���fx��f�f�yr���y ��yrg

���fx ��f�xr ��z ��ag

���fx��xr �y ��ysg

���fx��f�b��y ��b�z ��cg

����

Figure ���� Labeled Directed Clause Graph with Test and Send Substitutions

Consider the link labeled with �� and ��� Given the test substitution �� every instance of
the variable x in the sender literal fP �x� f�y�� z�g has to be of the form f�b� in order to be
uniable with the query clause f�P �f�b�� f�b�� c�g� Moreover� instances of y are restricted to
the constant b and instances of z are restricted to c� The empty send substitution �� indicates
that the receiver literal does not contain any variables� Thus an instantiation �� will be empty
after a successful test unication�

At the link labeled with �� and �� variables are involved in both the sender and the receiver
literal� Note that a test substitution � actually is not required for unit clauses since there are
no special instantiations for unit clauses� In this case� the send substitution �� su�ces for the
correct instantiation of the receiver literal� The same applies to the link labeled with �� and ���

The internal link labeled with �� and �� shows a new� complex situation� In general� vari

ables of literals of one clause are not disjoint� i�e� the variable x occurring in the sender literal
P �x� f�y�� z� and the receiver literal �P �f�x�� f�y�� a� denotes a single variable� However� vari

ables like x and y have to be distinguished in the test and send substitution if the literals are
connected with an internal link� Therefore� variables of the sender literal are indexed by �s� in
the codomain of the test and send substitution� Variables of the receiver literal are indexed by
�r��

The test substitution �� restricts all instances of x to the term f�xr�� where the variable
xr denotes the variable x in the receiver literal� The corresponding assignment fx �� xrg of
�� achieves the correct instantiation of the receiver literal� The variable xr refers to the same
variable in the codomain of ��� If xr is bound to a term t while testing an instance of the sender
literal against ��� the term t also becomes an instance of the variable x in the receiver literal�

Now� consider the assignment fy �� ysg in ��� If an instance of the sender literal instantiates
the variable y� then this instance also appears at the variable y in the receiver literal� The
domain variable y of fy �� ysg belongs to the receiver literal� whereas the codomain variable ys
belongs to the sender literal�

Note that an additional conversion of variables is needed for the correct instantiation of the

�� Chapter �� UR�Resolution

send substitutions� This problem arises when variables in the codomain of the send substitution
are not instantiated� We shall discuss this issue in more detail in Chapter ��

����� De	nitions

We nally summarize the previous discussion by two informal denitions� In particular� we
dene the splitted most general unier of linked literals and the labeled directed clause graph�
The clause graph will be used in our ur
resolution scheme on substitution sets which is discussed
in the next section�

De�nition ����� Splitted Most General Uni�er�

Let Ls be a sender literal and let Lr be a receiver literal� The literals are not necessarily variable
disjoint� The Splitted Most General Unier split mgu�Ls� Lr� is dened as follows�

�� � �� � split mgu�Ls� Lr� ��� jLsj and jLrj are uniable and

jLsj� � jLrj� and

�� � �� is most general�

Note that this denition does not address the formerly presented variable renaming with indices
�s� and �r�� However� we will discuss this issue in Chapter ��

We summarize the main ideas behind the test and the send substitutions as follows�

� The test substitution � is used to check if a specic instantiation � of ur
resolvent K is
uniable with a connected receiver literal L�

� The send substitution � is used as a template for the computation of an instantiation ��

of the receiver literal L considering K� as an electron�

Finally� we present the denition of a directed clause graph labeled with test and send
substitutions� The later denition of the ur
resolution rule on substitution sets is based on this
clause graph� An example of a labeled directed clause graph is depicted in Figure ����

De�nition ����� Labeled Directed Clause Graph LDCG��
Let S � fC�� � � � � Cmg be a non
empty clause set� A non
empty subset of the clauses of S is
marked as query clauses� A labeled directed clause graph on S

CGS �� �V�E�

is a labeled directed graph� The following conditions hold�

� Each literal of the clause set S corresponds to exactly one vertex in V � The function literal

maps each vertex v � V to exactly one literal L � Ci�

� The function clause maps a vertex v � V to a set of vertices fv� v�� � � � � vng which corre

spond to the literals of the according clause of v�

� query�S� � V denotes the set of vertices whose corresponding literals are considered as
literals of the query clauses in S�

��� UR�Resolution on Substitution Sets ��

� E is the set of labeled directed edges with �v� ��� ��� w� � E if the corresponding literals
of v and w are complementary and uniable with �� � �� � split mgu�literal�v�� literal�w���
Furthermore� w corresponds to a literal in a query clause or a query clause is reachable
via a sequence of labeled directed edges�

A detailed algorithm for the creation and optimization of labeled directed clause graphs will be
discussed in Chapter ��

��� UR�Resolution on Substitution Sets

The ur
resolution scheme on substitution sets exploits the labeled directed clause graph� Re

solvents are represented as substitutions� Each substitution belongs to a certain literal in the
clause set� i�e� a certain vertex in the clause graph� Resolvents are collected in substitution
sets which are attached to vertices and links in the clause graph� Substitutions are exchanged
between these substitution sets via links in the clause graph� In the next section we introduce
a modied version of ur
resolution that works on substitution sets�

����� Adapting UR�Resolution to Substitution Sets

On page �� we have introduced ur
resolution� We now present a rst modied ur
resolution rule
which solely works with substitutions instead of clauses and literals� To this end we create the
according LDCG�

We use substitutions to represent instances of literals in the graph� It is important to keep
in mind that a single substitution is always associated to a certain literal� In the following
ur
resolution rule we associate substitutions �i and � to sender literals in the graph�

The pairs of an electron Ki�i and a literal Li in the nucleus are replaced by the according
splitted unier ��i� �i� contained in the graph� The electrons Ki�i are represented by substi

tutions �i which belong to literals Ki in the graph� The function apply performs the test
unication and the send instantiation which correspond to the pairwise unication of electrons
Ki�i and literals Li in the nucleus and the creation of the according unier �s� Def� �������
We currently assume that all test unications succeed� In other words� the electrons Ki�i and
literals Li are pairwise uniable� The resulting uniers have to be unied in order to produce
the simultaneous unier � which is associated to the literal Lm	��

��
���
�m
���� ���� � � � � ��m� �m�
�� � � apply�f��g� ��� ���� � � �� apply�f�mg� �m� �m�

�

In practice� we cannot assume that all pairs of literals Ki�i and Li are compatible� The idea
of the next ur
resolution rule is to associate every substitution �i and � to receiver literals in
the graph� The substitutions represent the result of already successful test unications and send
instantiations�

If the substitutions �i belong to the literals Li of the nucleus� these substitutions �i can
directly be unied to a simultaneous unier �� Finally� the substitution � is tested with the

�� Chapter �� UR�Resolution

splitted unier ��m	���m	�� of one outgoing link of the literal Lm	�� If the test unication
succeeds� the resulting substitution belongs to the according receiver literal of the outgoing link�
This substitution might be used as a new electron in subsequent applications of the rule�

��
���
�m
��m	�� �m	��
�� � � �� � � � �� �m
apply�f�g� �m	�� �m	��

Instead of working with single substitutions �i� we could also process substitution sets �i�
The modied ur
resolution rule also produces a set of simultaneous uniers�

��
���
�m

��m	�� �m	��
� �� �� � � �� � � � �� �m

apply��� �m	�� �m	��

In practice� we only consider one substitution set �i of new ur
resolvents� The remaining
substitution sets are considered as sets of ur
resolvents that have been unied or merged� Thus
a new substitution set �i is merged with the known instances of the remaining literals of the
nucleus� Thus our nal ur
resolution scheme on substitution sets is

�i� � � i � m
��� � � � ��i����i	�� � � � ��m� ��m	�� �m	��
� �� �� � � �� � � � �� �m

apply��� �m	�� �m	��

This modied ur
resolution scheme requires substitution sets attached to vertices and links
in the clause graph� For example� the substitution set �i in the last rule is associated to the
vertex of literal Li� Later we will show how substitution sets attached to links can be exploited
to support subsumption on simultaneous uniers�

����� De	nitions

������� Sets of Substitution Sets

We dene four sets REC� MRG� RES� and SNT containing substitution sets that are associated
to a clause graph� The rst two sets REC and MRG contain substitution sets that are attached
to vertices in a clause graph� The set REC contains sets of received substitutions� Received
substitutions correspond to uniers of new inferences and the according receiver literals� These
substitutions have not been considered for simultaneous unication yet� Substitutions that have
been received and simultaneously unied are added to substitution sets in the set MRG� These
substitutions are called merged substitutions�

The other two sets RES and SNT contain substitution sets that are attached to links in a
clause graph� The set RES contains sets of resolved substitutions for a single link� Resolved
substitutions correspond to the common instances of simultaneous uniers of ur
resolution� In

��� UR�Resolution on Substitution Sets ��

practice� not all of the resolved but often exponentially many substitutions can be considered
for subsequent resolution steps� Substitutions that have been considered for subsequent steps
are called sent substitutions� These substitutions are collected in the substitution sets of the
set SNT�

De�nition ����� Sets REC� MRG� RES� SNT of Substitution Sets�
Let CGS � �V�E� be a clause graph� Let REC � f�v� � � � � ��vmg� m � � be an ordered set of
substitution sets �vi and let MRG � f#v� � � � � �#vmg� m � � be an ordered set of substitution
sets #vi � Each element of REC belongs to exactly one vertex vi � V of the clause graph CGS � A
substitution set �vi � REC corresponds to the vertex vi � V of CGS � The same correspondence
applies to the set MRG�

Furthermore� let RES � f&vk �vl � � � � �&vm�vng be an ordered set of substitution sets &vi�vj and
let SNT � f'vk�vl � � � � �'vm�vng be an ordered set of substitution sets 'vi�vj � Each element of
RES belongs to exactly one link �v� ��� ��� w� � E of the clause graph CGS � A substitution set
&v�w � RES corresponds to the link �v� ��� ��� w� � E of CGS � The same correspondence applies
to the set SNT�

������� Transition System PURR

The transition system PURR describes the fundamental algorithm performed by our theorem
prover Purr� The transition system denes ur
resolution on substitution sets in a clause graph�
The transition rules of PURR use the formerly introduced sets to maintain substitution sets�
Substitutions are exchanged between substitution sets of connected literals according to our
modied ur
resolution scheme�

We begin with the denition of the auxiliary functions apply and strategy� The function
apply combines ur
resolvents with the literal of a nucleus� This operation corresponds to the
test unication and the send instantiation� We use the function strategy for the selection of
�best� ur
resolvents� Finally� we present the transition system PURR�

The Combination of UR�Resolvents and a Nucleus� The function apply performs the
test unication and the send instantiation� The denition does not consider the technical details
of variable renaming� For more details see Chapter ��

�

v w

�v� ��� ��� w�

Figure ���� Test Unication and Send Instantiation

De�nition ����� Test Uni�cation and Send Instantiation�

Let �v� ��� ��� w� be a labeled link� Let � and # be two substitution sets� The substitutions of
belong to the literal of vertex v� The substitutions of � belong to the literal of vertex w� We
dene�

� �� apply�#� �� �� if

	� � ��
� � # � � is the most general unier of � and � and

� is the renamed instance of ��

�� Chapter �� UR�Resolution

In Figure ��� the literal of vertex v is a sender literal connected by a link �v� ��� ��� w� to
the receiver literal of vertex w� The set # contains substitutions which represent instances of
the sender literal v� These instances are ur
resolvents� The function apply combines the ur

resolvents with the receiver literal w of a nucleus� The set � contains substitutions as a result
of successful combinations� The substitutions in � belong to the receiver literal w�

The combination of ur
resolvents with the receiver literal of a nucleus corresponds to the test
unication and the send instantiation� Each substitution � in # is tested for uniability with
the test substitution � � The most general unier � of a successful test unication is applied to
the send substitution �� The result is renamed to a substitution � in ��

The Selection of UR�Resolvents� The selection of �best� ur
resolvents is usually required
in order to reduce the number of drawn inferences� We also refer to the heuristic of selection
as the strategy� The function strategy selects substitutions of a substitution set according to a
predicate is wanted� Therefore� the predicate is wanted actually determines the strategy�

De�nition ����� Strategy�
Let � and # be two substitution sets� Let is wanted be a predicate� We dene�

strategy�#� � f� � # j is wanted���g

The substitutions in strategy�#� are referred to as given substitutions� One example for the
predicate is wanted is to select a certain number of lightest substitutions� i�e� substitutions which
have the smallest number of symbols� Note that the denition of is wanted is left open because
the strategy itself is not important at this point�

The Transition System PURR� The transition system PURR consists of the transition rules
RESOLVE� TRYTERMINATE� and TERMINATE� The transition rules are applied to the sets REC�
MRG� RES� and SNT of a clause graph� We dene the application of ur
resolution according to
one link in a clause graph with the transition rule RESOLVE� The transition rule TRYTERMINATE

maintains the set MRG of merged substitutions if the termination test fails� The transition rule
TERMINATE stops the transition process if the empty clause is detected�

De�nition ����� Transition System PURR without Subsumption�

Let CGS � �V�E� be a clause graph and let REC� MRG� RES� and SNT be sets of substitution
sets associated to the clause graph CGS according to Def� ������ Initially� the following conditions
hold�

�� RES � �� SNT � �

�� 	v � V � clause�v� � fvg� 	w � V � �v� ��� ��� w� � E �
apply��� fg� �� � �w � �w � REC

The substitution sets in REC of all literals with incoming links from unit clauses are
initialized with the renamed send substitutions ��

�� MRG � REC

Note that the initial state corresponds to the application of ur
resolution with all possible com

binations of unit clauses and nuclei� Subsequent ur
reolvents are produced by the transition

��� UR�Resolution on Substitution Sets ��

rule RESOLVE� This rule also uses the set of vertices V and the set of links E of the clause graph
CGS � The symbol � denotes the disjoint set union�

RESOLVE�

hREC � f�ug � f�wg � MRG � f#ug � RES � f&v�wg � SNT � f'v�wgi
hREC f�ug f�w �g� MRG f#u �ug� RES f&v�w &g� SNT f'v�w 'gi

if
�v� ��� ��� w� � E�
u � V � clause�v� � fu� v� v�� � � � � vmg �

#v� � � � � �#vm � MRG � & � �u � #v� � � � �� #vm � #vi �� � �

' � strategy�f&v�w &gn'v�w� �
� � apply�'� �� ��

The literal u represents the receiver literal of the nucleus fu� v� v�� � � � � vmg� The literal v is the
sender literal of the nucleus connected to the receiver literal w of another clause�

The substitutions in �u are newly received substitutions� The substitution sets #vi of the
remaining literals v�� � � � � vm contain substitutions which have already been merged in previous
ur
resolution steps� These substitutions have to be merged with �u� Then� the substitutions in
�u are copied to the set #v of merged substitutions� The resulting common instances & of the
simultaneous unication are inserted as resolved substitutions into the according set &v�w �

The strategy selects the �best� substitutions ' of all resolved substitutions except for those
substitutions 'v�w that have already been sent� Finally� the instances � of the receiver literal
w are inserted into the according set �w of received substitutions�

TRYTERMINATE�

hREC � f�vg� MRG � f#vg � RES� SNTi
hREC f�vg� MRG f#v �vg� RES� SNTi

if
v � V � clause�v� � fv� v�� � � � � vmg �

#v� � � � � �#vm � MRG � �v � #v� � � � �� #vm � �� #vi �� �

The transition rule TRYTERMINATE considers failed termination tests� The literal v represents
the receiver literal of a clause fv� v�� � � � � vmg� The substitutions in �v are newly received sub

stitutions� The substitution sets #vi of the remaining literals v�� � � � � vm contain substitutions
which have already been merged in previous termination test� These substitutions have to be
merged with �v � Then� the substitutions in �v are copied to the set #v of merged substitu

tions� The termination fails since there is no simultaneous unier that instantiates the clause
fv� v�� � � � � vmg to the empty clause�

TERMINATE�

hREC � f�vg� MRG� RES� SNTi
STOP

if
v � V � clause�v� � fv� v�� � � � � vmg �

#v� � � � � �#vm � MRG � �v �#v� � � � ��#vm �� �� #vi �� �

�� Chapter �� UR�Resolution

The transition rule TERMINATE stops the search process if all literals of a single clause are
instantiated by simultaneously uniable substitutions�

������� Example

Consider the following example of a clause set�

fQ�x� f�y��g
fP �f�f�x��� x� a�g
f�Q�f�x�� x���P �f�x�� f�y�� a�� P �x� f�y�� z�g
f�P �f�b�� f�b�� c�g is a query clause

The example has been presented on page ��� The according clause graph is depicted in Figure ����
The refutation of the query clause f�P �f�b�� f�b�� c�g consists of two ur
resolution steps� The
ur
resolvent ��� refutes the denied theorem�

��� fQ�x� f�y��g
��� fP �f�f�z��� z� a�g
��� f�Q�f�u�� u���P �f�u�� f�v�� a�� P �u� f�v�� w�g � � fu �� f�f�v��g
��� fP �f�f�v��� f�v�� w�g

��� fQ�x� f�y��g
��� fP �f�f�v��� f�v�� w�g
��� f�Q�f�x��� x����P �f�x��� f�x��� a�� P �x�� f�x��� x��g � � fx� �� f�x��g
��� fP �f�x��� f�x��� x��g

The same refutation can be computed on the clause graph with the transition system PURR�
Figure ��� depicts the initial state of the sets REC� MRG� RES� and SNT� The substitution
sets of REC and MRG are attached to vertices v�� v�� and v�� The internal link and the link to
the theorem are labeled with the according substitution sets of RES and SNT� Note that parts
of the sets always remain empty and therefore have been omitted�

The sets in REC and MRG of the vertex v� contain the substitution �� � fx �� f�y��g�
This substitution corresponds to the combination of the literals v� and v�� The variable in the
codomain of �� denoted with y� belongs to the literal v�� Note that �� corresponds to the send
substitution �� modulo renaming�

The substitution �� � fx �� f�f�y��g corresponds to the combination of v� and v�� Ob

viously� the variable y belongs to the same variable in the nucleus� Note that the assignment
fy �� yrg of the send substitution �� has been omitted since yr implicitly corresponds to the
variable y of the nucleus�

Figure ��� shows the situation after performing the transition rule RESOLVE on the internal
link �v�� ���� ���� v�� and the receiver literal v�� The substitution �� is unied with all substi

tutions that have been received and merged at the remaining incoming links� i�e� it is unied
with �� of literal v�� The common instance �� � fx �� f�f�y��g is stored in the set of resolved
substitutions of the current link� Then the only substitution �� in RES is selected as given and
copied to the set of sent substitutions in SNT� The function apply computes the according
instantiation �� � fx �� f�y��� y �� y�g which is passed to REC of vertex v�� Obviously� the
variable y� belongs to the literal v�� This transition corresponds to the rst ur
resolution step�

��� UR�Resolution on Substitution Sets ��

v� v�

REC
 ���fx ��f�y��g

MRG
 ��

v�

REC
 ���fx ��f�f�y��g

MRG
 ��

v�

v�

REC
 �

MRG
 �
�

v�

���fx ��f�f�ys��g

���fx��f�ys�g

���fx��f�yr �g

���fx��f�f�yr ���y ��yrg

���fx��f�xr ��z ��ag

���fx ��xr �y ��ysg

RES
 �

SNT
 �

���fx��f�b��y ��b�z ��cg

����

RES
 �

SNT
 �

Figure ���� Initial State of the Search Sets

REC
 ���fx ��f�y��g

MRG
 ��

v�

REC
 ���fx��f�f�y��g

���fx��f�y���y ��y�g

MRG
 ��

v�

v�

���fx ��f�xr ��z ��ag

���fx��xr �y ��ysg

RES
 ���fx��f�f�y��g

SNT
 ��

Figure ���� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v�

�� Chapter �� UR�Resolution

The second ur
resolution step is performed by RESOLVE on the link �v�� ���� ���� v�� with
the receiver literal v�� See Figure ��� for the current state� The substitutions �� and �� of
v� are unied with the merged substitution �� of v�� The resulting common instances are
�� � fx �� f�f�y��g and �� � fx �� f�y��� y �� y�g� We select �� as given� The according
instantiation �� � � is sent to REC of v�� The substitution �� is empty due to the empty send
substitution ���

REC
 ���fx��f�y��g

MRG
 ��

v�

REC
 ���fx ��f�f�y��g

���fx ��f�y���y ��y�g

MRG
 �����

v�

v�

REC
 ����

MRG
 �
�

v�

���fx��f�b��y ��b�z ��cg

����

RES
 ���fx ��f�f�y��g

�	�fx ��f�y���y ��y�g

SNT
 �	

Figure ���� RESOLVE applied on link �v�� ���� ���� v�� with receiver literal v�

Finally� the transition rule TERMINATE is applied on the receiver literal v�� Obviously�
TERMINATE succeeds because v� belongs to a unit clause� i�e� the unication test is not required�
In general� a unit query clause is solved if at least one substitution has been received�

����� A Transition System with Subsumption

We dene a transition system SUBSUMPTION which performs subsumption on two substitutions
sets� Substitutions in one set which are subsumed by substitutions in the other set are removed�

De�nition ����� Transition System SUBSUMPTION�
The rule SUBSUMPTION is dened on two substitution sets� The rule performs subsumption on
both sets by removing all instances of one set in the other set and vice versa�

SUBSUMPTION�
h� � �ins� # � #insi

h��#i
if

	� � �ins�
� � # � � is a generalization of � �
	� � #ins�
� � � � � is a generalization of �

The transition system PURR with subsumption points out where subsumption may take place
in the reasoning process� We distinguish input and output subsumption� Subsumption might be
performed with received substitutions and merged substitutions of one literal� This subsumption
test is referred to as input subsumption� Resolved substitutions might be tested for subsump

tion with earlier resolved substitutions of one literal� This subsumption test is called output
subsumption� In general� subsumption is considered as one of the most important reduction
methods� Thus subsumption is an integral part of our approach� We present the nal transition
system PURR which includes input and output subsumption�

��� UR�Resolution on Substitution Sets ��

De�nition ����� Transition System PURR with Subsumption�
Let CGS � �V�E� be a clause graph and let REC� MRG� RES� and SNT be sets of substitution
sets associated to the clause graph CGS according to Def� ������ The initial state is dened as
in Def� ������ The denition of the three transition rules is based on Def� ����� of the transition
system PURR without subsumption� Here� we merely add the subsumption test to the rules�

RESOLVE�

hREC � f�ug � f�wg � MRG � f#ug � RES � f&v�wg � SNT � f'v�wgi
hREC f�ug f�w �g� MRG f#�

u ��ug� RES f&
�
v�w &�g� SNT f'v�w 'gi

if
�v� ��� ��� w� � E�
u � V � clause�v� � fu� v� v�� � � � � vmg �

#v� � � � � �#vm � MRG � h�u�#ui �SUBSUMPTION � h��u�#

�
ui �

& � ��u � #v� � � � �� #vm � #vi �� � �
h&�&v�wi �SUBSUMPTION � h&��&�v�wi �

' � strategy�f&�v�w &�gn'v�w� �
� � apply�'� �� ��

The subsumption test with the set of received substitutions �u and the set of merged substi

tutions #u corresponds to the input subsumption� The subsumption test with the set of new
ur
resolvents & and the set of previously resolved substitutions &v�w corresponds to the output
subsumption�

TRYTERMINATE�

hREC � f�vg� MRG � f#vg � RES� SNTi
hREC f�vg� MRG f#�

v ��vg� RES� SNTi

if
v � V � clause�v� � fv� v�� � � � � vmg � h�v�#vi �SUBSUMPTION� h��v�#
�
vi �

#v� � � � � �#vm � MRG � ��v � #v� � � � �� #vm � �� #vi �� �

The input subsumption with the set of received substitutions �v and the set of merged substi

tutions #v can also reduce the amount of substitutions which have to be tested for termination�

TERMINATE�

hREC � f�vg� MRG � f#vg� RES� SNTi

STOP

if
v � V � clause�v� � fv� v�� � � � � vmg � h�v�#vi �SUBSUMPTION� h��v�#
�
vi �

#v� � � � � �#vm � MRG � ��v � #v� � � � �� #vm �� �� #vi �� �

The ur
resolution refutation process was represented as the computation and distribution of
substitution sets in a clause graph� Notions like clauses or literals are not needed any longer� In
the next chapter we will present an e�cient technique for the representation and manipulation
of substitution sets called substitution tree indexing�

�� Chapter �� UR�Resolution

�
Indexing

Indexing supports the maintenance of large databases by providing fast access to stored data�
In automated reasoning we employ databases that contain rst
order terms� Typical queries to
such term indexes are� Given a database D containing terms �literals� and a query term t� nd
all terms in D that are uniable with� instances of� variants of� or more general than t�

So far� many successful theorem provers use term indexing to support the reasoning process�
We use term indexing not only as a tool but as the fundamental data structure during the
proof search� Term indexing replaces the standard implementation of literals and clauses� All
operations on resolvents� like resolution and subsumption� are indexing operations� The system
even communicates by sending sets of resolvents stored in indexes�

In the rst section we present a classication scheme for indexing techniques� An indexing
method called substitution tree indexing �Gra��b� is presented in detail in Section �� We use
substitution trees for the representation of sets of substitutions� In the last section we investigate
the operations on substitution trees providing an e�cient implementation of the former presented
unit resulting resolution on sets of substitutions�

This chapter is mainly based on the PhD thesis of Peter Graf �Gra���� His thesis also provides
an exhaustive discussion of other term indexing methods including the following classication
scheme�

��� Classi�cation of Indexing Techniques

The main purpose of indexing techniques in theorem provers is to achieve e�cient access to rst

order terms with specic properties� To this end a set of terms I is inserted into an indexing
data structure� A retrieval in I is started for a set Q of query terms� The aim of the retrieval
is to nd tuples �s� t� with s � I and t � Q in such a way that a special relation R holds for
s and t� Most automated reasoning systems can prot from a retrieval based on the following

�� Chapter �� Indexing

relations� s and t are uni�able� t is an instance of s� and s is a generalization of t� The relation
for uniability can be used for the retrieval of complementary uniable literals in a resolution
based system� for example� Moreover� possibly forward or backward subsumed clauses are found
by accessing more general or instance literals�

If we are interested in retrieving indexed substitutions instead of indexed terms� a relation
R��� �� is needed� We consider the relations of type R��� �� as generalizations of the relations
of type R�s� t� since indexing substitutions using the relation R�fx �� sg� fx �� tg� is equivalent
to using R�s� t�� An application of indexed substitutions is unit resulting resolution� where
simultaneous unication of substitutions has to be performed�

Retrieval of Type ���� n��� and n�m� A retrieval is of type ��� if both sets I and Q have
cardinality �� Since both sets Q and I solely consist of one single term or substitution� the
retrieval corresponds to simply testing if R�s� t� holds�

Retrieval of type n�� is determined by a single query term t� which is used to nd entries
s � I� The set I of n indexed terms is represented by an indexing data structure� The result of
a retrieval is a subset of I� Note that a very ine�cient retrieval of type n�� could be performed
by testing each entry of the index in a ��� type retrieval because such an approach would have
to consider all indexed terms explicitly�

Retrieval of type n�m includes all cases in which more than a single query term is involved�
Exploiting n�m indexing� the query set typically is also represented by an index� Hence� we
have to deal with two indexes$ one of them represents the indexed and the other one represents
the query set� The result of such a retrieval is a subset of the direct product of the term sets
involved�

As an example� we consider a n�m retrieval called merge� Suppose we are looking for si

multaneous uniers for ur
resolution� We create an index for each literal of the nucleus� Each
index contains the uniers of the literal with electrons� In this example it is of advantage if the
indexing technique employed is able to index substitutions in a convenient manner� In a merge
operation we look for simultaneous uniers of the electrons and the literals of the nucleus� In
case the nucleus contains more than two literals that have to be merged� we can extend the
merge operation to an arbitrary number n of indexes� In this case we nd n
tuples instead of
pairs and call the according retrieval operation the multi�merge�

Maintenance of Type n�� and n�m� In addition to the retrieval operations we also have
to provide functions that insert entries into and delete entries from the indexing structure�
Insertion and deletion can also be classied according to the cardinalities of the involved sets�

Maintenance of type n�� includes all operations that modify an index by a single term� Beside
the classical insertion and deletion operations of a single term� the deletion of all instances of a
term� for example� also corresponds to an n�� maintenance operation�

Maintenance of type n�m corresponds to index manipulation operations that t into the
concept of n�m indexing� For example� the union of two indexes results in a new index that
contains all terms of the two sets involved� An additional n�m maintenance task is to delete all
instances of Q that occur in I from I� Such an operation is used for subsumption in the case of
unit clauses� for example�

��� Substitution Tree Indexing ��

��� Substitution Tree Indexing

Memory requirement and retrieval times being the main criteria for judging an indexing tech

nique� substitution tree indexing is superior to the known tree
based strategies in these points�
Substitution trees can represent any set of idempotent substitutions� In the simplest case all
these substitutions have identical domains and consist of a single assignment� which implies that
the substitution tree can be used as a term index as well� Figure ��� shows an index for the
three substitutions fu �� f�a� b�g� fu �� f�y� b�g� and fu �� f�b� z�g which obviously represents
a term index for the terms f�a� b�� f�y� b�� and f�b� z�� As the name indicates� the labels of
substitution tree nodes are substitutions� Each branch in the tree therefore represents a binding
chain for variables� Consequently� the substitutions of a branch from the root node down to a
particular node can be composed and yield an instance of the root node�s substitution�

�� � fu �� f�x�� x��g

�� � fx� �� bg �� � fx� �� b� x� �� ��g

�� � fx� �� ag �� � fx� �� ��g

Figure ���� Substitution tree

Before substitutions are inserted into the index� their codomain is renamed� This normal�
ization changes all variables in the codomain of a substitution� Renamed variables are called
indicator variables and are denoted by �i� The substitutions inserted to the index in Figure ���
therefore were fu �� f�a� b�g� fu �� f���� b�g� and fu �� f�b� ���g� This renaming has two main
reasons� There is more sharing in the index if the substitutions are normalized and� for some
retrieval tasks� it is necessary to distinguish between variables occurring in the query and in the
indexed terms� The latter may not be instantiated when looking for instances of query terms�
for example�

Consider the substitution � � fu �� f�a� b�g� which is represented by the chain of substitu

tions �� � fu �� f�x�� x��g� �� � fx� �� bg� and �� � fx� �� ag� The original substitution � can
be reconstructed by simply applying the substitution ������ to u� The result of this application
is

� � fu �� u������g

� fu �� f�x�� x������g

� fu �� f�x�� b���g

� fu �� f�a� b�g

The retrieval in a substitution tree is based on a backtracking algorithm� This algorithm
exploits a backtrackable variable binding mechanism� similar to the one used in Prolog�

To illustrate a retrieval operation� the search for substitutions compatible with fu �� f�a� x�g
in our example index is presented� We search for substitutions � such that u� is uniable with
f�a� x�� We begin by binding the variable u to the term f�a� x� and start the retrieval� The
substitution tree is traversed by testing at each node marked with the substitution � � fx� ��
t�� � � � � xn �� tng whether under the current bindings all xi are uniable with their appropriate

�� Chapter �� Indexing

ti� At the root node we unify the terms f�a� x� and f�x�� x��� which yields the two bindings
x� �� a and x �� x�� Then we consider the rst son of the root node marked with �� and unify
x� with b� because x� has not been bound yet� The resulting binding is x� �� b and the leaf node
�� is the next node to be investigated� As x� is bound to a� the unication problem is trivial
and therefore the substitution represented by this leaf node is compatible with fu �� f�a� x�g�
After backtracking node �� is found to represent another solution� because the variable �� is
uniable with a� Backtracking deletes the bindings of �� and x� and then proceeds with node
��� Obviously� retrieval can be stopped at this point� because a� which is the binding of x�� is
not uniable with b�

����� Standard Substitution Trees

������� Denitions

We use a backtracking algorithm to nd substitutions in the tree with specic properties� All
retrieval algorithms are based on backtrackable variable bindings and algorithms for unication
and matching� which take variable bindings into account� Insertion of a substitution into the
index is a complex operation� Compared to insertion� the deletion of entries is much more
straightforward and even complex deletion operations� like the deletion of all compatible substi

tutions in a substitution tree� can easily be accomplished�

De�nition ����� Substitution Tree�
A substitution tree is an ordered tree� We describe a substitution tree by a tuple ����� where �
is a substitution and � is an ordered set of subtrees� The following conditions hold�

�� A node in the tree is a leaf node ��� �� or an inner node ����� with j�j � ��

�� For every path �������� � � � � ��n��n� from the root to a leaf of a tree we have

IM��� � � � � � �n� � V�

�� For every path �������� � � � � ��i��i� from the root to any node of a tree we have

DOM��i� �
�

��j�i

DOM��j� � �

The rst condition in the denition assures that each inner node of a substitution tree has
at least two subtrees� The third condition assures that in each path of the tree a variable occurs
no more than once in the domain of a substitution�

If �������� � � � � ��n��n� is a path from the root of the tree to node ��n��n� and x occurs in the
codomains of the �i but not in the domains of the �i� then the variable x is called open at node
��n��n�� Variables that are not open at a node N are called closed at N � The second condition
in Def� ����� implies that all non
indicator variables are closed at leaf nodes of substitution trees�
The empty tree is denoted by
�

������� Foundations of the Retrieval in Substitution Trees

Retrieval� The retrieval algorithm checks each node of the tree for certain conditions� If the
conditions are fullled� the algorithm proceeds with the subnodes of the node� If the conditions

��� Substitution Tree Indexing ��

are fullled at a leaf node� the entry of the index represented by this leaf is retrieved� Four dif

ferent retrieval tasks are supported� Find more general substitutions� compatible substitutions�
instances� and variant substitutions� The functions G� U� I� and V support the tests at the nodes
of the tree�

The test functions G� U� I� and V take two substitutions � and �� The substitution � is
the one that is stored at a substitution tree�s node� The substitution � describes all variable
bindings that have been established while descending from the root to the current node of the
tree� When we test the root of the tree� the substitution � only contains the query substitution�

For each assignment xi �� ti of the current node�s substitution � the functions test whether
the term xi� is more general� uniable with� an instance of� or a variant of ti�� Each of the test
functions can be used as a parameter for the retrieval function search�

De�nition ����� Test Functions for Retrieval�

Let � and � be two substitutions� Then

G��� �� �� f� j 	xi � DOM���� xi��� � xi�g

U��� �� �� f� j 	xi � DOM���� xi��� � xi�� � � is most generalg

I��� �� �� f� j � � U��� �� � DOM����V� � �g

V��� �� �� f� j � � G��� �� � DOM����V� � �g

The test function G checks for every assignment of the substitution � stored in the tree if
under the current variable bindings denoted by � a simultaneous matcher � from all terms of
the codomain to the corresponding bindings of the domain variables exists� The test function
U works similar� but tests if a simultaneous unier exists� The remaining test functions I and
V are dened using U and G� respectively� The function I only allows bindings of non
indicator
variables� thus avoiding variables of indexed terms to be bound� Since variant indexed terms
have to be identical to the normalized versions of query terms� the function V allows bindings
of the tree�s auxiliary variables only�

The retrieval function search�N� ��X� takes the substitution � � which is stored at node
N � ����� in the tree and tests � against the current variable bindings � using one of the
test functions G� U� I� or V� Although one might only be interested in leaf nodes found in the
substitution tree� the function search produces a set of nodes� which have successfully passed
the test X � no matter if they are leaf nodes or not� Note that before searching for variants the
query substitution has to be normalized�

Insertion� The function insert�N� �� inserts a substitution � into a substitution tree N re

sulting in a modied substitution tree� As the index is used as a means for accessing data� it is
possible in practice to store additional information at the leaf nodes of the tree� The insertion of
entries into substitution trees is more di�cult than retrieval or deletion� The exact denitions
have been presented by Peter Graf �Gra��b��

Deletion� During the deletion process subtrees can be removed� Recall that in a substitution
tree each inner node at least has to have two subtrees� Since the resulting tree does not auto

matically have this property� we have to change it in an appropriate way� The tree is �repaired��
We assume that N � ����� is a tree according to the denition of a substitution tree except

�� Chapter �� Indexing

that the set of subtrees � may contain less than two subnodes� The function repair����� takes
the node�s substitution � and the set of subtrees �� The tree resulting from the application of
repair is a substitution tree according to the original denition�

Using the deletion function delete�N� �� all variants of the substitution � in the substitution
tree N are deleted resulting in a modied substitution tree� Note that � does not need to be
normalized�

Combining Retrieval and Deletion� A great advantage of substitution trees is that the dele

tion function can easily be modied so it will remove instances� generalizations� or uniable
entries from the index� We simply have to use the test functions I��� ��� G��� ��� or U��� ��
instead of the test for variants V��� �� used in the function delete�

The function delete��N� ��X� computes a modied substitution tree by removing substitu

tions � from tree N according to the test function X � Again� � does not need to be normalized�

����� Substitution Trees in Purr

In Purr we use a combination of two standard substitution tree variants� Additionally� we added
some extra information to support a fast selection of so
called lightest substitutions� The next
paragraph introduces the rst variant� the so
called linear substitution tree� Furthermore� we use
a variant called weighted substitution tree� These two variants can easily be combined and yield
signicant improvements in the insertion and retrieval performance of standard substitution
trees� This linear weighted substitution tree is extended again which we discuss in the third
paragraph�

Linear Substitution Trees� The only di�erence between standard and linear substitution
trees �LST� lies in the maximal number of occurrences of a single auxiliary variable xi on a path
from the root to a leaf of a tree� Variables that occur in substitution trees but not in indexed
substitutions are auxiliary variables� In standard substitution trees the number of occurrences is
not restricted� In linear trees we have the simple restriction that each auxiliary variable occurs
at most once in a codomain and at most once in a domain of another substitution along a path
from the root to a leaf node of the tree� As in all substitution trees� the occurrence of the
auxiliary variable in the domain of a substitution must be located deeper in the tree than the
occurrence in the codomain� Using linear substitution trees we try to simplify insertion and to
accelerate retrieval�

Weighted Substitution Trees� The number of symbols contained in the codomain of a
substitution is called the substitution�s size� In weighted substitution trees �WST� additional
information about the size of the indexed substitutions is added to every node of the tree� We
mainly hope to increase the speed of subsumption tests by using weighted substitution trees�
During subsumption we have to decide whether substitutions stored in a tree can be instances
of substitutions stored in another tree� We can take advantage of the following observation� A
substitution � can only be an instance of another substitution � if the size of � is at least as
large as the size of � �

The substitution tree is modied by storing an interval �min�max� at each node where min

contains the minimal and max contains the maximal size of the substitutions stored in the
subtrees� At leaf nodes the values of min and max are identical to the size of the represented

��� Substitution Tree Indexing ��

M

��
����

��
����

��
����

��
����

��
����

��
����

N

��
����

��
����

��
����

��
����

��
����

��
����

Figure ���� Subsumption in Weighted Substitution Trees

substitution� Since the size of a substitution is computed before insertion� the intervals stored
at the nodes of the tree can easily be updated� In Figure ��� we see two weighted substitution
trees M and N �

������� Denitions

Selective Substitution Trees� A heuristic that is used in many resolution
based theorem
provers selects the smallest clauses in the set of kept clauses for the application of inference rules�
In Purr clauses are represented by substitutions and therefore we have to select the substitutions
with the minimum weight for the application of inference rules� Moreover� substitutions which
have been selected must be excluded from subsequent retrieval�

We introduce a variant of substitution trees called selective substitution trees� This variant
is similar to a weighted substitution tree and can easily be combined to a selective weighted
substitution tree� We add information to every node of the tree about the size and about
whether substitutions have been selected� During selection the size information adapts to the
minimal size of unselected entries� The state information provides an e�cient exclusion of
formerly selected entries�

De�nition ����� Selective Substitution Tree SEST��
A selective substitution tree is a four
tupel ����� w� s� where the substitution � and the ordered
set of subtrees � correspond to Denition ����� of a substitution tree� The weight w is the
smallest weight of the unselected entries in the tree� The state �ag s contains the information
whether there are unselected entries in the tree� In addition to Denition ������ the following
conditions hold�

�� A leaf node ��� �� w� s� refers to entries with the corresponding weight w� We have s � true

if all entries have been selected�

�� The weight w of an inner node ����� w� s� is the minimum of the weights of the subtrees �
with unselected substitutions� We have s � true if all entries of the subtrees � have been
selected� In this case the weight w is arbitrary�

We will use the denition of selective substitution trees later in a selection scheme for the
rst n lightest entries�

�� Chapter �� Indexing

Note that the weight of a substitution does not necessarily have to be the number of symbols
in the substitution� Thus many heuristics based on weighting functions for indexed entries are
supported by selective substitution trees� For instance� we could dene a weighting function
which assesses constant symbols with � and other symbols with �� Obviously� ground substitu

tions will be preferred instead of equal
sized substitutions with variables�

M

��
w���s�false

��
w���s�false

��
w���s�true

��
w���s�false

��
w���s�true

��
w���s�true

Figure ���� A Selective Substitution Tree

Figure ��� shows a selective substitution tree� The two lightest entries �� and �� of M have
been selected and marked with true� The mark true has also been propagated to the common
ancestor ��� The other nodes of M contain unselected entries indicated by false� The weight w
and the state s of the root indicate that the lightest unselected entry in M has weight ��

��� Indexing Operations

� algorithm RESOLVE�clause graph CGS�

� begin

� while proof not found do

� h Let e � �v� �� � ��� w� � E be a link in CGS � �V�E� i

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i
� h Let u�v� � � � � �vm be already merged indexes for u� v�� � � � � vm� v i

	 receive �u for u

 ���
u�

�
u� � subsume��u�u�

� u � union���
u�

�
u�

�� � � multi merge���
u�v�� � � � �vm�

�� h Let �v�w be an index of all resolved substitutions for link e i
�� ������v�w� � subsume����v�w�

�� �v�w � union������v�w�

�� h Let �v�w be an index of already sent substitutions for link e i

�� � � strategy��v�w n�v�w���v�w � �v�w ��

�� � � apply��� �� ��

�	 send � to w

�
 end

Figure ���� An Algorithm for the Transition Rule RESOLVE

��� Indexing Operations ��

In this section we present several indexing operations for substitution trees� These indexing
operations e�ciently implement the set operations of the ur
resolution rule on substitution sets
introduced in Chapter ��

Recall the transition system PURR with subsumption in Denition ������ The according
informal algorithm for the transition rule RESOLVE is depicted in Figure ���� We omitted the
sets REC� MRG� RES� and SNT in the algorithm for reasons of simplicity� Since substitution
sets are implemented as indexes we also refer to the substitution sets as indexes� We brie�y
discuss the main steps of the algorithm�

As the transition rule RESOLVE can be applied to all outgoing links of non
unit clauses in a
clause graph� the algorithm arbitarily chooses an appropriate link e in the graph� Literal u of
the nucleus is considered as the receiver literal� The index �u contains received substitutions
which have not yet been considered for ur
resolution�

In line � input subsumption is performed with �u and the index #u of already received and
merged substitutions for u� In the following line the results are united to a modied #u� In
line �� the simultaneous uniers of the remaining received substitutions ��u and the already
merged substitutions of the other literals are computed and stored as common instances in &�
In the next line output subsumption is performed with & and the index &v�w of formerly resolved
substitutions for link e� The remaining substitutions in &� represent the new ur
resolvents� In
line �� new and old ur
resolvents are united to a modied &v�w � At this point the ur
resolution
step is nished�

Finally� a selection of ur
resolvents in &v�w is considered for subsequent ur
resolution steps�
In line �� the �best� unselected ur
resolvents are selected according to a certain strategy� The
substitution set 'v�w contains the formerly selected resolvents� Note that the set 'v�w actually is
not required� In practice� this set is implemented by a marking scheme in the index &v�w � In line
�� the substitutions in � which belong to the receiver literal w are computed with the selected
resolvents ' and the link substitutions � and �� In other words� we anticipate the application
of selected resolvents as electrons in subsequent ur
resolution steps� The substitutions in �
represent the result of combining ur
resolvents with the receiver literal w�

The algorithm RESOLVE reveals the required set operations which have been implemented as
indexing methods�

�� Subsumption� In line � and �� subsumption is performed between two indexes� Con

sidering subsumption as an n�m indexing task corresponds to maintaining two indexes M
and N and to delete in M all instances of substitutions stored in N� and vice versa�

�� Union� In line � and �� substitutions of one index are inserted into another index� The
union of indexes is considered as an n�m indexing task in order to maintain two indexes
M and N and to add the substitutions stored in N to M �

�� Multi�Merge� In line �� the computation of simultaneous uniers corresponds to an
indexing operation on n indexes� We refer to this indexing operation as the multi
merge
on n indexes Mi� The multi
merge computes all uniable combinations of substitutions in
the Mi and returns the according common instances in a new index�

�� Selection� The selection of substitutions according to a certain strategy in line �� is
represented as an indexing operation on two indexes M and N � The selected substitutions

�� Chapter �� Indexing

in N are added to M � In order to avoid multiple selections of the same substitutions� the
already selected substitutions are marked in N as selected�

Note that most of the indexing operations are dened on standard substitution trees� The
additional e�ort to maintain linear weighted substitution trees has been omitted� as these exten

tions only improve the e�ciency of certain operations� Only the selection operation explicitly
requires the features of selective substitution trees�

����� Subsumption

Considering subsumption as an n�m indexing task �Gra��� corresponds to maintaining two in

dexesM and N and to delete inM all instances of substitutions stored in N � We can accomplish
this task in a very elegant and e�cient way by using substitution trees�

De�nition ����� Subsumption�

Let M and N be two substitution trees� The sets of variables occurring in the trees must be
disjoint� The function subsume�M�N� returns a modied version of M in which all instances of
substitutions stored in N are deleted�

subsume�
�N� ��

subsume�M�
� �� M

subsume�M�N� �� subs�M�N� ��

The subsumption is dened using an auxiliary function subs�M�N� �� that actually traverses
the trees and that has a substitution as an additional parameter� The function (� returns the
rst element of a tuple�

subs���M � ��� N� �� ��

if
� � I���M � ��

and
 ��� �� � search�N� ���U��

subs���M � ��� N� �� �� ��M � ��

subs�M� ��N � ��� �� �� delete��M� ��� I��

if
� � U���N � ��

subs���M ��M�� ��N ��N�� �� �� repair��M � fM �
�� � � � �M

�
mg�

if
�� � I���M � ��

and
��� � U���N � ����

and for all Mi � �M �

M �
i � (�� hMi��

N � ������i�SUBSUME �

For the traversal of the tree we use the two di�erent test functions I� and U�� They are modied
versions of the original functions I and U in the sense that both functions do not need to perform
an occur
check and that I� may bind indicator variables occuring in N but not those occuring
in M � In order to backtrack if a subtree has already been deleted� we use the transition rule
SUBSUME�

��� Indexing Operations ��

SUBSUME�
hM��� fNg� �i

hsubs�M�N� ����� �i
if M ��

Subsumption has to consider three major situations occurring during the traversal of the
trees� First� in tree M we may nd a leaf node� In this situation we have to check if tree N
contains a generalization in the corresponding subtree� If this is the case� the leaf node in M is
deleted� Second� tree M is not a leaf node� but the corresponding node in N is� Here we simply
call a deletion routine that deletes all instances of the current bindings in M � Third� if two inner
nodes are considered� we proceed by considering all possible combinations of subnodes until tree
M has been completely deleted or no more combinations are available�

The denition of subsumption is not easy to understand� We give an example� Suppose
we have to deal with the two trees M and N depicted in Figure ��� and we would like to
compute the tree resulting from subsume�M�N�� In tree M we maintain the substitutions fu ��
f�a� b�g� fu �� f�x� c�g� and fu �� f�d� c�g� Tree N contains the substitutions fu �� f�a� c�g�
fu �� f�a� y�g� and fu �� f�z� c�g� Obviously� the substitution fu �� f�a� y�g stored in N
subsumes the substitution fu �� f�a� b�g stored in M � Moreover� fu �� f�z� c�g subsumes the
two substitutions fu �� f�x� c�g and fu �� f�d� c�g� Hence� the tree resulting from subsumption
should be empty�

M u �� f�x�� x��

x� �� a

x� �� b
x� �� c

x� �� �M x� �� d

u ��f�a�b� u��f�x�c� u ��f�d�c�

N u �� f�y�� y��

y� �� a
y� �� �N
y� �� c

y� �� c y� �� �N

u ��f�a�c� u��f�a�y� u ��f�z�c�

Figure ���� Subsumption as an n�m indexing task

We start at the root node of tree M where the function I� establishes the binding fu ��
f�x�� x��g� Considering the root of N the test function U� creates the bindings fy� �� x�� y� ��
x�g� Using the transition SUBSUME we recursively traverse the subtrees� First� we consider the
left subtree in M where the test function I� yields the bindings fx� �� a� x� �� bg� Keeping the
current bindings� the left subtree of N is traversed searching for leaf nodes that correspond to
substitutions more general than fu �� f�a� b�g� Such a substitution is found in fu �� f�a� y�g
and the leaf node representing fu �� f�a� b�g is deleted� The transition SUBSUME is not applicable
any more and from now on the right subtree of M is considered� Since the left subtree of N
does not yield any deletions �because the test function I� must not bind the variable �M �� we
immediately consider the right subtree of N � which is a leaf marked with fy� �� �N � y� �� cg�
Applying function U� on this node yields the bindings fx� �� c� x� �� �Ng� According to the
denition of subsume we delete all instances in the right subtree of M � Finally� both subtrees of
M have been deleted and repairing the resulting tree leads to
� i�e� tree M has been completely
deleted�

�� Chapter �� Indexing

����� Union

The union of indexes is considered as an n�m indexing task �Gra��� to maintain two indexes M
and N and to add the substitutions stored in N to M �

De�nition ����� Union of Substitution Trees�
Let M and N be two substitution trees� The sets of variables occurring in the trees must be
disjoint� The function union�M�N� adds the substitutions stored in tree N to M �

union�M�
� �� M

union�M�N� �� add�M�N� ��

The insertion is dened using an auxiliary function add�M�N� �� that actually traverses the
trees and that has an additional parameter containing a substitution� The function (� again
returns the rst element of a tuple�

add�M� ��N � ��� �� �� insert�M� � � �N �

add�M� ��N ��N�� �� �� (�� hM��N � � � �Ni�UNION �

The following transition rule repeatedly modies tree M �

UNION�
hM�� � fNg� �i

hadd�M�N� ����� �i

The idea of the denition is to traverse tree N and to recompute the stored substitutions�
Whenever a leaf node is reached� we insert the corresponding substitution into tree M using the
regular insertion procedure�

When we rst thought about inserting a tree into another� we wanted to perform the insertion
in a merge
like manner� We tried to create an algorithm that traverses the two trees in parallel
hoping to be able to do lots of insertions at a time� However� the technique presented above�
which only traverses one of the trees� has to be preferred because the order in which auxiliary
variables are mapped to terms may di�er in two di�erent trees� Suppose� for instance� there is
a path fu �� f�x�� x��g � fx� �� ag � fx� �� bg in M and the substitution represented by the
path fu �� f�y�� y��g�fy� �� cg�fy� �� ag in N has to be inserted� Obviously� the information
that the rst argument of the codomain is the constant a can be shared� However� a merge
like
algorithm could not detect this� First� we match from f�x�� x�� to f�y�� y�� and create bindings
for x� and x�� Second� we establish the bindings y� �� a and y� �� c� Finally� the test for the
substitution fx� �� bg fails� As a consequence� the resulting tree contains a lot of redundant
information� Moreover� the failure could be detected much earlier if the information on the
substitution to be inserted was complete� Even worse� a merge
like algorithm cannot employ an
insertion heuristic� not even the simple rst
t technique�

����� Multi�Merge

The multi
merge �Gra��� is a generalization of the merge operation �Ohl��� on two substitution
trees� The merge operation computes the set of compatible substitutions stored in two di�erent

��� Indexing Operations ��

trees� Substitutions are compatible if the codomains of identical variables in the two substitu

tions are simultaneously uniable� For example� the substitutions fx �� f�u� b�� z �� h�w�g and
fx �� f�a� v�� y �� g�v�g are compatible and the result of the merge of the two substitutions is
the common instance� of the two original substitutions fx �� f�a� b�� y �� g�b�� z �� h�w�g�

Suppose we want to merge three substitution trees M � N � and O� Using the ordinary merge
operation for two trees� we rst merge M and N � The resulting tree nally is merged with O�
However� a great advantage of substitution trees is that the merge does not necessarily have to
be performed on just two trees in a single merge operation� Instead of performing two merges
and creating an intermediate result� we use a backtracking algorithm that traverses the three
trees in parallel� In this way� we avoid the creation of intermediate results�

The multi
merge operation takes an arbitrary number of substitution trees and traverses the
trees in parallel� To this end we test nodes on the same level in all of the trees� If a combination
of leaf nodes is reached� the resulting common instance can be stored in a new substitution tree�

De�nition ����� Multi�Merge�
Let TS � f�������� � � � � ��m��m�g be a set of substitution trees with m � �� Let SN be a tuple
with arbitrary arity containing leaf nodes only� The concatenation � of an m
tuple TM and an
n
tuple TN is anm!n
tuple TT � TM �TN � Moreover� let M � ����� be a single substitution
tree and � a substitution� The retrieval function multi�merge is recursively dened as follows�

multi�merge�TS� �� multi�TS� ��� �� �����

multi�f�����g� SN� �� �� fSN � �N� j N � search������� ���U�g �����

if
��U��� ��

multi�f���� ��� � � � � ��n� ��� ��n	���n	��� � � � � ��m�j ��m�j�g� SN� �� �� �����

f����� ��� � � � � ��n� ��� ��n	���n	��� � � � � ��m�j ��m�j�� � SNg
�

Nn
���n
� ���� �Nm�j��m�j

multi�fNn	�� � � � � Nm�jg� ����� ��� � � � � ��n� ��� � SN� ��� � � ��m�j�

if � � j 	 m� � and
��� � � � � �m�j � ���U���� �� and 	i� � 	 i � m� j� �i�U��i� ��� � � ��i���

The result of the function multi�merge is a set ofm
tuples wherem is the number of merged
substitution trees� Every m
tuple contains tree nodes which have successfully been passed while
traversing the trees� An m
tuple of leaf nodes represents the successful simultaneous unication
of m substitutions in the trees�

Suppose we perform a multi
merge operation on m substitution trees� The rst rule ���
initializes the auxiliary function multi with an empty tuple SN of leaf nodes and an empty sub

stitution �� The substitution trees which have nally been traversed to leaf nodes are considered
in the tuple SN such that the tuple contains these leaf nodes� During the traversal bindings are
established and stored in the substitution ��

The next rule ��� considers the case that m � � substitution trees have successfully been
traversed down to leaf nodes while one substitution tree M still has subtrees� In this case the

�In some applications� e�g� hyperresolution� the unifying substitution fu �� ag itself is also needed�

�� Chapter �� Indexing

function multi performs an n�� retrieval on the tree M � Note that the tuple SN contains the
m� � leaf nodes�

The last rule ��� is performed if there are more than one substitution tree left to be merged
and� of course� if the current node�s substitutions �i are simultaneously uniable� In general�
there are n trees which have been traversed to leaf nodes and m� j � n trees which still have
subtrees� Note that we only consider n � j trees where j is the number of trees which have
been traversed to leaf nodes before� Obviously� SN is a j
tuple of the according leaf nodes� The
result of this rule is an m
tuple of the current tree nodes together with SN � and all tuples of
subsequent steps� The function multi is called on all permutations of subtrees of the m� j �n
trees� Note that the n leaf nodes are added to the j
tuple SN �

In our application� however� we are interested in the common instances of the uniable
substitutions� These instances can easily be stored in another substitution tree� Furthermore�
subsumption might be performed on these instances and on formerly produced results� In our
implementation� we integrated insertion and subsumption operations in the multi
merge� These
operations� together with the multi merge itself� have strong impact on Purr�s time and space
performance� We present an algorithm with these features and an example in Chapter ��

����� Selection

The selection is another n�m maintenance operation on two indexes M and N where N must
be a selective substitution tree� The operation corresponds to a set di�erence on indexes in
a way that a set of lightest substitutions in N are added to M � The selected substitutions
are not removed from N � but marked as selected preventing multiple selection� The marked
substitutions in N are still considered for conventional retrieval� We dene several auxiliary
functions which maintain the consistency of the selective substitution tree N �

De�nition ����� State of Selection�
Let � be a set of selective substitution trees� The auxiliary predicate allselected��� holds if
all substitutions in the selective substitution trees in � have been selected�

allselected��� ��� 	N � � � N � ����� w� true�

During selection the states s of inner nodes are required to be updated according to the states
of selection of the subtrees� The predicate allselected considers the state of subtrees and
provides the appropriate state for the common ancestor�

De�nition ����� Lightest Subtree�

Let � be a set of selective substitution trees with at least one tree containing unselected entries�
The auxiliary function lightesttree��� returns the selective substitution tree occurring in �
which has the lightest weight w and which contains unselected entries�

N � lightesttree��� if
N � � � N � ����� w� false� and

	M � � nN �M � ��M ��M � wM � false�� wM � w

De�nition ����� Weight of Lightest Subtree�
Let � be a set of selective substitution trees� The auxiliary function lightestweight��� wdef �
returns the weight of the selective substitution tree occurring in � with the lightest weight of

��� Indexing Operations ��

the trees having unselected entries� If there are no trees in � with unselected entries� it returns
the default weight wdef �

w � lightestweight��� wdef � if �allselected��� and ����� w� false� � lightesttree���

or allselected��� and w � wdef

The selection operation considers a selective substitution tree N as being separated into
partitions of di�erent weights� Each partition contains substitutions with identical weight� The
lightest partition can be selected within a single retrieval operation� Note that this operation
also modies tree N to provide consistency of N due to Denition ����� of selective substitution
trees� In particular� a new lightest weight w and the state s are propagated to the root� If
the lightest partition is completely retrieved the weight w in the root of N corresponds to the
weight of the new lightest partition� Thus a single selection operation retrieves at most the
substitutions of the lightest partition�

In the following denition we introduce a function selection which provides a transpar

ent selection operation of an arbitrary number of substitutions� We use an auxiliary function
partition which repeatedly retrieves the lightest partition�

De�nition ����� Selection of Substitutions�
Let M be a substitution tree and let N be a selective substitution tree� The sets of variables
occurring in the trees must be disjoint� The function selection�M�N� n� adds the n lightest
substitutions stored in tree N to M and marks these substitutions in N as selected�

selection�M�
� n� �� �M�
� n�

selection�M�N� n� �� (�� h�M�N� n�i�PARTITION �

PARTITION�
h�M�N� n�i

hpartition�M�N� n� ��i
if n � �

The selection is dened using a transition rule PARTITION which repeatedly calls the auxiliary
function partition�M�N� n� ��� The function retrieves up to n substitutions of the lightest
partition in N and copies the substitutions toM � The bindings established while traversing tree
N are stored in the substitution �� If the partition contains i substitutions with i 	 n� then the
transition rule PARTITION again calls partition to retrieve the remaining n� i substitutions in
the next lightest partition�

partition�M� ��� �� w� false�� n� �� �� �insert�M� � � ��� ��� �� w� true�� n��� �����

partition�M� ����� w� false�� n� �� �� �����

�M �� ������ lightestweight���� w�� allselected������ n��

if hM� ���� n� �� �� wi�SCAN � hM ����� �� n�� � � �� wi

partition�M�N� n� �� �� �M�N� n� �����

The rst rule ��� considers tree N as a leaf node with the minimal weight w� The according
substitution is inserted in M and marked as selected in N � Inner nodes of N with unselected

�� Chapter �� Indexing

M

��
w��

s�false

��
w��

s�false

��
w��

s�false

��
w��

s�false

��
w��

s�false

��
w��

s�false

N

��
w��

s�false

��
w��

s�false

��
w��

s�true

��
w��

s�false

��
w��

s�true

��
w��

s�true

O

��
w��

s�false

��
w��

s�false

��
w��

s�true

��
w��

s�true

��
w��

s�true

��
w��

s�true

Figure ���� A Sequence of Selective Substitution Trees

substitutions of weight w are considered in rule ���� The current inner node is updated according
to the lightest weight and to the state of selection of the modied subtrees ��� The transition
system SCAN searches the subtrees in � for unselected substitutions with weight w� The last
rule ��� considers tree N if it contains selected substitutions or too heavy substitutions only�

De�nition ����	 Transition System SCAN�

Let M be a substitution tree and let � and ' be two sets of selective substitution trees� More

over� let � be a substitution containing the established bindings while traversing the trees in '�
The transition system SCAN searches the set ' for trees containing unselected substitutions of
weight w� These trees match the transition rule SELECT which calls the function partition ac

cordingly� The modied trees N � are moved to the set �� Other trees in ' are moved unchanged
to � by the transition rule SKIP�

SELECT�
hM � � � ' � f����� w� false�g� n � �� wi
hM �� � fN �g� ' � n�� �� wi

if �M �� N �� n�� � partition�M� ����� w� false�� n� ��

SKIP�
hM� � � ' � f����d� wd� s�g� n� �� wi
hM� � f����d� wd� s�g� ' � n� �� wi

A sequence of selective substitution trees in di�erent states of selection is depicted in Fig

ure ���� The entries in tree M are unselected and marked with false� The tree contains three
partitions of substitutions� The entries �� and �� belong to the lightest partition with weight ��
There is one entry �� with weight � and one entry �� with weight ��

Suppose we select two substitutions in M yielding tree N � Obviously� the two lightest entries
�� and �� have been selected and marked with true� The new state has also been propagated to
the common ancestor ��� Note that the root of N contains the new minimal weight ��

The tree O depicts the state of selection if we select another entry in N � The next lightest
entry �� has been selected� The new minimal weight of the tree is ��

�
Parallelism

In general� a program working on a problem which is composed of several �independent� parts
can be divided into concurrent processes with each process working on one part of the problem�
There are cases in which the performance of such a program can be improved with increasing
concurrency� The possible speedup is limited by the degree of dependence inherently to the
problem and by the parallel machine employed� In automated reasoning we can discover a large
variety of such dependencies� They really complicate the investigation of possible improvements�

Concurrent processes working on dependent parts of a problem have to solve these depen

dencies with communication� The more processes work on a problem� the more communication
usually is required� In sum� the main task during the design of a distributed parallel system is to
nd a reasonable balance between the degree of parallelism and the amount of communication
overhead� In other words� we try to nd an optimal partition of the problem set in order to
obtain a truly e�cient system�

In this chapter we present aspects of parallelism in the context of logic and on the basis of
practical issues� Furthermore� we provide brief presentations of programming environments that
support the development of parallel programs� Finally� we describe the programming library
PVM that was used to implement Purr�

��� Notions of Parallelism

���� Parallelism in Logic

The exploitation of parallelism in the context of automated reasoning requires the investigation of
the relation of logic and parallelism� A detailed discussion of parallelism in logic programming is
provided by Franz Kurfe� �Kur���� He introduces a variety of categories of parallelism� extending
the traditional AND"OR
parallelism usually found in the literature� His categories might help
in the discussion of further improvements of Purr� However� to understand the implementation
of Purr only the knowledge of OR�Parallelism and AND�Parallelism is necessary�

�� Chapter �� Parallelism

OR�Parallelism� In general� OR
parallelism is achieved if possible solutions of a problem are
investigated simultaneously� It su�cies to nd one solution to solve the whole problem� This
corresponds to the semantics of a logical or
connective� For example� a problem given as a
formula A�B�C is solved if one of the A� B� or C is solved� The rst found solution represents
a solution for the whole problem� In the context of deduction systems� OR
parallelism refers to
the fact that di�erent paths in the search space are investigated simultaneously� For example�
on the level of clauses OR
parallelism means that di�erent clauses are inferred in parallel�

The potential for parallelism is determined by the number of possible inferences and� of
course� by the number of available processors� Maximal OR
parallelism is achieved� if for each
possible inference a new process is initiated� documenting that the amount of potential paral

lelism grows during the search process� Since the number of possible inferences grows expo

nentially with each step in the search space� the speedup is at least limited by the number of
available processors� In practice� however� the communication overhead also has an increasing
in�uence on the overall performance�

AND�Parallelism� If a problem composed of several subproblems is solved if all subproblems
are solved� then AND
parallelism corresponds to the concurrent computation of these subprob

lems� This denition corresponds to the semantics of the logical and
connective� A problem
given as a formula A � B � C is solved if each A� B� and C is solved� In the eld of deduc

tion systems� AND
parallelism refers to the concurrent computation of a single inference� An
example is the concurrent computation of a simultaneous unier within an inference rule� The
simultaneous unier of substitutions ��� ��� ��� and �� can be computed by unifying two pairs
��� �� and ��� �� concurrently� Finally� the resulting uniers ���� and ���� also have to be unied�

Problems arise when the substitutions share variables with each other� For example� incom

patible uniers ���� and ���� can be detected by exchanging additional information among the
unication processes� Thus the concurrent processes generally are not independent which lim

its the degree of parallelism� If inferences are represented by clauses� AND
parallelism usually
provides a reasonable speedup only on large clauses�

���� Parallelism in Practice

We now give an overview of notions and basic denitions that occur in context with parallel pro

gramming� We discuss the two most important models of parallelism and go on with the general
properties of parallel programs� The denitions are mainly based on the work of Hwang �Hwa���
and Carriero and Gelernter �CG����

������� Parallel Programming Models

The parallel programming model in Figure ��� provides a simplied and transparent view of the
computer hardware"software system� A program is a collection of processes forming the basic
computational units of the program� Parallelism is exploited depending on how interprocess
communication �IPC� is implemented�

Shared�Variable Communication� The shared�variable model is based on the use of shared
variables in a common memory for IPC� The shared variable model is also referred to as the

��� Notions of Parallelism ��

Program

Process �

Process �

IPC

Process �

Process �

Figure ���� A Parallel Programming Model

Program

Process �

Process �

Shared Memory

Process �

Process �

Figure ���� Shared
Memory Model

�� Chapter �� Parallelism

shared memory model which actually is a more technical term� Nonetheless� it is commonly
accepted� Shared
variable IPC demands the use of shared memory and mutual exclusion among
multiple processes accessing the same set of variables at a time� Figure ��� depicts the shared

memory model�

Program

Process �

Process �

Messages

Process �

Process �

Figure ���� Message Passing Model

Message�Passing Model� In the message�passing model processes communicate with each
other by passing messages through a network� Since there is no shared memory� mutual exclusion
is not needed� We distinguish synchronous and asynchronous message passing� Synchronous
message passing synchronizes the sender process and the receiver process in time and space� Then
the data is transfered with both processes communicating at the same moment� Asynchronous
message passing does not require that message sending and receiving are synchronized� Instead�
asynchronous communication requires the use of bu�ers to hold the messages along the path
of the connecting channels� Since these message queues are nite� the sender will eventually
be blocked� On the other side� the receiver process may either be blocked in order to wait
for a certain message or proceed no matter if a message arrived or not� The former is called
nonblocking receive� the latter blocking receive� Figure ��� illustrates the message
passing model�

������� Properties of Parallel Programs

Parallel programs have properties that are described in terms of Dependence� Granularity� La

tency� Communication Patterns� Deadlock� and Load Balancing�

Dependencies� The parallel execution of several program segments requires each segment
to be independent from other segments� The so
called data dependence describes how di�erent
program segments depend on each other concerning the input and output data of these segments�
Data dependence reduces the possible speedup of a parallel program� Concurrent processes
working on dependent segments have to solve the dependence with communication�

��� Notions of Parallelism ��

Granularity� The grain size or the granularity of a parallel program corresponds to the
amount of computation involved in one process contributing to the program� The grain size
determines the smallest program segment chosen for parallel processing� Grain sizes are clas

sied as �ne� medium� or coarse� Usually� the ner the granularity of a program� the higher is
the degree of parallelism� However� a higher degree of parallelism results in high communication
demands and scheduling overhead� Ideally� the granularity of a program is not xed but can
arbitrarily be selected�

Latency� Latency is a time measure for communication overhead� For example� the time re

quired for two processes to synchronize with each other is called the synchronization latency�
Computational granularity and communication latency are closely related� By balancing gran

ularity and latency� one can in�uence the performance of a parallel program�

� �

� �

� �
unicast

� �

� �

� �
multicast

� �

� �

� �
broadcast

� �

� �

� �
conference

Figure ���� Communication Patterns

Communication Patterns� We specify four types of communication patterns� The one
to

one unicast pattern has one source and one destination� A multicast pattern corresponds to one

to
many communication in which one source sends the same message to multiple destinations�
A broadcast pattern corresponds to the case of one
to
all communication� Finally� the most
generalized pattern is the many
to
many conference communication�

Deadlock� A deadlock situation occurs if a program enters a state in which a process A is
waiting for data to be produced by another process B while B is waiting for data produced by
A� In general� we speak of a deadlock if an arbitrary
long cycle of processes exists such that each
process is waiting for data provided by the previous process in the cycle� Deadlock detection
tries to distinguish deadlock situations from others� For example� some processes might work
slowly or might have been terminated for some reason�

Load Balancing� The problem of load balancing occurs if the amount of parallelism inherent
in a program does not match the parallelism provided by the computer system� For example�
a program that decomposes into four processes will not achieve a higher speedup if more than
four processors are employed� Static scheduling techniques try to nd a good static distribution
of the processes to processors of a parallel machine�

In sum� the design of e�cient parallel systems involves the reduction of latency� the pre

vention of deadlock� the minimization of blocking in communication patterns� and a reasonable
tradeo� between parallelism and communication overhead�

�� Chapter �� Parallelism

��� Parallel Programming Systems

A few years ago� the development of parallel programs required extremely high e�ort� One
had to invest in expensive parallel hardware and highly specialized programming environments�
Usually� programs developed for a specic machine could not be used on other systems�

Parallel programming systems try to abstract from underlying hardware� Sometimes they
even allow heterogeneous clusters of workstations� The portability of programs on top of an ab

stract parallel system has signicantly been improved� Nevertheless� abstraction usually implies
a loss of performance which we will discuss later�

Since our parallel prover Purr should run on many di�erent hardware platforms �including
workstation clusters�� we decided to develop the system on top of a parallel programming system�
The following overview sketches the systems we took into consideration�

���� Overview

In this thesis we can only present a small survey on the wide range of parallel programming
systems� An exhaustive collection has been presented by Turcotte �Tur���� A comprehensive
overview of parallel computing issues can also be found on the world wide web �IPC��

Standards� Just before we started to implement Purr� the Message Passing Interface �MPI�
forum developed an interface standard for message passing systems� There is an o�cial world
wide web home page reporting that standard �MPI�� The standard became necessary to improve
the portability of application software from one message passing system to another and� more

over� to improve the commercial development of tools and libraries� A rst draft of the MPI
standard was published by the MPI Forum �For���� A user
oriented presentation is provided by
Gropp� Lusk� and Skjellum �GLS���� The current MPI standard denition is also available in
the o�cial home page �MPI��

However� we did not use the MPI standard in Purr because available implementations have
not been tested as intensive as other parallel programming systems� At this time� MPI supported
less platforms than other systems� Experiments describing the loss of performance or stability
when using an implementation of the MPI standard were not available� Therefore� we considered
other parallel programming systems with the following areas being of major concern�

� Paradigm� i�e� message passing or shared memory�

� E�ciency�

� Support�

� Ease of use�

� Portability� i�e� support of di�erent hardware�

TCGMSG� The Theoretical Chemistry Group Message Passing System �Har��� is a very e�

cient message passing system with communication over direct� point
to
point TCP"IP sockets�
TCGMSG is a simple message passing system providing the user with an easy to use environ

ment� Built in global operations� e�g� global summation� simplify the implementation of data

��� Parallel Programming Systems ��

parallelism� However� global operations are not required in Purr� A signicant drawback of
the package is that it seems to be poorly supported�

p�� The package p� �BE��� is a distributed computing environment providing both the pro

gramming of a variety of MIMD machines and the computation in workstation clusters� This
package includes shared memory and message passing primitives� The communication protocoll
is based on dynamic TCP sockets� Just like the TCGMSG package� p� also provides global
operations� The di�erences in the ease of use compared to TCGMSG are relatively small� The
support of p� is better than the support of TCGMSG� p� runs on a wide range of platforms�

PVM� The Parallel Virtual Machine �GBD	��� is a pure message passing system� The PVM
package is the de
facto standard for message passing systems$ it has by far the largest number of
users� As a main di�erence to the other packages� PVM is especially designed for computing on
heterogeneous networks� In addition to dynamic TCP sockets for the communication protocol�
PVM also provides UDP communication� Compared to the other two packages coding in PVM
is more complicated� explicit bu�er management has to be done by the user and task identiers
have to be maintained� The support for PVM is outstanding since it is based on the experience
of a large number of users� PVM supports many di�erent platforms�

Linda� There are many packages also supporting the shared memory paradigm� An important
approach is the associative� virtual shared memory system called Linda �Gel���� There are many
implementations for Linda� for example� the commercial product C�Linda or p��Linda �BLL���
which implements Linda on top of p�� There is another public domain implementation of
Linda called POSYBL �Sch���� All these packages �except for p�
Linda� have been compared in
detail �Mat����

������� Assessment

The main reason to prefer the message passing paradigm is that our approach to an inference
system does not require any common data� If we identify nodes in a clause graph with concurrent
processes� communication is represented by exchanging messages via links in the graph�

The TCGMSG package seems to be the most e�cient system of this survey followed by PVM
and p�� The best support and portability is provided by the PVM package� Since the shared

memory based Linda is the most generalized approach� it is the package which is easiest to
use� However� concerning the ease of use the di�erences of the remaining packages are relatively
small�

Finally� the PVM package appeared as a good compromise between e�ciency� support� ease
of use� and portability� PVM is an e�cient message passing system with good support� Unfortu

nately� PVM is not as easy to use as a Linda
based system� However� we only need a fraction of
the capabilities of PVM and thus the e�ort to become familiar with PVM was acceptable� PVM
also supports a large variety of multiprocessor platforms and parallel computing on workstation
clusters� The next section contains some more details about PVM�

�� Chapter �� Parallelism

���� PVM

The PVM �Parallel Virtual Machine� package �GBD	��� is a software system providing dis

tributed processing capabilities with message passing primitives� The system prots from a
large user base and intensive discussion �Mat��� �DGMJ��� �MP����

PVM supports a wide range of di�erent platforms and also a variety of di�erent networks�
The system abstracts from a heterogeneous network of computers to a collection of hosts� Each
processor in the network forms one host independently whether the processor is a single work

station or a processor in a multiprocessor machine� Message routing and data conversion for
incompatible architectures are handled transparently� Thus PVM theoretically permits a net

work of heterogeneous computers to be used as a single parallel computer� a parallel virtual
machine�

The PVM system is composed of two parts� a library of PVM interface functions and a
daemon program� The library contains user
callable routines and must be linked with the
application program� The daemon resides on all machines in the heterogeneous network and
makes up the virtual machine� A PVM console task enables the user to control the virtual
machine� i�e� to add and remove machines� to monitor status information� etc� After making
up a virtual machine� PVM applications may be started� PVM can handle multiple users and
overlapping virtual machine congurations�

Next� we focus on a selection of library methods of PVM$ for further details of PVM
see �GBD	���� Purr only requires a small subset of the PVM routines�

Process initiation and

Point
to
point communication�

Process Initiation� In Purr process initiation refers to a master process starting several
slave processes at the beginning of the proof procedure� PVM provides a library call which
spawns a certain number of slave processes� More sophisticated features like the mapping of
specic processes to specic processors currently are not exploited by Purr� Thus PVM decides
where processes are executed� During the proof the number of slave processes remains xed until
all processes are terminated by the master process� Thus processes are started at the beginning
of the proof search only�

Communication Requirements� The slave processes in Purr use unicast and multicast
communication patterns� The master process also uses broadcasting to control the slave pro

cesses� Process groups are not needed� A send operation in PVM is composed of two phases�
First� the message has to be packed into a bu�er� The packing routine may perform a data
conversion called XDR encoding in order to avoid incompatibilities in the representation of data
on di�erent architectures� If the user knows that all machines in the network understand the
same format� the data conversion might be disabled� Second� the bu�er contents is sent to its
receiver process� Additionally� for messages consisting of a vector of elements of equal type PVM
provides a more e�cient send operation which includes packing� Since a message in Purr is a
homogeneous vector of integers� this method is used to send messages�

Receiving a message works in the reversed direction� A message is received either with a
blocking or non
blocking routine and has to be unpacked� Unfortunately� PVM only provides

��� Parallel Programming Systems ��

a blocking routine for receiving and unpacking a message simultaneously� In order to enable a
non
blocking receive mechanism with unpacking we use a PVM function which only checks the
message queue for a certain type of message and calls the blocking routine when needed�

�� Chapter �� Parallelism

�
The Prover

In the last three chapters we have presented the theoretical background of Purr� We introduced
a modied unit resulting resolution scheme working on substitution sets� The modied inference
rule addresses the main issues of this work� The investigation of term indexing as a fundamental
base of reasoning operations and the exploitation of parallelism in automated theorem proving�

In the rst part of this chapter detailed algorithms of the indexing operations in Purr are
presented� The algorithms have been introduced as advanced indexing operations by Graf and
Meyer �GM���� In the second part we investigate the potential for parallelism and combine the
presented ideas such that they can be used in the implementation of Purr�

In the last section we present a data structure called context which can be used to maintain
variable bindings e�ciently� Finally� we discuss how substitution trees can be used as a compact
protocol for the exchange of sets of substitutions among concurrent processes�

��� Indexing Algorithms

We present algorithms for the four indexing operations subsume� union� multi�merge� and
selection� The subsumption operation deletes in one substitution tree all instances of substi

tutions that occur in another substitution tree� The union of two substitution trees integrates
all entries of one tree into the other tree� The multi
merge operation computes simultaneous
uniers of substitutions which are stored in several substitution trees� The result of such a
multi
merge is a substitution tree containing the common instances of the unied substitutions�
The selection operation searches a substitution tree for entries with lowest �weight� and adds
these entries to another substitution tree�

����� Subsumption

The subsumption operation is an n�m maintenance task on two indexes M and N � Suppose
index N contains substitutions which have been tested for subsumption and index M contains

�� Chapter �� The Prover

new substitutions� Forward subsumption corresponds to the deletion of all instances of N in M �
To this end we traverseM and N in parallel� During the traversal we map variables occurring in
N to subterms stored in M � This mapping is exactly the same as just looking for generalizations
in a n�� retrieval� Whenever we reach a leaf node in the index M we may delete it� Note that
the deletion in the index M can cause the whole tree to be removed� We obtain backward
subsumption by simply changing the roles of M and N �

Consider the algorithm for subsume depicted in Fig� ���� In our implementations a stack STK
of variable bindings is maintained� The function match�N� STK�BINDINGS� checks if N �s sub

stitution is a generalization of the current bindings� New bindings are established on the stack
STK� The function match reverse�M� STK�BINDINGS� is accordingly dened to test whether
M �s substitution is an instance of the bindings� The function backtrack�STK�BINDINGS� resets
the stack STK by popping BINDINGS bindings from it� Note that before the subsumption oper

ation is called the function match reverse�M� STK�BINDINGS� and match�N� STK�BINDINGS�
have been successfully called� In this way we avoid unnecessary recursive calls in the algorithm�

� algorithm subsume�tree M �tree N �stack STK�

� begin

� hAssume match reverse�M � and match�N � holdi
� if is leaf�M � then

� if genexist�N� STK� then

� M � �

	 elsif is leaf�N � then

 M � delete instances�M� STK�

� else

�� forall subtrees M � of M do

�� if match reverse�M �� STK�BINDINGSM� then

�� forall subtrees N � of N do

�� if match�N �� STK�BINDINGSN � then

�� � � � � subsume�M �� N �� STK�

�� backtrack�STK�BINDINGSN �

�� backtrack�STK�BINDINGSM �

�	 M � repair�M���

�
 returnM

�� end

Figure ���� Algorithm for subsume

Subsumption has to consider three major situations occurring during the traversal of the
trees� First� in tree M we may nd a leaf node� In this situation the n�� retrieval operation
genexist checks if tree N contains a generalization of the current bindings in the corresponding
subtree� If this is the case� the leaf node in M is deleted �s� line ��� Second� tree M is not
a leaf node� but the corresponding node in N is� Here we simply call a n�� deletion routine
delete instances that removes all instances of the current bindings in M �s� line ��� Third� if
two inner nodes are considered� we proceed by considering all possible combinations of subnodes
until tree M has been completely deleted or no more combinations are available� Note that in
line �� node M has to be �repaired� if all subtrees of M but one have been deleted� �

�According to de�nition ����� of substitution trees an inner node has at least two sons�

��� Indexing Algorithms ��

����� Union

The union is an n�m maintenance operation of two indexes M and N � The entries stored in tree
N are added to M �

� algorithm union�treeM �treeN �stack STK�

� begin

� bind�N� STK�BINDINGS�

� if is leaf�N � then

� M � insert�M� STK�

� else

	 forall subtrees N � of N do

 M � union�M�N �� STK�

� backtrack�STK�BINDINGS�

�� returnM

�� end

Figure ���� Algorithm for union

Consider the algorithm for union in Fig� ���� In order to reconstruct the substitutions in
tree N � the function bind establishes N �s substitution on the stack �s� line ��� If node N is
a leaf� then insert adds the corresponding substitution� which is represented by the established
bindings� to tree M �s� line ��� If node N is an inner node� then the subtrees of N are recursively
traversed in order to nd all entries of N �s� line ���

����� Multi�Merge

The multi
merge operation computes the compatible substitutions stored in an arbitrary number
of substitution trees� Substitutions are compatible if the codomains of identical variables in
the substitutions are simultaneously uniable� To this end the algorithm traverses the trees
in parallel� If a combination of leaf nodes is reached� the resulting common instance of the
substitutions represented by these leaves can be stored in a new substitution tree� Furthermore�
subsumption might be performed thus reducing the amount of substitutions to be maintained�

Consider the algorithm multi�merge in Fig� ��� which employs n�� insertion and subsump

tion operations� The algorithm has four parameters� A substitution tree RES� two ordered
sets CURRENT and NEXT of substitution trees� and a stack STK of bindings� The common
instances resulting from the simultaneous unication are inserted into the substitution tree RES
which does not have to be empty at the beginning� The tree may contain previously obtained
results which are then considered in the subsumption phase of the multi
merge operation� Ini

tially� the ordered set CURRENT contains the substitution trees to be merged whereas the
ordered set NEXT is empty� We assume that the substitutions of the root nodes have been
successfully unied before multi�merge is called� In this way we avoid unnecessary recursive
calls of the algorithm� The variable bindings of the unication are pushed on the stack STK�

The function unify�N� STK�BINDINGS� implements the test for uniability by checking for
each assignment xi �� ti of N �s substitution � � f� � � � xi �� ti� � � �g whether xi is uniable with
ti� The bindings of variables in the unier are pushed on the stack STK and are counted in
BINDINGS� This unication considers variable bindings in the terms to be unied� Additionally�
the function backtrack�STK�BINDINGS� resets the stack STK by popping BINDINGS bindings

�� Chapter �� The Prover

� algorithm multi�merge�tree RES�set CURRENT� set NEXT�stack STK�

� begin

� h Let CURRENT � fNi� � � � � Nmg be an ordered set of trees i
� h Let NEXT � fN�� � � � � Ni��g be an ordered set of trees i

� if �N � CURRENT �NEXT � is leaf�N � then

� h Simultaneous Uni�er i
	 if �genexist�RES� STK� do

 delete instances�RES� STK�

� RES � insert�RES� STK�

�� else

�� if CURRENT � � then
�� RES � multi�merge�RES�NEXT� CURRENT� STK�

�� elsif is leaf�Ni� then

�� RES � multi�merge�RES�CURRENT nNi�NEXT � fNig� STK�
�� else

�� h Let ����� � Ni be the root of Ni i
�	 forall N � � � do

�
 if unify�N �� STK�BINDINGS� then

�� RES � multi�merge�RES�CURRENT nNi�NEXT � fN �g� STK�
�� backtrack�STK�BINDINGS�

�� return RES

�� end

Figure ���� Algorithm for multi�merge

from it� After a successful unication at leaf nodes the function genexist performs n�� forward
subsumption using the established bindings� If no generalization of the found common instance
� exists in RES� the function delete instances removes all instances of � from RES by a n��
backward subsumption� Finally� the function insert normalizes and inserts � into the substitution
tree RES� Note that all functions work with bindings instead of really instantiated substitutions�
In this way we delay �and often avoid� the allocation of memory as long as possible�

The main idea of the algorithm multi�merge is to traverse the trees in parallel� All combi

nations of subnodes of the CURRENT set of inner nodes have to be considered� The subnodes
which pass the test for uniability are moved to the NEXT set of nodes �s� line ���� If CUR�
RENT is empty we simply exchange CURRENT with the NEXT level �s� line ���� CURRENT
leaf nodes are also moved to the NEXT level in order to uphold the original order of trees
�s� line ���� Each combination of leaf nodes represents a simultaneous unier which corresponds
to the established bindings on the stack STK �s� line ���

A sequence of stacks resulting from the simultaneous unication of substitutions stored in
three substitution trees is depicted in Fig� ���� Originally� the stack is empty� Before we start
the multi
merge algorithm� the substitutions of the root nodes have to be unied� resulting
in the bindings pushed on the stack �compare stack �Init��� The sequence A U X denotes

the tree nodes which have been considered in this step� The recursive algorithm is started
on the subnodes of the root nodes� In case it succeeds in testing the current substitution for
uniability� the modied stack is marked with �Success�� If a combination of leaf nodes has
been found� �Success� is written boldface� The rst common instance is fu �� f�d� g�d��g
which is backward subsumed by the second common instance fu �� f�v� g�v��g� The last found

��� Indexing Algorithms ��

A

u �� f�x�� x��

B x� �� a

x� �� ��
x� �� g����

E

x� �� b

C

x� �� c

D

u��f�a�b� u ��f�a�c� u ��f�x�g�x��

�

U

u �� f�y�� g�y���

y� �� ��
y� �� ��

V

y� �� b

y� �� b

W

u��f�y�g�z�� u ��f�b�g�b��

�

X

u �� f���� g�z���

z� �� d

Y

z� �� ��
Z

u��f�v�g�d�� u��f�v�g�v��

Init

y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

A U X

Fail

y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

x� �� a B

Success
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

x� �� ��
x� �� g����

E

Success

�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

y� �� ��
y� �� ��

V

Success
�� �� d

�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� d Y

B
ac
k
T
ra
ck

Success
�� �� ��
�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� �� Z

B
ac
k
T
ra
ck

Success

�� �� b
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

y� �� b

y� �� b
W

Fail

�� �� b
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� d Y

B
ac
k
T
ra
ck

Success
�� �� b

�� �� b
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� �� Z

R
es
et
In
it

Figure ���� Multi
Merge with Three Substitution Trees

�� Chapter �� The Prover

substitution fu �� f�b� g�b��g is forward subsumed by the second� Therefore� the result of the
multi
merge is a substitution tree only containing fu �� f�v� g�v��g�

����� Selection

The selection is an n�m maintenance operation on two indexes M and N � The set of lightest
substitutions occurring in N is added to M � The selected substitutions are not removed from
N � but marked as selected preventing multiple selection� The marked substitutions in N are
still considered for conventional retrieval�

The selection considers a selective substitution tree N as being separated into partitions
of di�erent weights� Each partition contains substitutions with identical weight� The lightest
partition can be selected within a single retrieval operation� Note that this operation also
modies tree N to provide consistency of N �In particular� a new lightest weight w and the
state s are propagated to the root�� If the lightest partition is completely retrieved� the weight
w in the root ofN corresponds to the weight of the new lightest partition� Thus a single selection
operation retrieves at most the substitutions of the lightest partition�

� algorithm selection�tree M �tree N �nat n�stack STK�

� begin

� while n � ��N is unselected do

� �M�N� n� � partition�M�N� n� STK�

� return �M�N� n�

� end

Figure ���� Algorithm for selection

The function selection depicted in Fig� ��� implements a selection of n substitutions in
a selective substitution tree N and stores the retrieved substitutions in tree M � The auxiliary
function partition repeatedly retrieves the lightest partition in N �s� line ��� Thus� the number
n of demanded substitutions does not depend on the size of the lightest partition in N �

Consider the algorithm for partition in Fig� ���� We assume that partition is called
only with substitution trees containing unselected substitutions� Furthermore� the current tree
node N in partition always contains substitutions with the lightest weight w� i�e� node N is
marked with weight w� Therefore� a parameter for the lightest weight in tree N is not needed
in the algorithm� In order to reconstruct the selected substitutions in tree N � the function bind

establishes N �s substitution on the stack �s� line ��� If node N is a leaf� then insert adds the
corresponding substitution represented by the established bindings to tree M �s� line ��� Note
that leaf N will be marked as selected �s� line ��� If node N is an inner node� then the subtrees of
N containing unselected entries with the lightest weight w are recursively searched �s� line ����
As the algorithm propagates a new lightest weight and the state of selection from the leaves to
the root� the set �� contains the updated subtrees of N �s� line ���� The new weight of node
N is the lightest weight of the subtrees in �� with unselected entries computed by the function
lightestweight� The function allselected is true if all entries in all subtrees in �� have been
selected �s� line ����

��� The Implementation ��

� algorithm partition�tree M �tree N �nat n�stack STK�

� begin

� h Assume that N has unselected entries i
� bind�N� STK�BINDINGS�

� if is leaf�N � then

� hN � ��� �� w� false�i
	 M � insert�M� STK�

 backtrack�STK�BINDINGS�

� return �M� ��� �� w� true�� n� ��

�� else

�� hN � ����� w� false�i
�� forall subtrees N � of N do

�� if n � ��N � is unselected with weightw then

�� �M�N �� n� � partition�M�N �� n� STK�

�� �� � �� �N �

�� backtrack�STK�BINDINGS�

�	 return �M� ������ lightestweight����� allselected������ n�

�
 end

Figure ���� Algorithm for partition

��� The Implementation

The rst section gives a brief overview of Purr� As the system operates in three di�erent stages�
the following sections discuss each stage seperately� The rst stage is the preprocessing in which
the problem set is processed and the clause graph is computed� The following reasoning phase
makes up the central part of the system� The nal postprocessing includes the generation of a
proof scheme�

����� Overview

The implementation of Purr is based on the master�slave paradigm with message passing�
When Purr is started� a single process called master process is initiated� The master process
executes� controls� and terminates slave processes� In turn� a slave process will not execute
another process� Note that in our approach the master process only initiates a certain number
of slave processes just once� During the run of the system the number of slave processes remains
xed� Finally� the master process terminates all slave processes�

� algorithm master process��le F �

� begin

� h Let CGS � �V�E� be a clause graph i

� CGS � preprocessing�S�

� h Let � be a set of answer substitutions i

� � � reasoning phase�CGS�

	 h Let P be a set of substitutions representing a proof i

 P � postprocessing�CGS���

� end

Figure ���� The Master Process

�� Chapter �� The Prover

Figure ��� shows three main phases of the master process� The rst step is the preprocessing
which is solely performed by the master process� The result of the preprocessing is a clause graph
CGS derived from the input set S of formulas in the le F � In the following reasoning phase�
the master process uses the clause graph to determine the number of slave processes and their
interconnections� Then� the master process initiates the slave processes and remains idle until a
proof situation could be detected� Before the master process enters the postprocessing� all slave
processes are suspended� but not terminated� The result of a successful reasoning phase is a
set of answer substitutions �� An answer substitution instantiates one of the query clauses and
represents the last substitution of a successful proof� The following postprocessing substantially
includes the generation of a proof scheme P � The postprocessing solely is a sequential process
directed by the master process� The slave processes merely serve as databases of inferences� In
the following sections we discuss the three phases of the system in detail�

����� Preprocessing

The preprocessing in Purr creates a clause graph� The graph corresponds to the initial set
of clauses� In a rst step� the master process performs the preprocessing in a solely sequential
computation� Concurrent processing starts after the preprocessing has been nished�

� algorithm preprocessing��le F �

� begin

� Read in �le F and create set of clauses S

� h Create clause graph CGS according to S i
� CGS � create graph�S�

� h Optimize clause graph CGS i

	 delete tautologies�CGS�

 delete pure�CGS�

� end

Figure ���� The Preprocessing

Consider the preprocessing depicted in Figure ���� First� the master process reads in a le
F which contains the problem set� Currently� Purr merely supports clause normal form� A
set of clauses S according to the formulas in F is established� The next routine creates the
corresponding clause graph CGS� Finally� the clause graph CGS is further optimized� In the
following� we describe the individual steps in detail�

The Input Process� Since Purr is an experimental system� it requires the input to be a
set of clauses in disjunctive normal form� Additionally� we added a keyword to mark some
clauses as query clauses� Currently� the options of Purr are passed as parameters of the master
process� Experiments with the system showed that the input language should support the user to
individually a�ect the creation of the clause graph� Note that the number of processes and their
interconnections directly depend on the clause graph� It is important to increase or reduce the
�potential� of a clause� i�e� to in�uence the number of processes designated to one clause� Thus
the input language ideally supports an individual marking mechanism of clauses and literals�
However� we discuss this issue later on the basis of experiments�

��� The Implementation ��

Clause Graph Creation� In Purr a clause graph provides information about how clauses
might be used as inference partners in the search process� Each literal in the set of clauses is
associated with a vertex in the graph� The links in the graph explicitly show potential applica

tions of ur
resolution� Consequently� the creation of a clause graph provides the computation of
these links and their corresponding test and send substitutions�

� algorithm create graph�clauses S�

� begin

� h Let CGS � �V� �� be a clause graph corresponding to S i
� V ISITED �� �
� create links�CGS� fvjv � V � query�v�g�

� return CGS

	 end

Figure ���� Create Clause Graph

The algorithm create graph depicted in Figure ��� computes the labelled links on a clause
graph CGS which is initialized with the vertices associated to the literals Li�j in the set of clauses
S� The algorithm create graph introduces a global set of vertices VISITED which contains the
worked
o� vertices�

� algorithm create links�clause graph CGS� vertices Vin�

� begin

� h Let CGS � �V�E� be a clause graph i
� forall vin � Vin n V ISITED do

� V ISITED � V ISITED � fving
� forall vout � V n fving do
	 if �� � literal�vout�� � �literal�vin�� then

 E � E � �vout� split mgu�literal�vout�� literal�vin��� vin�

� create links�CGS� clause�vout� n fvoutg�

�� end

Figure ����� Create all links leading to vertices in Vin

The global set VISITED is used by the algorithm create links depicted in Figure �����
The algorithm is called on the clause graph CGS and the literals of the query clauses� Recall
that links in CGS are solely established in the direction to query clauses� The recursion in
create links is based on the fact that a linked clause can be seen as an intermediate query
clause� The recursive call in line � considers the remaining literals of the currently processed
clause as new goals� The recursion is repeated until a unit clause is reached� The number of
possible links might be reduced by restricting the direction of links from positive to negative
literals� or vice versa� In line � we only have to consider vertices vin associated with positive
literals� or negative literals�

A�mann estimates the complexity of this algorithm to O�n�� �A�m���� Since Purr was not
developed to handle large initial sets of clauses� the square complexity should not become a
problem�

Clause Graph Optimization� Obviously� a clause graph might further be optimized in many
ways� We merely present two optimization routines which have been discussed in Chapter ��

�� Chapter �� The Prover

The rst routine removes tautologies from the clause graph� A clause is a tautology if the clause
contains two complementary literals linked by an empty unier�

� algorithm delete tautologies�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i
� forall v � V do

� if ��v� ��� ��� w� � E with w � clause�v� then

� E � E n feje � �v�� ��� ��� v�� � E � �v� � clause�v� 	 v� � clause�v��g
	 V � V n clause�v�

 end

Figure ����� Delete tautologies

The tautology algorithm depicted in Figure ���� removes the vertices corresponding to
clauses� which have internal links with empty test and send substitutions� All links connected
to the removed vertices are also deleted� Obviously� the deletion of tautology clauses can be
performed in a single pass process� since further tautologies cannot arise�

The second optimization considers so
called pure literals� Pure literals have neither incoming
nor outgoing links� i�e� the corresponding clauses will never participate the reasoning phase�
Consequently� the vertices and links of these clauses can also be removed from the clause graph�

� algorithm delete pure�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i

� while v � V � ���v� �� � ��� w� � E ����w� �� � ��� v� � E do

� E � E n feje � �v�� ��� ��� v�� � E � �v� � clause�v� 	 v� � clause�v��g
� V � V n clause�v�

	 end

Figure ����� Delete clauses with pure literals

The purity algorithm depicted in Figure ���� implements the deletion of vertices and links
according to the previous denition� In contrast to the deletion of tautologies� the purity al

gorithm has to be performed repeatedly after removing links from the clause graph� since the
deletion of links possibly yields new pure literals� Therefore� removing clauses with pure literals
is a recursive process� Each time a clause is deleted the whole clause graph has to be scanned
again for pure literals�

In sum� the preprocessing computes a transformation of the initial set of clauses into an
optimized clause graph� The nal state of the clause graph contains all information which is
required to begin the refutation process� Note that the preprocessing may also yield an empty
clause graph� Usually� the set of query clauses has not been properly chosen by the user in this
case� In the next section we discuss the reasoning phase of Purr�

����� Reasoning Phase

The reasoning phase in Purr is based on the distribution of newly inferred unit clauses among
concurrent processes� Each process works on a certain part of the clause graph depending on
the degree of granularity� In Purr ne granularity with OR
parallelism is obtained if each link

��� The Implementation ��

in the clause graph is processed in parallel� Coarser granularity means that each process works
on all outgoing links of one literal� for example� In this section we focus on these issues in detail�

����� A Sequential Approach

Before we discuss more technical aspects of the reasoning phase� we present a solely sequential
version of Purr�s reasoning phase and point out where parallelism might be obtained�

� algorithm sequential reasoning phase�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i
� h Initialize the sets REC� MRG� RES� and SNT of CGS i

� loop

� forall C � fclause�v�jv � V and all literals of clause�v� have incoming linksg do

	 if TERMINATE applied on C yields non�empty set � then

 return �

� forall v � V � clause�v� � fu� v�� � � � � vm� vg with m
 � do

�� forall e � �v� �� � ��� w� � E do

�� Apply RESOLVE to e

�� end

Figure ����� Sequential Reasoning in Purr

Consider the algorithm depicted in Figure ����� The initialization procedure in line � cor

responds to the creation of the initial state of the sets REC� MRG� RES� and SNT introduced
in Chapter �� The following loops provide several ways of parallelization� The rst loop in
line � calls the rule TERMINATE on all clauses which have incoming links on all literals� Obvi

ously� the rule TERMINATE can be processed in parallel� since every process implementing the
rule TERMINATE works on its own clause� One clause will never be processed by several di�erent
processes for termination� Thus processes performing the rule TERMINATE are per denition
completely data
independent among themselves�

The parallelization of the loops in the lines � and �� introduces data dependence in the
following way� Consider a clause C � fL�� L�� L�g with three literals� Moreover� let literal L�

and literal L� have several incoming links and let literal L� have two outgoing links� Therefore�
we could employ two concurrent processes performing the rule RESOLVE on the two outgoing
links� Obviously� the two processes depend on the same substitution sets in REC and in MRG

of the literals L� and L�� In order to obtain data independence� each process has to maintain
its own substitution sets� Data dependence among processes for RESOLVE exists as long as there
are several concurrent processes working on the same clause�

Another interdependence occurs if literal L� also has incoming links� In this case a process
performing the rule TERMINATE is applied to clause C� Thus this process has to maintain its
own substitution sets� accordingly� In general� data dependence among processes for RESOLVE
and TERMINATE exists if clauses have incoming links on all literals and outgoing links on some
literals�

Note that there remains another type of data dependence among the processes� This de

pendence corresponds to the links of the clause graph and re�ects the fact that substitutions
have to be exchanged between the substitution sets attached to the clause graph� The degree of
parallelism is reduced if there are directly or indirectly connected processes with varying load

�� Chapter �� The Prover

such that one process has to wait for the output of another process� The waiting process remains
idle and thus does not support the reasoning phase� In fact� this data dependence is the only
remaining dependence in our approach and thus it is responsible for non
linear speedup� For
example� the behavior of processes performing the rule TERMINATE on unit clauses corresponds
to this phenomenon� Such a process is going to receive at most one substitution which obviously
corresponds to a proof situation� Most of the time before the proof is found� this process remains
idle and thus does not support parallelism� We provide a solution for this example later�

Again� consider the loops in line � and ��� The parallelization of both loops yield the nest
possible granularity with OR
parallelism in this approach� Each link in the clause graph is
processed in parallel with the rule RESOLVE� Further parallelization of the rule RESOLVE would
enter the eld of AND
parallelism� On the other hand� if we solely parallelize the loop in line
�� we obtain coarser granularity� Then� one process performs the rule RESOLVE on all outgoing
links of one literal� In Purr� we implemented these two levels of parallelism�

Of course� there are more levels of parallelism� For example� one process could work on several
more or all outgoing links of one clause or even more clauses� yielding coarser granularity� In
practice� coarser granularity has to be considered when working with large sets of clauses in
order to reduce the number of concurrent processes�

In sum� the transition rules RESOLVE and TERMINATE can be implemented on di�erent levels
of parallelism� Therefore� our approach provides di�erent granularity levels� The ner the
granularity� the more copies of substitution sets in the clause graph have to be maintained
in di�erent processes� Consequently� since the substitution sets are generally data
dependent�
more communication is required to maintain data integrity� In practice� if more than one process
works on the same clause� the send operation becomes a multicast operation�

����
 The Parallel Implementation

This section describes the implementation of the transition rules of Chapter �� The application of
transition rules on the substitution sets attached to a clause graph is implemented by concurrent
slave processes� One slave process implements the repeated application of a transition rule on
certain substitution sets in the sets REC� MRG� RES� and SNT�

A slave process which implements the transition rule RESOLVE is called a resolution process� A
resolution process might work on a single link or a collection of links� There is also a second type
of slave process called the terminator process which implements the transition rules TERMINATE
and TRYTERMINATE� A terminator process is required for each clause with incoming links on all
literals in order to provide complete detection of proof situations� If a terminator process nds
a simultaneous unier� a proof message is immediately sent to the master process which in turn
stops all slave processes�

Resolution Process on a Single Link� Consider the algorithm for a resolution process on
a single link depicted in Figure ����� The algorithm mainly re�ects the transition rule RESOLVE

which we introduced in Chapter �� We assume that the source vertex v of the processed link
e belongs to a non
unit clause C� In line �� any vertex u of C n fvg is selected to receive
new substitutions �u� Note that the set �u of newly received substitutions corresponds to the
substitution sets in REC� In practice� �u can always be deleted after the loop has been nished�
The sets # correspond to the substitution sets in MRG and have to be maintained seperately

��� The Implementation ��

� algorithm resolution process link�link e�

� begin

� h Let e � �v� �� � ��� w� be a link i
� while proof not found do

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i
� h Let u�v� � � � � �vm be already merged indexes for u� v�� � � � � vm� v i
	 receive �u for u

 ���
u�

�
u� � subsume��u�u�

� u � union���
u�

�
u�

�� � � multi�merge���
u�v�� � � � �vm�

�� h Let �v�w be an index of all resolved substitutions for link e i
�� �v�w � union�subsume����v�w��

�� � � link mgu�select��v�w�� �� ��

�� send � to w

�� end

Figure ����� UR
Resolution on Link �v� ��� ��� w�

in each resolution process� For example� the set #u contains all previously received and merged
substitutions of vertex u�

In line ��� the multi
merge operation computes the simultaneous uniers & among the sub

sumed rest ��u of newly received substitutions and all substitutions previously received for the
remaining literals of C� The result & is tested for subsumption and inserted into the set &v�w
of resolved substitutions in RES� Therefore� &v�w is also required to be maintained in each
resolution process� This set contains all previously computed simultaneous uniers�

The next step is the selection of �best� substitutions and the following link unication� Recall
that we used the substitution sets in SNT to identify previously selected substitutions� Like the
sets in REC� the sets in SNT are not explicitly required since previously selected substitutions
are identied in &v�w by a special marking mechanism� Finally� the newly selected substitutions
are tested for uniability with the test substitution� The successful uniers are applied to the
send substitution and the resulting instantiations are collected in �� The resulting set � is sent
to all processes working on vertex w as a receiver literal� Note that the send operation actually
is a multicast operation� because in general several processes may consider vertex w as a receiver
literal�

Figure ���� shows an optimized version of a resolution process for single links� The optimiza

tion concerns the reduction of possible simultaneous uniers and the avoidence of intermediate
data� Obviously� we obtain less simultaneous uniers if the test substitution for the link is
considered earlier as before since not all simultaneous uniers are also uniable with the test
substitution� Actually� the link unication is an integral part of an optimized multi
merge op

eration� Consequently� we also integrated the instantiation of the send substitution into the
multi
merge� Therefore� the result &v�w contains instantiated send substitutions which belong
to the literal of w instead of substitutions which belong to v� Line �� shows that we merely have
to select substitutions �� The test unication and the send instantiation have been performed
in the multi
merge�

In order to avoid large intermediate data� we also added a simultaneous subsumption test
to the multi
merge� Every new simultaneous unier is inserted into &v�w after performing n � �
forward and backward subsumption with &v�w � Note that the simultaneous subsumption test

�� Chapter �� The Prover

� algorithm resolution process link opt�link e�

� begin

� h Let e � �v� �� � ��� w� be a link i
� while proof not found do

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i
� h Let u�v� � � � � �vm be already merged indexes for u� v�� � � � � vm� v i
	 receive �u for u

 ���
u�

�
u� � subsume��u�u�

� ��
u � union���

u�
�
u�

�� h Let �v�w be an index of all resolved substitutions for link e i

�� �v�w � union�subsume�link mgu�multi�merge���
u�v� � � � � �vm�� �� ����v�w��

�� � � select��v�w�

�� send � to w

�� end

Figure ����� Optimized UR
Resolution on Link �v� ��� ��� w�

also provides subsumption among new simultaneous uniers� In fact� this test is one of the most
important reduction methods in Purr�

Resolution Process on Some Links� In the following we discuss the algorithm for a re

solution process working on all outgoing links of one literal together� Recall that this type of
resolution process yields coarser granularity� i�e� the number of required resolution processes is
reduced while the amount of computation per resolution process is increased�

� algorithm resolution process literal opt�vertex v�

� begin

� while proof not found do

� h Let u � V � clause�v� � fu� v�� � � � � vm� vg be the current receiver literal i

� h Let u�v�� � � � �vm be already merged indexes for u� v�� � � � � vm� v i
� receive �u for u

	 ���
u�

�
u� � subsume��u�u�

 u � union���
u�

�
u�

� h Let �v�fw����� �wng be an index of all resolved substitutions for all outgoing links of v i

�� �v�fw����� �wng � union�subsume�multi�merge���
u�v� � � � � �vm���v�fw����� �wng��

�� � � select��v�fw����� �wng�

�� forall e � �v� �� � ��� w� � E do

�� � � link mgu��� �� ��

�� send � to w

�� end

Figure ����� Optimized UR
Resolution on Literal Associated with v

Figure ���� depicts an already optimized algorithm� Obviously� the multi
merge operation
has to be performed only once for all links� In order to obtain a common representation of si

multaneous uniers for all links� we introduce a set &v�fw� ���� �wng which contains the simultaneous
uniers before the link unication is performed� In other words� the substitutions in &v�fw����� �wng

belong to the literal of v� This approach provides more potential subsumption on simultaneous
uniers than the representation of uniers seperated into sets &v�wi for each outgoing link� In

��� The Implementation ��

the next step� substitutions ' are selected out of &v�fw� ���� �wng for the following send operation�
Finally� the instantiated send substitutions � have to be computed seperately for each link�

Note also that this approach shows a certain degree of unfairness� Consider a resolution
process working on a literal with outgoing links a and b� The test substitutions of the two links
are denoted by �a and �b� We assume that the test substitution �a provides a signicantly higher
probability for a successful link unication with simultaneous uniers than �b� For example� �b
only contains ground terms while �a only contains variables in its codomain� The select operation
in line �� does not consider this di�erence� For instance� ten best entries could have been selected
for the send operation� but only one entry is uniable with both test substitutions while the
other � entries are uniable with �a only� In other words� in our example link a usually allows
more substitutions per send operation than link b depending on the probability of successful link
unications�

The current implementation of Purr does not consider this unfairness� If we hold on the
approach of a common set &v�fw����� �wng� one problem in a solution is to provide the information
about which entries have been delivered on which links� Another approach is to provide separated
sets &v�wi for the simultaneous uniers� In the worst case� this approach yield sets &v�wi which
are more or less copies of each other�

� algorithm terminator process clause�vertices C�

� begin

� while proof not found do

� h Let u � C � fu� v�� � � � � vmg be the current receiver literal i
� h Let u�v� � � � � �vm be already merged indexes for u� v�� � � � � vm i

� receive �u for u

	 ���
u�

�
u� � subsume��u�u�

 u � union���
u�

�
u�

� � � multi�merge���
u�v�� � � � �vm�

�� if � �� � then

�� send � to Master Process

�� end

Figure ����� Termination on Clause C

Terminator Process on a Clause� Figure ���� shows an algorithm for a terminator process
working on a clause C� A terminator process also performs input subsumption on the received
substitutions� see the transition rule TRYTERMINATE in Chapter �� The following multi
merge
operation searches simultaneous uniers which provide a successful instantiation of clause C to
the empty clause� A proof is obtained if at least one simultaneous unier could be computed�
The answer is immediately sent to the master process which in turn invokes the postprocessing�

Terminator Process on Unit Resolvents� The termination on clauses with many literals
usually performs poor� since the multi
merge operation is di�cult and many concurrent reso

lution processes produce a large amount of information which cannot be handled e�ciently�
Therefore� we introduce another termination approach referred to as unit terminator process� A
unit terminator process implements the well
known unit con�ict method� This approach also
provides a solution to the problem of idle terminator processes working on unit clauses which
we mentioned before�

�� Chapter �� The Prover

� algorithm terminator process unit�predicate P �

� begin

� while proof not found do

� h Let pos and neg be already merged indexes i

� h pos contains substitutions belonging to positive units� neg respectively i
� receive �

	 if � belongs to positive units then

 �����
pos� � subsume���pos�

� pos � union�����
pos�

�� � � binary merge����neg�

�� else

�� �����
neg� � subsume���neg�

�� neg � union�����
neg�

�� � � binary merge����pos�

�� if � �� � then

�� send � to Master Process

�	 end

Figure ����� Termination on Units with Predicate P

Again� the clause graph provides su�cient information in order to determine on which pred

icate symbols a unit con�ict might be detected� Note that we cannot completely discard termi

nation on clauses in general� Clauses which do not participate in the search� but have incoming
links for all literals� are still required to be tested for termination� Nonetheless� termination
processes on unit clauses and the according resolution processes for their incoming links are
no more required� Instead� we use a unit terminator process for each predicate symbol which
occurs in a literal with incoming and outgoing links in the clause graph� Note that for predicate
symbols occurring in literals connected to unit clauses� a unit terminator process is also required�

The algorithm for a unit terminator process is depicted in Figure ����� The binary merge op

eration in line � and �� computes the unit con�ict between two sets containing the substitutions
of complementary literals� Note that the received substitutions in a unit terminator process can
be discarded� if one of the sets #pos or #neg does not receive any unit resolvents except for the
initial instances of the unit clauses�

In sum� the unit terminator approach improves the empty clause detection by reducing
redundancies in the original concept�

����� Initiation� Control� and Termination

The following section describes the technical aspects of slave process initiation� control� and
termination performed by the master process� Recall that we continue to discuss the algorithm
of the master process right after the preprocessing�

The individual steps of the master process are depicted in Figure ����� There are mainly
three phases� The rst stage is the startup of the required slave processes� The following stage
is the control of the parallel system� Finally� the third stage performs the suspension of all slave
processes�

��� The Implementation ��

� algorithm reasoning phase�clause graph CGS�

� begin

� h Let CGS � �V�E� be a clause graph i
� Count number of required slave processes in CGS

� Spawn slave processes

� Initialize slave processes

	 Start slave processes

 Collect intermediate output and wait for proof message �

� Suspend slave processes

�� return �

�� end

Figure ����� Start and Control of the Parallel System

The Number of Slave Processes� The number of slave processes is determined by the
clause graph and� under restrictions� by the user�s choice which part of the clause graph should
be processed by a single slave� Since the clause graph directly depends on the problem type�
the user�s in�uence on the level of granularity is limited� The current implementation provides
two levels� Either each slave process works on a single link� or each slave process works on all
outgoing links of one literal yielding coarser granularity�

Slave Process Initiation� All slave processes are initiated at a time� PVM provides the
required method and thus determines on which processor the slaves will run� An open problem
is the specic distribution of slave processes on di�erent processors in the parallel machine� A
better matching of the �expected� potential of a slave process and the processor�s performance
together with the properties of the network would certainly improve the overall performance
and load balance of the system� Obviously� the estimation of both the process� load and the
produced amount of communication is non
trivial�

In order to estimate the load of a process� we consider the multi
merge as the most expensive
operation� The amount of computation during the multi
merge increases with the number
and size of indexes to be merged and the number of shared domain variables in the indexes�
The number of indexes and their common domain variables are xed and directly problem

dependent� The number of entries in the indexes directly depends on the amount of received
information� i�e� on the behavior of other slave processes and the network�s capabilities� And thus
the number of entries in the indexes is directly associated with the amount of communication and
is also indirectly problem
dependent� Therefore� we are faced with a variety of interdependencies
between cpu load� communication� and the properties of the problem and the hardware� We
further discuss these issues in Chapter � with the help of some experiments�

In the following we work with the trivial approach� i�e� slave processes are randomly spawned
over the parallel machine�

Slave Process Initialization� The master process has to initialize the slave processes after
they have successfully been started on the parallel machine� First� optional settings are trans

mitted� Thereafter� the required clause graph information is sent� For a single slave process we
have�

�� Chapter �� The Prover

�� Routing information� i�e� process identications of the master process and all processes
which are directly connected to this process�

�� The variable domain of each literal of the processed clause�

�� The test and send substitutions of the processed links�

Note that exact information about the literal terms of the processed clauses is not required� This
fact stresses the concept of Purr which models the reasoning phase solely based on indexes�
The concept of literals and clauses is not needed anymore�

Starting Slave Processes� Recall that the initial state of the sets REC� MRG� RES� and
SNT introduced in Chapter � represents the beginning of the reasoning phase� The initial
state of the sets corresponds to the distribution of all send substitutions that come from links
originating in unit clauses� The master process searches the clause graph for unit clauses with
outgoing links and sends the appropriate send substitutions to the processes which work on the
connected literals� The slave processes with direct connections to unit clauses will immediately
start reasoning�

Waiting for Proof Messages� The remaining work of the master process merely consists of
general control of the slave processes and the collection and printing of their output� The col

lection of slave process output in a distributed environment is a non
trivial problem� Especially�
when output of asynchronous slave processes has to be listed in a specic order�

During the reasoning phase the user may ask the master process to dump detailed statistics of
the slave processes� Therefore� the master process broadcasts a request for statistics to all slave
processes and� thereafter� collects the output generated by the slave processes� A slave process
suspends its work when such a request has been received� The desired output is generated
and the process resumes computation� Sometimes the output of one slave process arrives in
several packages at the master process� These output packages might be interrupted by output
packages originating from other slave processes yielding an unreadable output� Therefore� the
master process has to focus on the output of one slave process and may proceed only if the
output is completed�

In this context� another problem arises when the master process has to wait for a slave
process� For example� some slave processes usually spend a lot of time in the multi
merge
operation� The result is an unacceptably long delay until the generation of slave output starts�
In order to avoid repeatedly probing for request messages during intensive operations in slave
processes� we employ the concept of signals� A signal causes a process to suspend the current
work and to execute a so
called signal handler� When the signal handler is nished the process
resumes the current work� Note that a signal handler might perform strictly restricted operations
only� since the current state of the interrupted process is uncertain�

Consequently� the master process actually broadcasts signals instead of request messages to
the slave processes� In turn� when a slave process receives a specic signal� its signal handler
immediately sets a certain global variable which is also accessable in the normal process con

text� Therefore� we exchanged a time
consuming probe operation against a variable access� For
example� the global variable may also be accessed during a multi
merge operation� When the
variable is set� the multi
merge is suspended and the request can be served� This concept yields

��� The Implementation ��

a better answer performance� even when some slave processes are under heavy load� On the
other hand� signal handling might reduce the portability of the system�

In addition to the output collection� the master process also provides a shut down routine�
Like the output collection� a controlled shut down of all slave processes is also implemented with
signals�

Another task of the master process is to wait for proof messages sent by terminator processes�
When the master process receives a proof message the reasoning phase is nished and the
postprocessing begins�

Suspension� The next operation of the master process after receiving a proof message is to
suspend all slave processes� The suspension is achieved by broadcasting a wait message or� as
an optimized approach� by broadcasting signals to all slave processes� The optimized suspension
mechanism does not only provide faster generation of a proof� but also improves precision of
timing information� since the amount of unuseful computation is reduced� Recall that we use
signals to immediately interrupt large scale operations like the multi
merge� After the slave
processes received the suspension command they are ready to answer the requests of the master
process�

����� Postprocessing

The postprocessing mainly performs the grabbing of a proof� It is a solely sequential process
since all slave processes are forced to wait for requests of the master process one after another�
During the postprocessing the resolution processes merely work as databases on the produced
substitutions while the terminator processes wait for termination� The whole operation is con

trolled by the master process� Figure ���� shows the algorithm of the master process in detail�

� algorithm postprocessing�clause graph CGS � set ��

� begin

� h Let CGS � �V�E� be a clause graph i
� h Let � be a set of answer substitutions i
� forall � � � do

� h Let O be the origin list of � i
	 apply � to appropriate query clause and print

 collect proof���O�

� Collect output and terminate slave processes

�� end

Figure ����� The Postprocessing

Proof Generation� In general� the proof message sent by a terminator process may contain
several di�erent answer substitutions each representing a di�erent proof� Actually� a terminator
process uses a modied multi
merge operation which only searches for the rst existance of a
simultaneous unier� Possible subsequent simultaneous uniers of the current multi
merge oper

ation are not considered� but the multi
merge operation is immediately stopped� Nevertheless�
we present the general algorithm of the proof collection� Thus in line � all answer substitutions
are considered for the generation of a proof�

�� Chapter �� The Prover

� algorithm collect proof�substitution �� list O�

� begin

� h Let O be a list of pairs p i
� h Let p � �pid� n� be a pair of a process id and a number i

� forall p � �pid� n� � O do

� if pid belongs to master process then

	 print appropriate unit clause

 else

� query process pid for substitution n and its origin list

�� h Let �p be the substitution n in process pid i

�� h Let Op be the origin list of �p i
�� collect proof��p� Op�

�� apply �p to appropriate literal and print

�� end

Figure ����� Recursive Proof Generation

The algorithm collect proof depicted in Figure ���� implements the collection of the in

volved substitutions of a proof in a distributed environment� The reconstruction of a proof
requires a data structure which provides information about the origin of a substitution� There

fore� a substitution � is associated with a pair �pid� n� of a process identication number pid
and a unique number n within this process� In other words� the pair �pid� n� together with �

means that the process with id pid inferred � as the nth produced substitution� The indexing
conveniently associates an inserted substitution with any kind of information� Nearly every
index in Purr contains substitutions associated with these pairs�

The index containing the result of a multi
merge operation is the only exception� Each sub

stitution � in this index is required to provide information about which substitutions contributed
to the creation of �� Therefore� in this case we extend a single pair to a list of pairs called the
origin list� The length of the origin list corresponds to the number of literals of the processed
clause� The rst pair corresponds to the original pair� i�e� the rst pair contains the pid and n
of the process which performs the multi
merge operation� The rest of the origin list contains the
pairs of the substitutions which contributed to the creation of the simultaneous unier� Thus a
request for �pid� n� is answered by the process pid by searching the index containing simultane

ous uniers for substitution n� The process answers with the found substitution and the rest of
the associated origin list� Note that substitutions selected for a send operation are associated
with the rst pair of the origin list only�

The collect proof procedure is a recursion which traverses the proof tree until unit clauses
are reached� Obviously� a substitution associated with the pid of the master process corresponds
to a unit clause� On the other hand� a substitution associated with the pid of a resolution process
corresponds to a unit resolvent with a origin list� In line � the process pid is requested to answer
with the substitution itself and its origin list� Then the origin list is recursively processed until
unit clauses are reached�

In the implementation of Purr� the proof tree is not printed immediately� but stored in
an appropriate data structure providing better output format� For example� repeated unit
resolvents can easily be printed only once� We also added a verifyable output format� This
format can be interpreted by a script program which in turn uses another theorem prover to
verify the single steps of the proof�

��� The Implementation ��

Termination� The nal output collection is implemented as discussed before� Each slave
process produces statistical output including timing information� The timing information is
seperately collected by the master process in order to compute the total cpu time consumption
of all slave processes� Finally� all slave processes are terminated by a regular termination message
instead of signals since the slave processes are currently idle�

���� Options in Purr

Finally� we discuss the most important options in Purr� We distingiush traditional parameters
like the subsumption switch and options controlling the special indexing operations and the
communication of Purr� Most of the following options are used in many resolution based
theorem provers�

� The forward�backward subsumption can be seperately turned o�� The default is on for
both subsumption operations�

� A limit on the weight of the produced substitutions can be imposed� During the multi

merge generated substitutions exceeding the limit are discarded� The default is no limit�
This limit can also be introduced automatically by an assessment mechanism presented in
the theorem prover Otter �McC���� Initially� a xed amount of memory� say �� MBytes
of RAM� is available� When one third of this memory has been lled� a limit is imposed
on the number of symbols in deduced clauses"substitutions� The limit referred to as
max is selected by computing the maximum size of the formulas"substitutions contained
in the smallest �) of all set of support formulas or of all substitutions stored in the tree
containing the simultaneous unier in a resolution process� Every tenth iteration of the
main loop a prospective new limit m is calculated in the same way� If m 	max� the limit
is reset to m� McCune arrived at the values �

� and �) by trial and error�

� A limit on the weight of the substitutions to be sent can be imposed� The selection of
substitutions only considers substitutions lighter than this limit� If there are no appropriate
candidates� the selection chooses only one lightest substitution in order to keep the system
running� This technique prevents too heavy substitutions to be considered for subsequent
resolution steps if no better candidates are available� Instead� the system restricts the use
of heavy substitutions and tries to nd lighter substitutions� Note that all substitutions
including the heavy substitutions are tested for termination� The default is no limit�

� A limit on the proof level restricts the depth of the search space� Substitutions with a
creation path deeper than the limit are discarded� The default is no limit�

� The output of given� kept� and received substitutions can be turned on� Note that the
output of slave processes has to be redirected to the master process� An e�cient solution
is to send the output also as compact indexes of substitutions instead of ready formatted
output� The generation of a readable format can also be performed by the master process�
The default is no output�

� The output of time and space statistics of the slave processes can be requested� The
default is no statistics�

�� Chapter �� The Prover

Since Purr works with indexes of substitutions as the fundamental data structure in the
system� we also developed options on the level of indexes and indexing operations�

� The number of multi�merges�send operation determines how many multi
merges have
to be performed before a selection and send operation is initiated� The default is one
multi
merge per send operation� Depending on the problem� more multi
merges per send
operation prevents too heavy substitutions to be considered for subsequent resolution steps�
Note that the e�ect is similar to the weight limit on substitutions that are to be sent�

� The number of indexes�receive operation corresponds to the length of the receive queue
of indexes� Before a slave process starts the multi
merge it receives indexes for one literal
in the nucleus until the queue of the literal is full� The queue is sorted according to the
minimal weight of the entries in the indexes� The e�ect is that indexes with lighter entries
are considered rst� The default is one index per receive operation�

� The number of given substitutions�send operation determines the size of the sent in

dexes� The default is ten substitutions per send operation� The usual size of a sent index
ranges between ve and fty substitutions�

��� Techniques

In this section we discuss two di�erent low
level aspects of our implementation� Both methods
crucially improve the performance of Purr� The rst technique called contexts addresses the
e�cient maintenance of variable bindings� This method also improves the renaming of vari

ables� In the second part we present an e�cient transformation procedure of substitution trees
into process
independent form� The transformation provides the communication protocol with
indexes among distributed processes�

����� Contexts

We present a technique called contexts which has been introduced by McCune for the theorem
proverOtter �McC���� Contexts allow the use of the same variables in actually variable disjoint
terms or substitutions� Even substitution trees containing the same variables can be considered
as variable disjoint with contexts�

A context is a data structure containing variable bindings� To this end we associate every
new variable with a unique natural number� With this number we access a context that actually
is an array containing an arbitrary maximum of binding elements� A binding element contains
a pointer to a term and the name of a context� Thus contexts are similar to the notion of a
substitution� Note that the number of possible variables is limited to the size of the smallest
context�

Consider the example depicted in Figure ����� We employ two contexts C� and C� for the
unication of the terms t� � f�x� g�y� z�� z� and t� � f�g�x� y�� y� x�� We assume that both
terms t� and t� are variable disjoint� Using the contexts C� and C� the terms do not have to be
renamed� Variables occurring in t� are bound in C� whereas variables occurring in t� are bound
in C�� An important technical aspect is that a context is accessed by the unique number of a
variable� In our example the variable x corresponds to the natural number �� variable y to ��

��� Techniques ��

� x g�x� y�
�
� z x

�
�

C�

C�

C�

�
� y g�y� z�
�
�
�

C�

C�

Figure ����� Two Contexts C� and C� with Bindings

and so on� This detail provides an e�cient access of variable bindings that really improves the
performance of the system�

In order to extract the common instance of the two terms� we simply apply the bindings in
context C� to the term t� and rename the variables yielding the term f�g�x� g�y� x��� g�y� x�� x��
Note that we also use contexts to rename variables e�ciently� To this end we add an extra
renaming slot to each binding element of the contexts� In Purr variable renaming always
corresponds to normalization since substitution trees represent normalized terms or substitutions
more e�ectively� We obtain a normalized term by renaming the variables in a specic order�
Here� the order is determined by the unique number of every variable� Renaming always is
started with variable x which corresponds to the natural number ��

�

� �

� �

�

�

� �

� �

�

�

� �

� �

�

� �

� �

x

y

X

Z

X

Y

U

Y

Z

x

CCommon C� C� C� CResult

Figure ����� The Multi
Merge Operation with Three Substitution Trees

Multi�Merge� In Purr all operations involving the maintenance of variable bindings use
contexts� In particular� the multi
merge operation can be supported by contexts very e�ciently�
Consider the example depicted in Figure ����� We employ ve contexts in order to merge
three substitution trees� The context CCommon maintains the common variables occurring in
the nucleus� Common variables of the nucleus are denoted by lowercase characters x� y� and
so on� Variables that belong to the electrons are referred to as private variables denoted by
uppercase characters X � Y � and so on� The private variables occurring in the substitutions
of the three trees as well as the index variables of the trees are maintained seperately in the
contexts C�� � � � � C�� Finally� context CResult contains the variables of the resulting substitution
tree� The integrated subsumption and insertion operations of the multi
merge use the context

�� Chapter �� The Prover

CResult� The other n�m indexing operations use contexts accordingly�

Test Uni�cation and Send Instantiation� The splitted unier �� � �� of two connected
literals containing a test substitution � and a send substitution � is also computed using contexts�
The computation merely corresponds to the unication of literals followed by the extraction of
substitutions� Here� we also distinguish variables occurring in the two di�erent literals by using
common and private variables� We will show that two variable types su�ce to represent the
required test and send substitutions as well as the substitutions being uniers or ur
resolvents�
Variables with indices �s� and �r� of the original approach in Chapter � are replaced�

�� � fx �� f�f�y��g P �x� f�y�� z� �P �f�x�� f�y�� a�

v� v�

� x f�X�
�
� z a

�
�

CCommon

CTest

CTest

�
�
�
�
�

CSender

� X f�y�
�
�
�
�

CTest

CSender

�� � fx �� f�X�� y �� Xg

� � fx �� f�X�� z �� ag

� � fx �� X� y �� yg

Figure ����� Test Unication and Send Instantiation

Figure ���� depicts a fragment of an example which has been discussed in the last section
of Chapter �� The literals P �x� f�y�� z� and �P �f�x�� f�y�� a� belong to the same clause and
are connected by the internal link �v�� ��� ��� v��� The common variables of the test substitution
� � fx �� f�X�� z �� ag belong to the sender literal� The private variables like the variable X
belong to the receiver literal�

Since only the codomain of the send substitution � � fx �� X� y �� yg is a�ected by the
send instantiation� we consider the common variables of the codomain as being di�erent from
the variables in the domain� Therefore� the variable y in the codomain of the send substitution
� is di�erent from the variable y in the domain which� however� implicitly means that the send
substitution conforms to the denition of substitutions� The common variables in the codomain
�like the variable y� belong to the same common variables in the test substitution � while the
private variables belong to the private variables in � �

We consider the send operation of the ur
resolvent �� � fx �� f�f�y��g to the literal v�
receiving the substitution �� � fx �� f�X�� y �� Xg� Actually� we unify the ur
resolvent
P �x� f�y�� z��� with the receiver literal �P �f�x�� f�y�� a� of a nucleus and extract the according
unier ��� This operation corresponds to the rst send operation in the original example depicted
in Figure ����

For the test unication with the test substitution � and the ur
resolvent �� three contexts are
required� The context CCommon maintains the common variables� i�e� the lowercase variables of �
and ��� The private variables of �� are bound in the context CSender whereas the private variables
of � are bound in the context CTest� The test unication rst establishes the assignments
fx �� f�X�g and fz �� ag of � in the context CCommon� The context of the codomain terms is

��� Techniques ��

the context CTest� Then �� successfully is unied with respect to these bindings yielding the
binding fX �� f�y�g with CSender being the context of f�y��

The following send instantiation applies the bindings of the context CTest to the codomain of
the send substitution � yielding the substitution � � fx �� f�y�� y �� yg� Depending on context
and type� the variables in this substitution have to be renamed or converted from common type
to private type and vice versa� Unbound common variables like the variable y in � are converted
to private variables and then renamed yielding the substitution �� � fx �� f�X�� y �� Xg�
The conversion is due to the interpretation that common variables like the variable y belong
to the sender literal� Unbound private variables are converted depending on their context�
Private variables of the test substitution simply are converted to common variables because
these variables actually belong to variables of the receiver literal� Private variables of the ur

resolvents are not converted but renamed� Assignments of the send substitution that become
assignments of the form fx �� xg are omitted�

In sum� contexts provide an e�cient and �exible technique for the maintenance of variable
bindings and for other operations involving variable handling like renaming and conversion�

����� Indexing and Process Communication

In the distributed theorem prover Purr indexes are used in the communication protocol� We
now present a transformation of substitution trees and the underlying term structure to a
process
independent representation� This representation can be transmitted between processes�
After receiving the process
independent form� it is transformed back into the internal represen

tation of substitution trees�

Sender

�

� �

� �

� � � � �

�

� �

� �

Receiver

internal independent internal

Figure ����� Process Communication

Early experiments withPurr showed that sending the new substitutions one by one produces
too much communication overhead� In order to improve the communication performance of the
system� the number of messages had to be decreased� As the prover produces substitution sets in
each resolution step anyway� it is straightforward to exchange substitution sets among processes
instead of single substitutions�

Process�independent Representation� A process
independent representation of substitu

tion trees does not contain absolute addresses� Therefore� a procedure which yields an inde

pendent representation has to transform absolute into relative addresses� This transformation
should enable us to reconstruct the substitution tree after transmission� The independent data
structure has to be as simple as possible in order to send and receive a whole index at a time�
Such a data structure is a vector of uniform elements�

�� Chapter �� The Prover

����� Transformation of Substitution Trees

In Purr both substitution trees and terms are internally represented as recursive tree structures�
Thus the transformation maps the tree representation of indexes and terms to a �at vector
representation� The recursive structure can be represented in a vector by relative instead of
absolute addresses� The vector itself is designed as a simple array of integers� We informally
present the transformation procedure in a top
down manner�

�� � fu �� f�x�� x��g

�� � fx� �� a� x� �� bg �� � fx� �� b� x� �� ��g

I subst���� � L subst���� � data L subst���� � data

Figure ����� Transformation of a Substitution Tree

Substitution Trees� We only consider standard substitution trees� The extention to other
types of substitution trees is straightforward� An example of a transformation is depicted in
Figure �����

An inner node of a substitution tree consists of a substitution and a list of subtrees� Instead
of subtrees� leaf nodes refer to a list of entries which correspond to inserted variants of the
same substitution� First� a �ag �I� indicates that the following node is an inner node� A �ag
�L� indicates a leaf node� Thereafter� the node�s substitution � is transformed to subst����
As the number of subnodes or entries is arbitrary� the number is inserted to the vector as
a reconstruction reference� Finally� if the current node is an inner node the transformation
recursively starts on the subnodes� Otherwise� a transformation procedure is called for all
entries of the leaf node� In our example� both leaf nodes contain one entry indicated by � in the
transformation�

This concept is extendable as long as there is a transformation for the indexed data� For
example� if history information is added to each entry of an index the transformation of leaf
nodes has to consider the transformation of history information accordingly�

� � fx �� f�g�a�� b�� y �� g�f�z� c��g � x term�x�� y term�y��

Figure ����� Transformation of a Substitution

Substitutions� A substitution � consists of a nite set of variable
term pairs� See Figure ����
for an example� The internal representation of a substitution is a list of variable
term pairs� We
transform a substitution into a vector of symbols such that the number of variable
term pairs
is stored rst� Then each pair is transformed with the transformed variable symbol followed by
the transformed term�

��� Techniques ��

t � f�g�a�� b� f g a b

Figure ����� Transformation of a Term

Terms� Consider the example in Figure ����� In Purr terms are represented in a conventional
tree structure� A term consists of a top symbol and a pointer to an argument list containing
terms� The string representation of a term corresponds to a process
independent representation�
Thus the transformation maps each symbol in a term to the vector in a specic order� e�g� depth

rst� A term is reconstructed according to the transformation order and the known� xed arity
of function symbols�

Symbols� A symbol is represented by an integer value� Variables are positive integers� Con

stant and function symbols are negative� The least signicant bits of an integer are used to
encode di�erent types of variables �common or private� or the arity of the function symbols�
Obviously� the integer representation of symbols is process
independent� Therefore� the trans

formation of symbols is trivial�

����� Assessment

In many experiments Purr showed best performance in the range of �� to ��� entries per index
which means that a vector of �� to �� kB is needed� The transformation to the vector represen

tation yielded an average compression level of about one third compared to the original memory
consumption of a substitution tree with conventional terms� The time needed to transform a
tree in both directions is negligible compared to operations like the multi
merge or subsumption�

�� Chapter �� The Prover

�
Experiments

In this chapter we show that our prototype implementation of Purr is able to achieve very high
performance� To this end� we present a selection of experiments that focus on the e�ect of both
indexing and parallelism on the systems overall performance�

The impact of indexing on Purr�s performance is investigated by a rst set of experi

ments� which use the well
known Condensed Detachment principle introduced by C� A� Mered

ith �LMM	���� Our experiments are based on problem sets that have been presented by William
McCune and Larry Wos �MW���� With respect to the experiments reported in that paper we
will compare Purr and the theorem prover Otter �McC���

In order to investigate increasing degree of parallelism� we also performed experiments on
problem sets that consist of more initial clauses than the condensed detachment examples� in
order to investigate an increasing degree of parallelism� Experiments cover the well
known Sam�s
Lemma �MOW��b� and the Steam�Roller �Pel��� problems� The axiomatization of all problems
were taken from the TPTP Problem Library �SSY����

Experiments covering all problem sets of the TPTP library which are refutable by ur

resolution cannot be performed automatically because Purr�s implementation is still unstable�
The main problem is that the prover has been developed as a pure distributed system which is
very di�cult to debug� The current implementation cannot simulate concurrency using a single
sequential process� At least errors related to the complex indexing operations could be found
more easily in a sequential process� Nevertheless� our results have been veried automatically
by a shell script using the theorem prover Otter�

	�� Indexing

Term indexing supports fast access to and maintenance of large databases in automated the

orem provers� Therefore� the investigation of indexing methods within an automated theorem

�� Chapter �� Experiments

prover is supported by problem sets which require the prover to create and maintain a large
knowledge base during the search process� The study of logic calculi with condensed detachment
is recognized as a very challenging eld for theorem provers� Some problems that arise in this
context are extremely di�cult� i�e� a huge number of inferences has to be drawn� Additionally�
all problems in this area can be processed by a single process of Purr providing a fair basis for
the comparison with sequential theorem provers like Otter�

In the following we merely provide the rst
order axiomatization of the condensed detach

ment inference rule� A detailed theoretical background of condensed detachment has been
presented by J� Lukasiewicz �*Luk����

De�nition ����� Condensed Detachment�
For a binary function symbol i and a unary predicate symbol P � P� condensed detachment is
dened as�

	x	y�P �i�x� y��� P �x�� P �y��

which corresponds to the clause normal form�

f�P �i�x� y����P �x�� P �y�g

Condensed Detachment combines detachment �modus ponens� and instantiation for a binary
operation i� This binary operation usually represents the implication or equivalence within a
calculus� The unary predicate P applied to a subformula � is interpreted as �� is a theorem�
or �� holds�� Therefore� the condensed detachment inference rule can be used to derive new
theorems or axioms within a certain calculus�

Our experiments with condensed detachment t into a specic presentation scheme� In
particular� the structure of the clause graph that corresponds to the experiment�s axiomatization
remains almost unchanged� Only axioms and theorems represented by unit clauses change�
Therefore� the number of employed processes in these experiments is xed� The degree of
di�culty is solely determined by the axioms and the denied theorem�

Implicational Propositional Calculus� The problems are presented in the following way�
Given the formulas

�IC
�� i�x� x� �IC
�� i�i�x� y�� i�i�y� z�� i�x� z���
�IC
�� i�x� i�y� x�� �IC
�� i�x� i�i�x� y�� y��
�IC
�� i�i�i�x� y�� x�� x� �IC
JL� i�i�i�x� y�� z�� i�i�z� x�� i�u� x���

each holding in IC� Each of the sets fIC
��IC
��IC
�g and fIC
JLg axiomatizes IC� The problems
�� �� depicted in Table ��� are to derive each system from the other� For example� problem ���
IC
JL�IC
�� is to nd a refutation of the clauses�

f�P �i�x� y����P �x�� P �y�g Condensed Detachment
fP �i�i�i�x� y�� z�� i�i�z� x�� i�u� x����g IC
JL
f�P �i�i�a� b�� i�i�b� c�� i�a� c����g Denial of IC
� �skolemized�

The corresponding clause graph for the proof of IC
JL�IC
� is depicted in Figure ���� The
denied theorem IC
� is marked with ��� and thus represents the only query clause� Axiom IC
JL
is connected to the condensed detachment clause representing a possible inference� Obviously�

��� Indexing ��

the internal links �v�� ���� ���� v�� and �v�� ���� ���� v�� represent by far the highest potential
concerning the computation of inferences� Link �v�� ���� ���� v�� merely expects one substitution
which corresponds to a successful refutation�

IC
JL P �i�i�i�x� y�� z�� i�i�z� x�� i�u� x���� v�

CD �P �i�x� y��

v�

�P �x�

v�

P �y�

v�

�

IC
� �P �i�i�a� b�� i�i�b� c�� i�a� c����

v�

����
���fx��i�i�x�y��z��y ��i�i�z�x��i�u�x��g

����
���fx��i�i�i�x�y��z��i�i�z�x��i�u�x���g

���fy ��Xg

���fx��Xg

���fy ��i�X�Y �g

���fx ��X�y ��Y g

���fy ��i�i�a�b��i�i�b�c��i�a�c���g

����

Figure ���� Clause Graph of the Problem IC
JL�IC
�

Recall that our approach provides various degrees of granularity� In fact� Purr can work
on the clause graph either with a single resolution process for all outgoing links of a literal or
with resolution processes for each particular link� Experiments with resolution processes for all
outgoing links of a literal are denoted by PurrLiteral
n� The number n denotes the number of
available processors� Experiments providing resolution processes for each link are denoted by
PurrLink
n�

In practice� two slave processes are employed using PurrLiteral
n on the condensed detach

ment examples� One slave process is the resolution process� the other process is a unit terminator
process for the predicate P � The current implementation of PurrLink
n does not support the
unit termination concept� PurrLink
n yields four slave processes for the condensed detachment
experiments� Three resolution processes work on the three outgoing links of v� and one clause
terminator observes v�� Note that in the current example the unit termination concept could
reduce the number of slave processes to three since the resolution process for link � is actually
not required� In other words� the resolution process on link � and the clause terminator process
on v� could be combined to one unit terminator process on predicate P �

Nonetheless� the four slave processes in the PurrLink
n approach only provide a degree of
parallelism of two since the two resolution processes working on internal links consume by far
the most cpu time� We observe a similar behavior of PurrLiteral
n which provides almost no

�� Chapter �� Experiments

parallelism since here the unique resolution process is dominant�

Test Conditions� In the following tables �fail� indicates that no proof has been found within
four hours with a maximum of �� Mb for all processes� The reported times are the seconds
needed to nd a refutation on a SuperSparc �� computer with two processors� In order to
obtain experiments with n � � on the two processor machine we estimate the elapsed real time
by summing up the cpu ticks needed in all processes involved� The times for experiments with
n � � are real times� Note that this timing method does not provide exact results� But it
su�ces to compare the di�erent congurations of Purr� Otter uses hyperresolution without
backward subsumption� Purr employs the restriction of unit resulting resolution to positive
unit clauses� which in this case is equivalent to hyperresolution� as can be seen in Figure ����
Purr uses a limit of �� substitutions per message� Backward subsumption is also switched o��

(Theorem Otter PurrLiteral
� PurrLink
� PurrLink
�

�� IC
��IC
��IC
� � IC
JL �� �� �� ��

�� IC
JL � IC
� � � � �

�� IC
JL � IC
� � � � �

�� IC
JL � IC
� �� � � �

�� IC
JL � IC
� ���� ���� ���� ����

�� IC
JL � IC
� ��� ��� ��� ���

Figure ���� Experiments with the Implicational Propositional Calculus

Consider the column for PurrLiteral
� in Figure ���� Purr employs one resolution process
and one unit terminator process in this conguration� In these experiments the resolution process
consumes almost all cpu
seconds during the run� The most time
consuming operation within the
resolution process is the multi
merge� The unit terminator merely has to perform a n�� indexing
operation for uniable partners of the denied theorem in the set of produced inferences� The
costs of this test are small compared to the multi
merge operation� Thus Purr runs sequentially
in this conguration providing a basis for the comparison to the sequential Otter system�
Although Purr produces communication overhead� it shows better performance�

The two columns for PurrLink
� and PurrLink
� contain the proof times for Purr working
with two resolution processes on condensed detachment� Obviously� a maximum speedup of two
might be obtained in this conguration� The times of PurrLink
� compared to PurrLiteral
�
are nearly doubled since the multi
merge operation on condensed detachment is employed twice
in the PurrLink
� conguration�

The PurrLink
� conguration again achieves similar results as the sequential variant of
PurrLiteral
�� The proof times of PurrLink
� corresponds to a speedup of about ��� compared
to the proof time of PurrLink
��

Detailed Statistics� For a more detailed analysis consider the time and space statistics
of a single resolution process depicted in Figure ���� These statistical data have been ob

tained by trying to prove problem ��� i�e� IC
JL�IC
�� with PurrLiteral
�� Recall that in the
PurrLiteral
� setting a single resolution process works on both internal links �v�� ���� ���� v�� and
�v�� ���� ���� v��� Statistical data about the according unit terminator process is omitted due to
its minor contribution to time and space consumption� Actually� the unit terminator process

��� Indexing ��

REC� ����
Subsumed� �� �����)�
MRG� ���� ������)�
Memory� �����kB

Union� �� sec
Subsumption� �� sec

v�

REC� ����
Subsumed� �� �����)�
MRG� ���� ������)�
Memory� �����kB

Union� �� sec
Subsumption� �� sec

v�

Inferred� �������
Weighted� ������� ������)�
Subsumed� ������� ������)�
RES� ����� ����)�
Memory� ����kB

Merge� ���� sec
Subsumption in M�� ��� sec

v�

SNT� ����

SNT� ����

Figure ���� Statistics of the Resolution Process in PurrLiteral
� on Problem IC
JL�IC
�

consumes only a few seconds of cpu
time� Note that this example is a good representative for
the behavior of Purr on condensed detachment�

The presentation of statistical data resembles the original clause graph in Figure ���� The
nodes v� and v� contain information on the input behavior of the resolution process� Both nodes
produce identical data due to the properties of condensed detachment� The process received ����
substitutions on each node and performed forward subsumption in �� seconds with almost no
e�ect� The remaining ���� substitutions were inserted into a ����� kilobytes substitution tree
in �� seconds�

Node v� provides information about the generation of new inferences performed on the
received substitutions� About ��� million new clauses were inferred� The automatic weight
control rejected ��) of these clauses� Forward subsumption avoided the maintenance of ��) of
the new inferences� Note that forward subsumption represents the most expendable part of the
multi
merge ���� seconds for forward subsumption of ���� seconds for the whole computation
of new inferences�� Only ���) of all new inferences were kept and inserted into a ��� megabytes
substitution tree� The strategy selected ���� inferences for both outgoing links for subsequent
resolution steps� Note that all ����� saved inferences were sent to the unit terminator process
for testing unit con�icts�

We observe that the multi
merge operation consumes by far most of the cpu
time and its
result also consumes most of the memory� The forward subsumption within the multi
merge
takes about ����) of the overall merge time� The impact of subsumption on the amount of kept
inferences is very strong� Due to this observation the subsumption test has been integrated into
the multi
merge operation� New inferences are kept in memory only if they passed the weighing
and subsumption tests�

With an increasing size of the kept inferences the subsumption test becomes more time

consuming� Nevertheless� experiments with very large substitution trees �several hundreds of
megabytes� still show reasonable inference rates�

�� Chapter �� Experiments

Equivalential Calculus� The formulas in the left column hold in the equivalential calculus
�EC�� Each of the formulas in the right column is a single axiom for the equivalential calculus�

�EC
�� e�e�e�x� y�� e�z� x��� e�y� z��
�EC
�� e�e�x� e�y� z��� e�e�x� y�� z��
�EC
�� e�e�x� y�� e�y� x��
�EC
�� e�e�e�x� y�� z�� e�x� e�y� z���

�YQL� e�e�x� y�� e�e�z� y�� e�x� z���
�YQF� e�e�x� y�� e�e�x� z�� e�z� y���
�YQJ� e�e�x� y�� e�e�z� x�� e�y� z���
�UM� e�e�e�x� y�� z�� e�y� e�z� x���
�XGF� e�x� e�e�y� e�x� z��� e�z� y���
�WN� e�e�x� e�y� z��� e�z� e�x� y���
�YRM� e�e�x� y�� e�z� e�e�y� z�� x���
�YRO� e�e�x� y�� e�z� e�e�z� y�� x���
�PYO� e�e�e�x� e�y� z��� z�� e�y� x��
�PYM� e�e�e�x� e�y� z��� y�� e�z� x��
�XGK� e�x� e�e�y� e�z� x��� e�z� y���
�XHK� e�x� e�e�y� z�� e�e�x� z�� y���
�XHN� e�x� e�e�y� z�� e�e�z� x�� y���

Problems ��
�� depicted in Figure ��� are to start with each single axiom and to derive the
system that precedes it in our listing� The results are similar to the experiments obtained with
the implicational calculus� Additionally� Purr nds a refutation for problem �� where Otter
fails� Since Purr selects the rst ten substitutions as given whereas Otter always chooses only
a single clause as given at a time� Purr shows a di�erent search behavior� It considers more
clauses than only a single lightest clause for subsequent resolution steps�

(Theorem Otter PurrLiteral
� PurrLink
� PurrLink
�

�� EC
��EC
� � EC
� ���� �	�� ���� ����

�� EC
��EC
� � EC
� 	� 	� 	� 	�

�� YQL � EC
� 	� 	� 	� 	�

�� YQL � EC
� ��� ��� ��� ���

�� YQF � YQL 	� ��� 	� 	�

�� YQJ � YQF ���� ��� ��� ���

�� UM � YQJ ����� ���� ����� ����

�� XGF � UM 	� 	� 	� 	�

�� WN � XGF ���� ���� ���� ����

�� YRM � WN ����� ���� ���� ����

�� YRO � YRM ���� ���� ���� ���

�� PYO � YRO ����� ���� ���� ����

�� PYM � PYO ���� ���� ���� ����

�� XGK � PYM fail ���� ����� ����
�� XHK � XGK fail fail fail fail

�� XHN � XHK ����� ����� ���� �	��

Figure ���� Experiments with the Equivalential Calculus

R Calculus� Each of the following formulas is a single axiom for the R calculus�

��� Indexing ��

�QYF� e�e�e�x� y�� e�x� z��� e�z� y��
�YQM� e�e�x� y�� e�e�z� y�� e�z� x���
�WO� e�e�x� e�y� z��� e�z� e�y� x���
�XGJ� e�x� e�e�y� e�z� x��� e�y� z���

Problems ��
�� depicted in Figure ��� are to show the four formulas equivalent in a circular
manner� The results also correspond to the other experiments presented before�

(Theorem Otter PurrLiteral
� PurrLink
� PurrLink
�

�� YQM � QYF 	� 	� 	� 	�

�� WO � YQM ��� ��� ��� 	�
�� XGJ � WO fail fail fail fail

�� QYF � XGJ ���� ��� ��� 	�

Figure ���� Experiments with the R Calculus

Two�Valued Sentential Calculi� The CN calculus is a version of the two
valued sentential
calculus� We present three challenging examples� The operators i and n are intended to mean
implication and negation� Each of the following formulas holds in CN�

�CN
�� i�i�x� y�� i�i�y� z�� i�x� z���
�CN
�� i�i�n�x�� x�� x�
�CN
�� i�x� i�n�x�� y��
�CN
��� i�i�n�x�� z�� i�i�y� z�� i�i�x� y�� z���
�CN
��� i�i�x� i�n�y�� z��� i�x� i�i�u� z�� i�i�y� u�� z����
�CN
CAM� i�i�i�i�i�x� y�� i�n�z�� n�u���� z�� v�� i�i�v� x�� i�u� x���

Lukasiewicz axiomatized CN with fCN
��CN
��CN
�g� The three problems �� �� in Table ���
are to derive CN
��� CN
��� and CN
CAM from fCN
��CN
��CN
�g�

(Theorem Proof Time Inferred Stored Memory Rate

�� CN
��CN
��CN
� � CN
�� ���h ���mio ����� ��Mb ����
�� CN
��CN
��CN
� � CN
�� ����h ���mio ���mio ���Mb ����
�� CN
��CN
��CN
� � CN
CAM fail after ���h � ���mio ���Mb �

Figure ���� Experiments with PurrLiteral
� on the Two
Valued Sentential Calculus

For the experiments in Table ��� we employed a SuperSparc �� computer with a maximum
memory of ��� megabytes RAM� The results show that Purr is able to operate at the limits
of currently available workstation hardware� The system even has a reasonable fast inference
rate when working on problem �� after lling ���Mb of memory with one substitution tree
containing about ��� million clauses� The average inference rate of about ���� inferences per
second in problem �� and still ���� inferences per second in problem �� also reveal the advantages
of the employed indexing techniques�

�� Chapter �� Experiments

The di�culties with the problems �� �� arise due to relatively long denied theorems� Most
of the proof time the system works with short clauses� since Purr prefers to infer with the
shortest clauses� Thus the di�culties increase with the length of the theorem� However� some
of the short clauses are involved in the proof and therefore have to be taken into account� Purr
nds a refutation for the problems �� and �� if we limit the number of symbols per unit clause
to the number of symbols of the denied theorem�

	�� Parallelism

The exploitation of parallelism in automated theorem proving is truely a challenging task� Many
experimental runs of Purr were needed to create a prover which performs well even on large
clause sets� Note that our condensed detachment examples were relatively easy to master� since
their parallelization potential is small� The condensed detachment examples with PurrLink
�
represent only a rst steps towards massive parallelism�

In this section we present the results of three problems with larger clause sets� The compu

tation were executed on a multiprocessor machine containing four SuperSparc processors�

Sam�s Lemma� We used an axiomatization of the well
known Sam�s Lemma �MOW��b� con

tained in the TPTP library� It consists of �� clauses with �� clauses being unit clauses� All
clauses contain only constants and variables� Function symbols do not occur� Purr creates
�� slave processes in the PurrLiteral
� conguration� Each non
unit clause is represented by a
resolution process� Additionally� a single unit terminator process is required to detect termina

tion�

The �� slave processes consumed �� cpu
seconds to nd a proof with length ��� The elapsed
real time was � seconds with four processors yielding a speedup of about three� This result
converges the theoretical speedup of four on the employed machine�

Schubert�s Steam�Roller� The axiomatization of Schubert�s Steam
Roller �Pel��� contained
in the TPTP library consists of �� clauses� Six clauses are unit clauses� Purr creates �� slave
processes in the PurrLiteral
� conguration� The non
unit clauses are represented by a single
resolution process� Additionally� two non
unit clauses are processed by two and three resolution
processes since the clauses have outgoing links at more than one literal� A single unit terminator
process is required to detect termination�

The �� slave processes consumed about ��� cpu
seconds to nd a proof with �� steps� The
elapsed real time also was ��� seconds with four processors yielding no speedup� This result is
due to the overhead for the creation of the slave processes�

Group Theory� The clause set depicted in Figure ��� belongs to the domain of group theory�
We proof that if the square of every element is the identity� the system is commutative� The
exact axiomatization of this problem also has been taken from the TPTP library� The equality
relation is dened by the re�exivity� symmetry� and transitivity axioms�

Purr demands six processes� Five resolution processes work on the symmetry� transitivity�
and the three substitution axioms� One unit terminator process is used for the equality symbol�

��� Parallelism ��

Axioms Units�

Re�exivity fequal�x� x�g
Left Identity fequal�multiply�identity� x�� x�g
Right Identity fequal�multiply�x� identity�� x�g
Left Inverse fequal�multiply�inverse�x�� x�� identity�g
Right Inverse fequal�multiply�x� inverse�x��� identity�g
Associativity fequal�multiply�multiply�x� y�� z��multiply�x�multiply�y� z���g

Axioms Non�Units�

Symmetry f�equal�x� y�� equal�y� x�g
Transitivity f�equal�x� y���equal�y� z�� equal�x� z�g
Inverse Substitution f�equal�x� y�� equal�inverse�x�� inverse�y��g
Multiply Substitution f�equal�x� y�� equal�multiply�x� z�� multiply�y� z��g
Multiply Substitution f�equal�x� y�� equal�multiply�z� x�� multiply�z� y��g

Hypotheses

Squareness fequal�multiply�x� x�� identity�g
a times b is c fequal�multiply�a� b�� c�g

Theorem

Prove� b times a is c f�equal�multiply�b� a�� c�g

Figure ���� Clause Set in Group Theory

Altogether� the six processes consumed �� cpu
seconds� The elapsed real time was �� seconds
with PurrLiteral
� yielding a speedup of about one and a half�

The somewhat disappointing speedup is due to the di�erent shape of the involved clauses�
Obviously� the resolution process for the transitivity axiom has to perform the most complex
merge operation since this axiom is the only one with three literals� The remaining resolution
processes actually do not perform any merge� Consequently� the transitivity process consumes
most of the cpu
time while other processes remain more or less idle waiting for new information�
This e�ect directly corresponds to the data dependence inherently to the problem� Therefore�
in our approach improved speedup for this problem is di�cult to achieve�

Since Purr is an asynchronous parallel system� the maintenance of unprocessed messages
may become a problem� Consider the transitivity axiom� The negative literals of this axiom
are connected to all positive literals in the clause set� Thus the transitivity process receives
new inferences from all resolution processes including the messages created by itself� However�
this process cannot receive and process all created information� Most of the data is collected in
growing message queues� This e�ect becomes a serious problem when running Purr on more
di�cult problems with large clause sets�

�� Chapter �� Experiments

�
Conclusion

We have presented the theoretical background and implementational details of the distributed
theorem prover Purr� The prover has been developed in order to investigate indexing techniques
and to exploit parallelism in automated reasoning� Both indexing and distributed processing
have been proved to be powerful means for accelerating theorem proving systems�

We have extended the unit resulting resolution rule to work on sets of substitutions� To
this end� we introduced a clause graph� The nodes of the clause graph correspond to literals
in the clause set that represent the problem to be solved� Two literals are connected by a link
if the literals are complementary and uniable� In other words� connected literals are possible
ur
resolution partners� The clause graph does not change during the reasoning phase�

New ur
resolvents are represented by substitutions which are collected in sets of substitutions�
These substitution sets are attached to nodes and links in the clause graph� We have shown
that substitution sets can be represented by indexes in a natural and elegant manner� In
Purr indexes become the fundamental data structure instead of the usual clauses and literals�
New ur
resolvents are exchanged among substitution sets in the form of indexes� Reasoning

based operations like subsumption and the computation of simultaneous uniers are extended
to set operations based on indexing techniques� Moreover� the unit resulting resolution rule is
concurrently applied to di�erent nuclei�

High Inference Rate� In all experiments in Chapter � Purr showed very competitive behav

ior compared to Otter even on single processor machines� First� the n�m indexing techniques
in Purr improve the performance compared to the standard n�� indexing techniques� The n�m
indexing techniques also have been tested in isolation on large sets of substitutions by Graf and
Meyer �GM���� Second� Purr has a slightly di�erent search behavior due to the selection of
whole sets of given clauses� Accordingly� Purr performs a limited breadth
rst search which
sometimes results in extremely short proof times�

The impact of parallelism on the inference rate has not yet been examined as much as the
experiments on single processor systems� Our tests merely suggest a reasonable behavior of

�� Chapter 	� Conclusion

Purr on two and four processor machines� Experiments on massively parallel hardware are
future work�

Large Sets of Inferences� In Chapter � we also presented experiments in which Purr had
to maintain extremely large inference sets containing millions of substitutions� However� the
system showed a reasonable fast inference rate� Typically� the substitution trees containing the
ur
resolvents of a resolution process become very large� Thus the n�� subsumption and insertion
operations integrated into the multi
merge operation are a�ected as well as the selection of
given substitutions� Therefore� we conclude that these operations also perform well on huge
substitution trees�

Indexing Supports Distributed Automated Reasoning� In Chapter � we presented a
transformation of substitution trees into process
independent form� The process
independent
representation of a substitution tree corresponds to a string of integer values which can directly
be transmitted between parallel processes� This representation usually saves one third of the
memory allocated for the substitution tree with conventional term representation�

Decentralized Distributed Processing� The parallel concept of Purr is based on a de

centralized structure of processes� There is no central process for subsumption or any other
time
consuming operation� Every process performs subsumption by itself� High locality of the
individual process reduces the probability of bottlenecks� However� the tradeo� between re

ceiving and processing information is still a problem for processes with complex operations and
many input channels� Nevertheless� avoiding central subsumption seems to improve the possible
speedup signicantly�

Balance of Parallelism and Communication is Di�cult� An optimal balance of paral

lelism and communication will achieve the best possible speedup� The right balance depends
on the problem and on the hardware employed� This work only addresses the problem
related
balancing� To this end� we developed two variants of Purr� One variant employs resolution
processes for each link in the clause graph whereas the other variant uses resolution processes for
each literal with outgoing links� The former variant achieves ner granularity than the latter�
Ideally� the granularity is not xed but can arbitrarily be selected� In this work �exible gran

ularity turned out to be a very important feature in order to study parallelism in automated
reasoning� Another open problem is to decide in advance which granularity achieves better
speedup than others� Currently� Purr cannot associate processes with di�erent granularity to
the clause graph�

Bibliography

�AO��� Grigorios Antoniou and Hans J�urgen Ohlbach� Terminator� In Alan Bundy� editor�
Proc� of �th International Joint Conference on Arti�cial Intelligence	 IJCAI�
�	
Karlsruhe� pages ��� ���� �����

�A�m��� U� A�mann� Parallele Modelle f�ur Deduktionssysteme� PhD thesis� Inx� K�oln�
�����

�BB��� K�H� Bl�asius and H�J� B�urckert� Deduktionssysteme� Oldenbourg� �����

�BE��� Ralph M� Butler and L� Lusk Ewing� Monitors� messages� and clusters� the p� par

allel programming system� Technical report� University of North Florida� Argonne
National Laboratory� http�""www�mcs�anl�gov� �����

�BLL��� Ralph M� Butler� Alan L� Leveton� and Ewing L� Lusk� p�
linda� A portable imple

mentation of linda� Technical Report MCS
P���
����� University of North Florida�
Argonne National Laboratory� �����

�CG��� Nicholas Carriero and David Gelernter� How to write parallel programs � a �rst
course� MIT Press� Cambridge� MA� �����

�CS��� C�L� Chang and J�R� Slagle� Using rewriting rules for connection graphs to prove
theorems� Arti�cial Intelligence� ������ ���� �����

�DGMJ��� Jack J� Dongarra� Al Geist� Robert Manchek� and Weicheng Jiang� Using PVM ���
to run grand challenge applications on a heterogeneous network of parallel comput

ers� In Richard F� Sincovec� David E� Keyes� Michael R� Leuze� Linda R� Petzold�
and Daniel A� Reed� editors� Proceedings of the th SIAM Conference on Parallel
Processing for Scienti�c Computing� pages ��� ���� Norfolk� VI� March ����� SIAM
Press�

�Eis��� Norbert Eisinger� Completeness	 Con�uence	 and Related Properties of Clause
Graph Resolution� Research Notes in Articial Intelligence� Pitman Ltd�� London�
�����

�For��� The MPI Forum� MPI� A message passing interface� In Bob Borchers� editor�
Proceedings of the Supercomputing ��� Conference� pages ��� ���� Portland� OR�
November ����� IEEE Computer Society Press�

�GBD	��� Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert Manchek� and
Vaidy Sunderam� PVM � parallel virtual machine� a user�s guide and tutorial for

�� BIBLIOGRAPHY

network parallel computing� Scientic and engineering computation series� MIT
Press� Cambridge� MA� �����

�Gel��� David Gelernter� Generative communication in Linda� acm Transactions on Pro�
gramming Languages and Systems �TOPLAS�� ������� ���� January �����

�GLS��� William Gropp� Ewing Lusk� and Anthony Skjellum� Using MPI � portable par�
allel programming with the message�passing interface� Scientic and engineering
computing series� MIT Press� Cambridge� MA� �����

�GM��� P� Graf and C� Meyer� Extended path
indexing� Technical Report MPI
I
��
����
Max
Planck
Institut f�ur Informatik� Saarbr�ucken� Germany� December ����� Full
version of �Gra��a��

�GM��� P� Graf and C� Meyer� Advanced indexing operations on substitution trees� �����
Submitted to CADE
���

�Gra��a� P� Graf� Extended path
indexing� In ��th Conference on Automated Deduction�
pages ��� ���� Springer LNAI ���� �����

�Gra��b� P� Graf� Substitution tree indexing� Technical Report MPI
I
��
���� Max
Planck

Institut f�ur Informatik� Saarbr�ucken� Germany� ����� Full version of �Gra����

�Gra��� P� Graf� Substitution tree indexing� In th International Conference on Rewriting
Techniques and Applications RTA���� pages ��� ���� Springer LNCS ���� �����

�Gra��� P� Graf� Term Indexing� Springer LNAI series� ����� To appear�

�Har��� R� J� Harrison� Portable tools and applications for parallel computers� International
Journal of Quantum Chemistry� ������ ���� �����

�Hwa��� Kai Hwang� Advanced computer architecture� parallelism	 scalability	 programmabil�
ity� McGraw
Hill� New York� �����

�IPC� Current world wide web home page for the internet parallel computing archive�
http���www�hensa�ac�uk�parallel��

�Kow��� Robert Kowalski� A proof procedure using connection graphs� Journal of the ACM�
��������� ���� October �����

�Kur��� Franz Kurfe�� Parallelism in logic � its potential for performance and program
development� Articial intelligence� Vieweg� Wiesbaden� �����

�LMM	��� E�J� Lemmon� C�A� Meredith� D� Meredith� A�N� Prior� and I� Thomas� Cal

culi of pure strict implication� Technical report� Canterbury University College�
Christchurch� ����� Reprinted in Philosophical Logic� Reidel� �����

�*Luk��� J� *Lukasiewicz� Selected Works� North Holland� ����� Edited by L� Borkowski�

�Mat��� T� G� Mattson� Programming environments for parallel computing� A comparison
of cps� linda� p�� pvm� posybl� and tcgmsg� In Hesham El
Rewini and Bruce D�
Shriver� editors� Proceedings of the ��th Annual Hawaii International Conference

BIBLIOGRAPHY ��

on System Sciences� Volume � � Software Technology� pages ��� ���� Los Alamitos�
CA� ����� IEEE Computer Society Press�

�McC��� W� McCune� Otter ��� reference manual and guide� Report ANL
�� �� Argonne
National Laboratory� January �����

�MOW��a� J�D� McCharen� R� Overbeek� and L� Wos� Complexity and related enhancements
for automated theorem
proving programs� Computers and Mathematics with Appli�
cations� ��� ��� �����

�MOW��b� J�D� McCharen� R� Overbeek� and L� Wos� Problems and experiments for and with
automated theorem proving programs� IEEE Transactions on Computers C����
��
pages ��� ���� �����

�MP��� Joseph W� Manke and James C� Patterson� Message passing performance of intel
paragon� ibm sp� and cray t�d using pvm� In David H� Bailey� Petter E� Bj+rstad�
John E� Gilbert� Michael V� Mascagni� Robert S� Schreiber� Horst D� Simon� Vir

ginia J� Torczon� and Layne T� Watson� editors� Proceedings of the ��th Conference
on Parallel Processing for Scienti�c Computing� pages ��� ���� Philadelphia� �����
SIAM Press�

�MPI� Current world wide web home page for the message passing interface standard�
http���www�mcs�anl�gov�mpi��

�MW��� W� McCune and L� Wos� Experiments in automated deduction with condensed
detachment� In ��th International Conference on Automated Deduction� pages ���
���� Springer� LNAI ���� �����

�Ohl��� H�J� Ohlbach� Abstraction tree indexing for terms� In Proceedings of the �th Euro�
pean Conference on Arti�cial Intelligence� pages ��� ���� Pitman Publishing� Lon

don� August �����

�Pel��� Francis Je�ry Pelletier� Seventy
ve problems for testing automatic theorem provers�
Journal of Automated Reasoning� �������� ���� ����� Errata� Journal of Automated
Reasoning� �������� ���������

�Rob��� J�A� Robinson� Automated deduction with hyper
resolution� International Journal
of Comp� Mathematics� ����� ���� �����

�Sch��� G� Schoinas� Issues on the implementation of programming system for distributed
applications� Technical report� University of Crete� �����

�SSY��� Geo� Sutcli�e� Christian Suttner� and Theodor Yemenis� The TPTP problem li

brary� In Alan Bundy� editor� Proceedings of the ��th International Conference on
Automated Deduction� volume ��� of LNAI� pages ��� ���� Berlin� ����� Springer�

�Tur��� Louis H� Turcotte� A survey of software environments for exploiting networked com

puting resources� Technical report� Engineering Research Center for Computational
Field Simulation� P�O� Box ����� Mississippi State� MS ������ �����

��� BIBLIOGRAPHY

Index

Symbols
MRG � � � � � �set of merged substitution sets � � � � � ���
REC � � � � � �set of received substitution sets � � � � � ���
RES � � � � � � set of resolved substitution sets � � � � � ���
SNT � � � � � � � set of sent substitution sets � � � � � � � ��
� � � � � � � � � � � � � join of substitutions � � � � � � � � � � � � �
s � � � � � � � � � � � � � � � � state �ag � � � � � � � � � � � � � � � � ��
j � � � � � � � � � � � sequence concatenation � � � � � � � � � � � �
�jU � � � � � � � � � � restricted substitution � � � � � � � � � � �
� � � � � � � � � � � � � � send substitution � � � � � � � � � � � � ���
� � � � � � � � � � merge of substitution sets � � � � � � � � � ��
� � � � � � � � � � � �merge of substitutions � � � � � � � � � � ���
� � � � � � � � � � � � � � test substitution � � � � � � � � � � � � � ��
w� � � � � � � � � � � � � � � � �weight � � � � � � � � � � � � � � � � ���
arity�t� � � � � � � � � � � � �arity of a term � � � � � � � � � � � ��
COD��� � � � � � � codomain of a substitution � � � � � � �
depth�t� � � � � � � � � � � �depth of a term � � � � � � � � � � ��
DOM��� � � � � � � � domain of a substitution � � � � � � � �

 � � � � � � � � � � � � � � � empty tree � � � � � � � � � � � � � � � ��
F � � � � � � � � � � � � � function symbols � � � � � � � � � � � � � �
IM��� � � � � � � � � � image of a substitution � � � � � � � � � �
nodes�T � � � � � � � � � � � nodes of a tree � � � � � � � � � � ��
O�t� � � � � � � � � � � � positions of a term � � � � � � � � � � � �
P � � � � � � � � � � � � � predicate symbols � � � � � � � � � � � � � �
sons�T � � � � � � � � � � � � sons of a tree � � � � � � � � � � � ��
top�t� � � � � � � � � � �top symbol of a term � � � � � � � � � ��
T � � � � � � � � � � � � � � � set of terms � � � � � � � � � � � � � � � �
V � � � � � � � � � � � � � variable symbols � � � � � � � � � � � � � �
VAR�t� � � � � � � � � � � variables in term t � � � � � � � � � � �
V� � � � � � � � � � indicator variable symbols � � � � � � � � � �
G � � � � � � � � test function generalizations � � � � � � � � ��
I � � � � � � � � � � � test function instances � � � � � � � � � � � ��
U � � � � � � � � test function uni�able terms � � � � � � � � ��
V � � � � � � � � � � � test function variants � � � � � � � � � � � ��

A
alogrithms

notation of ���

and
parallelism ��
atom ��

B
blocking receive ��
broadcast communication pattern � � � � � � � ��

C
clash ���

direct ���

indirect ���
clause ��

query ���

unit �
clause graph ���� ��� ��

creation of ��

directed ��
initial state ��

labeled directed � � � � � � � � � � � � � � � � ���� ��
optimization of ��
undirected ��

codomain �
common variable ���
communication ���� ��

indexing and ���
interprocess ���

pattern ��
broadcast ���
conference ��

multicast ��
unicast ��

complementary ��

condensed detachment � � � � � � � � � � � � � � ��� 	�
conference communication pattern � � � � � � ���

constant �
context ��

��� INDEX

D
deadlock ��

detection ��
dependence ��

data ��
domain �

F
father ���
function symbol �

G
generalization ���
given substitution ���
grain size ��
granularity ���

coarse ��
ne ��
medium ��

graph ���
acyclic ���
clause � � � � � � � � � � � � � � � � �see clause graph
directed ��
directed acyclic � � � � � � � � � � � � � � � � see tree
labeled ��
labeled directed � � � � � � � see clause graph
path in ��
undirected ��

group theory ���

H
hyperresolution ��

I
image �
indexing ��

classication of ��
maintenance of type n�� and n�m � � � ��
retrieval of type ���� n��� and n�m� � � ��
substitution tree ��

indicator variable ��
input subsumption ��
instance ��
internal link ��

interprocess communication � � � � � � � � � � � � � ��
IPC � � � � � � � �see interprocess communication

L
labeled link ��
latency ��
Ldcg � � � � see clause graph� labeled directed
lightest substitution ���
lightest subtree ��

weight of ��
linear term ��
link

internal ���
labeled ��

literal ��
receiver ���
sender ��

load balancing ��
Lst � � � � � � � � � � � � see substitution tree� linear

M
master process ��
master"slave paradigm � � � � � � � � � � � � � � � � � � ��
matcher ��
merged substitution ���
message passing interface � � � � � � � � � � � � � � � ��
message queue ��
message
passing model � � � � � � � � � � � � � � � � � � ��

asynchronous ��
synchronous ��

mgu � � � � � � � � � � � � � � � see most general unier
most general unier ��

splitted ��� ��
MPI � � � � � � � � � �see message passing interface
multi
merge ���� ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��

multicast communication pattern � � � � � � � ���

N
nonblocking receive ��
normalization ��

of substitutions ��
of terms ��

INDEX ���

O
occur
check ��
options ��
or
parallelism ��
origin list ��
Otter ���� ��
output subsumption ���

P
parallel programming model � � � � � � � � � � � � ���

message
passing ���
shared
memory ��
shared
variable ��

parallel programming system � � � � � � � � � � � � ��
C
Linda ��
p� ��
p�
Linda ���
POSYBL ��
PVM ��� ��
TCGMSG ��

parallelism
and
 ��
in logic ��
in practice ��
or
 ���

position ��
postprocessing ��
predicate symbol �
preprocessing ��
private variable ��
process ��

communication and indexing � � � � � � � � ��
independent representation � � � � � � � � � ���
master ���
resolution ���
slave ���
terminator ���
unit terminator ��

program ��
Prolog ��
proof generation ��
Purr �
PVM ��

Q
query clause ��

R
reasoning phase ��
received substitution ��
receiver literal ��
renaming ��
resolution

unit resulting ��
resolution process ��

on a single link ��
on some links ��

resolved substitution ��
restriction ��

S
sam�s lemma ����
�
selection ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��

send instantiation � � � � � � � � � � � � � � � ��� ��� ��
send substitution ���� ��
sender literal ���
sent substitution ��
Sest � � � � � � � � see substitution tree� selective
set of support ���
shared
memory model � � � � � � � � � � � � � � � � � � ���

Linda ���
shared
variable model ��
signal ���
signal handler ���
slave process ��
son ��
SOS � see set of support
speedup ���� ��
state �ag ��
state of selection ��
static scheduling ��
steam
roller ����
�
strategy ��
substitution ��

compatible ���� ��
composition of �
given ��
idempotent �
join of �
lightest ��
merge of ��

��� INDEX

merged ��
process
independent � � � � � � � � � � � � � � � � ��
received ��
resolved ��
sent ��

substitution sets
merge of ��

substitution tree ��
in Purr ��
linear ��
process
independent � � � � � � � � � � � � � � � � ��
selective ��� ��
weighted ���

substitution tree indexing � � � � � � � � � � � � � � � ��
subsumption ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��
input ��
output ���
transition system ��

symbol
process
independent � � � � � � � � � � � � � � � � ��

synchronization latency � � � � � � � � � � � � � � � � � ��

T
term �

arity �
at position �
depth �
ground ��
linear �
position in �
process
independent � � � � � � � � � � � � � � � � ��

terminator process ��
on a clause ��
on unit resolvents ��

test substitution ��� ��
test unication � � � � � � � � � � � � � � � � � � ��� ��� ��
top symbol ��
TPTP problem library � � � � � � � � � � � � � � � � � � ��
transition system

PURR with subsumption � � � � � � � � � � � � � ��
PURR without subsumption � � � � � � � � � � ��
SUBSUMPTION ��

tree ���
ordered ��

U
unicast communication pattern � � � � � � � � � ���
uniable ��
unier ��
union ��

n�m algorithm ��
n�m indexing task � � � � � � � � � � � � � � � � � � ��

unit ��
unit resulting resolution � � � � � � � � � � � � � � � � ���

on substitution sets � � � � � � � � � � � � � � � � � ��
unit terminator process � � � � � � � � � � � � � � � � � ��

V
variable �

common ��
indicator ���
private ��

vertex ��

W
weight ��
Wst � � � � � � � � see substitution tree� weighted

