
A Programmable Microkernel for Real-Time Systems

Christoph M. Kirsch Thomas A. Henzinger Marco A.A. Sanvido

Report No. UCB/CSD-3-1250

June 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

A Programmable Microkernel for Real-Time Systems ∗

Christoph M. Kirsch

cm@eecs.berkeley.edu

Thomas A. Henzinger

tah@eecs.berkeley.edu

Marco A.A. Sanvido

msanvido@eecs.berkeley.edu

ABSTRACT
We present a new software system architecture for the im-
plementation of hard real-time applications. The core of
the system is a microkernel whose reactivity (interrupt han-
dling) and proactivity (task scheduling) are fully program-
mable. The microkernel, which we implemented on a Strong-
ARM processor, consists of two interacting virtual machines,
a reactive E (Embedded) machine and a proactive S (Schedul-
ing) machine. The system code that runs on the microkernel
is partitioned into E and S code. E code manages the in-
teraction of the system with the physical environment: the
execution of E code is triggered by environment interrupts,
which signal external events such as the arrival of a mes-
sage or sensor value, and it releases application tasks to the
S machine. S code manages the interaction of the system
with the processor: the execution of S code is triggered by
hardware interrupts, which signal internal events such as the
completion of a task or time slice, and it dispatches applica-
tion tasks to the CPU, possibly preempting a running task.
This partition of the system orthogonalizes the two main
concerns of real-time implementations: E code refers to en-
vironment time and thus defines the reactivity of the system
in a hardware- and scheduler-independent fashion; S code
refers to CPU time and defines a system scheduler. If both
time lines can be reconciled, then the code is called time safe;
violations of time safety are handled again in a programma-
ble way, by run-time exceptions. The separation of E from
S code permits the independent programming, verification,
optimization, composition, dynamic adaptation, and reuse
of both reaction and scheduling mechanisms. Our measure-
ments show that the system overhead is very acceptable,
generally in the 0.2–0.3% range.

1. INTRODUCTION
In [9], we advocated the E (Embedded) machine as a

portable target for compiling hard real-time code. In this
paper, we show that the E machine together with a pro-
grammable scheduler, which is called S (Scheduling) ma-
chine, form a programmable, low-overhead microkernel for
real-time systems. We implemented the microkernel on a
StrongARM SA-1110 processor and measured the system
overhead to lie in the 0.2–0.3% range. The implementation
has a very small footprint, namely, 8kB.

The E machine is woken up by external interrupts caused
by environment events, such as the arrival of a message on
a channel, or the arrival of a new value at a sensor. Once
awake, the E machine follows E code instructions to do three
things: first, it may run some drivers for managing sensors,
actuators, networking, and other devices; second, it may

∗This research was supported in part by the DARPA SEC
grant F33615-C-98-3614, the MARCO GSRC grant 98-DT-
660, the AFOSR MURI grant F49620-00-1-0327, the Califor-
nia MICRO grant grant 01-037, and the NSF grants CCR-
0208875, CCR-0085949, and CCR-0225610.

release some application software tasks for execution; third,
it may update the trigger queue, which contains pairs of the
form (e, a) indicating that the future environment event e

will cause an interrupt that wakes up the E machine with
its program counter set to the E code address a. Then, the
E machine goes back to sleep and relinquishes control of the
CPU to the S machine.

The S machine is woken up by the E machine, or by in-
ternal interrupts caused by processor events, such as the
completion of an application task, or the expiration of a
time slice. Once awake, the S machine follows S code in-
structions to do three things: first, it takes care of processor
and memory management, such as context switching; sec-
ond, it dispatches a single task to the CPU, which may be
either an application software task or a special idle task;
third, it specifies pairs of the form (i, a) indicating that the
future processor event i will cause an interrupt that wakes
up the S machine with its program counter set to the S code
address a.

The E and S architecture partitions system code into two
categories: E code supervises the “logical” execution of ap-
plication tasks relative to environment events; S code super-
vises the “physical” execution of application tasks on the
given resources. At any time, E code may release several
tasks, but if there is only a single CPU, then S code can dis-
patch at most one released task at a time. In other words,
E code specifies the reactivity of an embedded system inde-
pendent of the hardware resources and the task scheduler,
and S code implements a particular scheduler. The sched-
uler implemented in S code is fully programmable; it may be
static or dynamic, preemptive or nonpreemptive. Together,
the E and S machines form a programmable microkernel for
the execution of hard real-time tasks.

There are several benefits this architecture offers over tra-
ditional real-time operating systems.

Real-time predictability of the application behavior. Since
E code specifies the reactivity and timing of the system in-
dependent of the hardware and scheduler, a change in hard-
ware or scheduler does not affect the real-time behavior of
the application. This is especially important in control ap-
plications, where both slow-downs and speed-ups may lead
to instabilities. By contrast, in a traditional RTOS, the real-
time behavior of an application depends on the scheduling
scheme, the processor performance, and the system load,
which makes both code validation and reuse very difficult.
In our setting, timing predictability depends, of course, on
the fact that the S code meets the timing requirements spec-
ified by the E code. Given worst-case execution times of
the application code, this can be checked either statically,
by scheduling analysis [10], or at run-time. In the latter
case, E code run-time exceptions may be used to handle so-
called “time-safety” violations (i.e., missed deadlines) in an
explicit, programmable way [9].

Composability of real-time applications. Suppose we want
to put two software components, each consisting of E, S,

Processes Machine
Embedded Tasks Task

Scheduler

Ports
Environment

Ports
Task

Ports
Driver Driver

Ports

Release
Ports

Environment

Figure 1: The Interfaces of the Embedded Machine

and application code, on the same hardware. In a traditional
RTOS, the combined real-time behavior of both components
may differ significantly from their individual behaviors if
run in isolation. Not so in our setting, where the E code of
both components is always composable, because its execu-
tion is synchronous [6], that is, E instructions are executed
in “logical zero time” with interrupts turned off. However,
the S code of both components constitutes two threads that
may or may not be composable: if there is a single CPU,
then both S threads are composable provided whenever one
thread dispatches an application task, the other thread dis-
patches the idle task. Composability can, again, be checked
either statically or at run-time. In the latter case, a so-
called “time-share” violation occurs whenever two S threads
attempt to simultaneously control the CPU. Now, S code
(rather than E code) run-time exceptions may be used to
handle these situations in an explicit, programmable way.
This concept can be generalized to multiprocessor hardware,
which executes several threads of S code in parallel.

Dynamic adaptation of real-time code. As both E and
S code are interpreted, we can dynamically optimize, patch,
and upgrade them. A dynamic change in E code modifies
the reactivity of a system and can be used, for example, to
switch between different modes or contingencies of an em-
bedded controller [9]. Similarly, a dynamic change in S code
can be used to optimize or adapt the scheduling scheme
without bringing down the system. This permits, in partic-
ular, adjustments in the event of hardware failures and thus
provides a basis for achieving fault-tolerance without com-
promising the platform-independent reactivity specification
—the E code— of a real-time application.

The real-time microkernel architecture we introduce here
provides programmable timing and scheduling services. In
this sense, our work relates to other work on microkernels,
which typically provide basic thread and interprocess com-
munication services [16, 1, 18, 2]. System services imple-
mented on top of a microkernel have already been shown to
perform well, e.g., in [7]. We demonstrate here that high
performance is also possible using an even more flexible,
programmable microkernel.

The paper is organized as follows. In Section 2, we briefly
review the E machine. In Section 3, we introduce the com-
plementary S machine, and in Section 4, we define the com-
bined E and S machines. Section 5 describes our imple-
mentation of the programmable microkernel on the Strong-
ARM, and Section 6 tabulates our overhead measurements
for many different scenarios. Some of the benefits of this
way of architecting a real-time kernel are discussed in the
final Section 7.

2. THE EMBEDDED MACHINE
This section is a summary of the E Machine presented

in [9]. The E machine is a mediator between physical pro-
cesses and application software processes: it executes E code,
which is system-level machine code that supervises the exe-
cution of software processes in relation to physical events.

Interface. The E machine has two input and two output
interfaces as shown in Figure 1.

Environment inputs. The physical processes communicate
information to the E machine through environment ports,
such as clocks and sensors.

Software inputs. The application software processes, called
tasks, communicate information through task ports to the
E machine.

Driver outputs. The E machine communicates informa-
tion to the physical processes and to the tasks by calling
system processes, called drivers, which write to driver ports.

Release outputs. The E machine releases tasks to an exter-
nal task scheduler for execution by writing to release ports.

Logically, the E machine does not need to distinguish
between environment and task ports; they are both input
ports, while driver and release ports are output ports.

Input Events. A change of value at an input port, say, a
sensor port ps, is called an input event. Every input event
causes an interrupt that is observed by the E machine and
may initiate the execution of E code. Such an event inter-
rupt can be characterized by a predicate called a trigger.
For example, p′

s 6= ps is a trigger on ps, where p′

s refers to
the current sensor reading, and ps refers to the most recent
previous sensor reading. A time trigger on an environment
(clock) port pc is modeled using a predicate p′

c = pc + δ

where δ is the number of ticks to wait before the trigger
goes off.

Functional Code. Tasks, drivers, and triggers are func-
tional code that is external to the E machine and must be
implemented in some programming language like C. To pro-
tect IP, tasks, drivers, and triggers may be given as binary
executables to which E code refers through symbolic refer-
ences. The execution of drivers and tasks is supervised by
E code, which monitors input events through triggers.

A task is a piece of preemptive, user-level code, which
typically implements a computation activity. A task has no
internal synchronization points. A task reads from driver
ports and computes on task ports. In favor of a simpler
presentation, we assume that the set of ports on which a
task operates is fixed. Logically, a task computes a function
from its driver and task ports to its task ports provided its
ports are not modified when the task is preempted. Each
task has a special task port, called completion port, which
indicates that the task completed execution.

A driver is a piece of system-level code, which typically
facilitates a communication activity. A driver may provide
sensor readings as arguments to a task, or may load task
results into actuators, or may provide task results as argu-
ments to other tasks. A driver may read from any kind of
port and write to driver ports. Similarly to tasks, a driver
has a fixed set of ports on which it operates. A driver ex-
ecutes in logical zero time, i.e., before the next input event
can be observed. In other words, interrupts that implement
input events are disabled during the execution of a driver.

A trigger is a piece of system-level code that monitors the
occurrences of input events. A trigger may observe environ-
ment and task ports (including completion ports), which we

p1

t1

t2

da

pa

ps

ds

dipc

p2

g

Figure 2: A simplified helicopter flight controller

call its trigger ports. Once a trigger is activated it is logically
evaluated with every input event; an active trigger is enabled
if it evaluates to true. Similarly to drivers, triggers are eval-
uated in logical zero time with event interrupts disabled.

E Code. There are essentially three non-control-flow E code
instructions. In an actual implementation of the E machine,
E code also has control-flow instructions such as conditional
and absolute jumps, which we have omitted here.

A call(d) instruction initiates the execution of a driver d.
As the implementation of d is system-level code, the E ma-
chine waits until d is finished before interpreting the next
instruction of E code.

A schedule(t) instruction releases a task t to run con-
currently with other released tasks by emitting a signal to
an external task scheduler on the release port of t. Then
the E machine proceeds to the next instruction. t does not
execute before the E machine relinquishes control of the pro-
cessor to the scheduler. The schedule instruction itself does
not order the execution of tasks. If the E machine runs on
top of an operating system, the task scheduler may be im-
plemented by the scheduler of the operating system [9]. An
alternative implementation of a task scheduler is the S ma-
chine of Section 3. The task scheduler is not under control
of the E machine; like the physical environment and the un-
derlying hardware, it is external to the E machine and may
or may not be able to satisfy the real-time assumptions of
E code.

A future(g, a) instruction marks the E code at the ad-
dress a for execution at some future time instant when the
trigger g becomes enabled. In order to handle multiple ac-
tive triggers, a future instruction puts the trigger-address
pair into a trigger queue. With each input event, all triggers
in the queue are evaluated. The first pair whose trigger is
enabled determines the next actions of the E machine.

An E Code Example
We use as example a simplified version of the control pro-
gram for a model helicopter built at ETH Zürich [4]. Fig-
ure 2 shows the topology of the program: we denote ports by
bullets, tasks by rectangles, drivers by diamonds, and trig-
gers by circles. Consider the helicopter in hover mode m.
There are two tasks, both implemented in native code: the
control task t1, and the navigation task t2. The navigation
task processes GPS input every 10 ms and provides the pro-
cessed data to the control task. The control task reads ad-
ditional sensor data (not modeled here), computes a control
law, and writes the result to actuators (reduced here to a
single port). The control task is executed every 20 ms. The
release port p1 of t1 indicates whether t1 has been released
to run. Similarly, p2 is the release port of t2.

The data communication requires three drivers: a sensor
driver ds, which provides the GPS data to the navigation

a0: call(da) a1: call(ds)
call(ds) schedule(t2)
call(di) future(g, a0)
schedule(t1)
schedule(t2)
future(g, a1)

Figure 3: E code for the simplified flight controller

task; a connection driver di, which provides the result of
the navigation task to the control task; and an actuator
driver da, which loads the result of the control task into
the actuator. The drivers may process the data in simple
ways (such as type conversion), as long as their WCETs
are negligible. There are two environment ports, namely, a
clock pc and the GPS sensor ps; two task ports, one for the
result of each task; and three driver ports —the destinations
of the three drivers— including the actuator pa. Here is a
high-level Giotto [8] description of the program timing:

mode m() period 20 {
actfreq 1 do pa(da);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds); }

The “actfreq 1” statement causes the actuator to be up-
dated once every 20 ms; the “taskfreq 2” statement causes
the navigation task to be invoked twice every 20 ms; etc.
The E code generated by the Giotto compiler [10] is shown
in Figure 3.

The E code consists of two blocks. The block at address
a1 is executed at the beginning of a period, say, at 0 ms:
it calls the three drivers, which provide data for the tasks
and the actuator, then releases the two tasks to the task
scheduler, and finally activates a trigger g with address a2.
When the block finishes, the trigger queue of the E machine
contains the trigger g bound to address a2, and the release
ports of the two tasks, t1 and t2, are set to ready. Now
the E machine relinquishes control, only to wake up with
the next input event that causes the trigger g to evaluate
to true. In the meantime, the task scheduler takes over and
assigns CPU time to the released tasks according to some
scheduling scheme. The E machine may observe when a task
completes by checking the completion port of the task.

There are two kinds of input events, one for each envi-
ronment port: clock ticks, and changes in the value of the
sensor ps. The trigger g: p′

c = pc + 10 specifies that the
E code at address a2 will be executed after 10 clock ticks.
Logically, the E machine wakes up at every input event to
evaluate the trigger, finds it to be false, until at 10 ms, the
trigger is true. An efficient implementation, of course, wakes
up the E machine only when necessary, in this case at 10 ms.
The trigger g is now removed from the trigger queue, and the
associated a2 block is executed. It calls the sensor driver,
which updates a port read by task t2. There are two possi-
ble scenarios: the earlier invocation of task t2 may already
have completed with a signal on the completion port of t2.
In this case, the E code proceeds to release t2 again, and to
trigger the a1 block in another 10 ms, at 20 ms. In this way,
the entire process repeats every 20 ms. The other scenario
at 10 ms has the earlier invocation of task t2 still incom-
plete, i.e., the completion port of t2 has not yet signaled
completion. In this case, the attempt by the sensor driver
to overwrite a port read by t2 causes a run-time exception,
called time-safety violation. At 20 ms, when ports read by
both tasks t1 and t2 are updated, and ports written by both
t1 and t2 are read, a time-safety violation occurs unless both

tasks have completed. In other words, an execution of the
program is time-safe if the scheduler ensures the following:
(1) each invocation of task t1 at 20n ms, for n ≥ 0, completes
by 20n + 20 ms; (2) each invocation of task t2 at 20n ms
completes by 20n + 10 ms; and (3) each invocation of task
t2 at 20n + 10 ms completes by 20n + 20 ms. Therefore, a
necessary requirement for time safety is δ1+2δ2 < 20, where
δ1 is the WCET of task t1, and δ2 is the WCET of t2. If this
requirement is satisfied, then a scheduler that gives priority
to t2 over t1 guarantees time safety.

The E code implements the Giotto program correctly only
if it is time-safe: during a time-safe execution, the navigation
task is executed every 10 ms, the control task every 20 ms,
and the dataflow follows Figure 2. Thus the Giotto compiler
needs to ensure time safety when producing E code. In or-
der to ensure this, the compiler needs to know the WCETs
of all tasks and drivers (cf., for example, [5]), as well as the
scheduling scheme used by the task scheduler. With this in-
formation, time safety for E code produced from Giotto can
be checked. However, for arbitrary E code and platforms,
such a check is difficult [10], and the programmer may have
to rely on run-time exception handling.

Figure 4 shows an execution trace of the E code using an
earliest deadline first (EDF) scheduler, which gives priority
to tasks with earlier deadlines. The deadlines of the tasks are
given as E code annotations [9] in the schedule instructions
(not shown here).

E Code Execution
We define the E code semantics operationally using a pseudo-
code description.

Data Structures. An E program consists of ports, drivers,
tasks, and triggers, as well as E code. The ports are essen-
tially the memory on which the functional code operates.
Ports are given as addresses to memory. We use a func-
tion Instruction(a) to fetch the E code instruction at the
address a. The function Next(a) returns the address of the
next instruction; if there is no next instruction, then the
function returns ⊥. This convention is consistent with any
control-flow instructions, structured or unstructured, whose
choice is of practical importance but entirely orthogonal to
the issues discussed here. A configuration of an E program
consists of the port values (content of memory), a trigger
queue of trigger bindings, and an E code program counter.
A trigger binding (g, a, s) is created by a future(g, a) in-
struction that appends it to the trigger queue, where s is
the current state of the trigger ports of g. In the future, g

will be evaluated with respect to s and the new state of the
trigger ports.

20

0 10 20

4 14

Real
Time

Time
Soft

t1

t2

Figure 4: An execution trace of the E code of Fig-
ure 3 using an EDF scheduler

Algorithm 1 The Embedded Machine

while there is an enabled trigger in TriggerQueue do

choose the first enabled trigger binding (g, a, s)
and remove it from TriggerQueue

invoke the E code interpreter (Algorithm 2)
with ProgramCounter := a

end while

Operational Semantics. The execution of an E program
starts with a single trigger binding (true, a0, ∅) in the trigger
queue where a0 is the address of an initial E code instruc-
tion. As soon as the first event interrupt occurs, all event
interrupts are disabled and the E machine (Algorithm 1)
is invoked (thus it is still possible for low-level interrupts to
preempt the E machine, as long as they do not interfere with
the triggering mechanism of the machine). Then the E ma-
chine scans the trigger queue for enabled trigger bindings.
Each enabled trigger binding (g, a, s) is removed from the
queue and the E code at the address a is executed by invok-
ing the E code interpreter (Algorithm 2) with the program
counter set to a. Initially, the interpreter is invoked with
the program counter set to the initial address a0. The in-
terpreter fetches and executes E code instructions until the
program counter is set to ⊥. In an actual implementation,
we use a return instruction for which Next returns ⊥.

The E code interpreter implements the E code instruc-
tions as follows: a call(d) instruction executes the code of
the driver d. Here, the interpreter may check for a possible
time-safety violation by verifiying that all currently released
tasks neither read from driver ports written by d nor write to
task ports read by d. If there is a violating task t, the inter-
preter may throw a run-time exception, i.e., not execute the
call instruction but jump to some other E code that han-
dles the situation [9], e.g., terminates t and executes some
other driver. We have implemented run-time exceptions us-
ing a compiler-generated n × m matrix of bits where n is
the number of tasks and m is the number of drivers in the
E program. The (i, j)th bit in the matrix is 1 if and only if
the ith task shares ports with the jth driver. An n-vector
of bits keeps track of the released tasks. Then a fast AND
operation between the vector and a row of the matrix tells
us whether a time-safety violation.

A schedule(t) instructions releases the task t by emitting
a signal on the release port of t. Again, the interpreter may
check for a possible time-safety violation by verifiying that
all currently released tasks do not share task ports with t.
If there is a violating task, the interpreter may either throw
a run-time exception, or else release t anyway, which then
requires, however, a more sophisticated task scheduler. A
future(g, a) instruction appends a trigger binding (g, a, s)

Algorithm 2 The E Code Interpreter

while ProgramCounter 6= ⊥ do

i := Instruction(ProgramCounter)
if call(d) = i then

execute the driver d
else if schedule(t) = i then

emit signal on the release port of the task t
else if future(g, a) = i then

append the trigger binding (g, a, s) to TriggerQueue
where s is the current state of the trigger ports of g

end if

ProgramCounter := Next(ProgramCounter)
end while

Algorithm 3 A Task Scheduler

if there are released tasks then

RunningTask := Schedule(released tasks)
else

RunningTask := idle

end if

to the trigger queue where s is the current state of the ports
monitored by the trigger g. The E code at the address a

will be executed as soon as g is enabled.
When there are no more enabled trigger bindings in the

trigger queue, the E machine enables the event interrupts
and relinquishes control of the processor. At this point, a
task scheduler, e.g., Algorithm 3, may take over and sched-
ule the released tasks. The task scheduler may apply any
scheduling strategy to choose the next running task includ-
ing a special idle task. Then the task scheduler relinquishes
control of the processor to the running task until the next
event interrupt occurs at which the E machine is invoked again.

3. THE SCHEDULING MACHINE
The S machine is a virtual machine that determines the

temporal order of task execution: it interpretes S code,
which is system-level machine code that dispatches tasks or
idles. In the following, we give an overview of the S machine
concepts.

Interface. The S machine reads from three input interfaces
to determine a running task.

Release inputs. The release of tasks is communicated to
the S machine through release ports.

Software inputs. The tasks communicate information in-
cluding their completion to the S machine through task ports.

Clock input. An external clock writes to a clock port that
is read by the S machine to time-slice tasks.

Timeouts. The S machine uses timeouts to monitor input
events. A timeout is similar to a trigger: it is a predicate
over the input ports of the S machine. In particular, we are
interested in timeouts of the form p′

c ≥ pc + δ where pc is
the clock port of the S machine. For readability of the code
examples, we abbreviate timeouts to the δ value, e.g., 10ms
denotes a timeout p′

c ≥ pc + 10ms. A timeout expires if it
evaluates to true. We also consider timeouts of the form
release(t) where t is a task: release(t) expires if t is released
and has not yet completed.

S Code. There are essentially three non-control-flow S code
instructions. Again, in an actual implementation of the
S machine, S code also has control-flow instructions such
as conditional and absolute jumps, which we have omitted
here.

A dispatch(t, m, a) instruction resumes the execution of
a released task t until the timeout m expires. There are
three outcomes: (1) the S machine proceeds to the next in-
struction if t has already completed but has not yet been
released again, or else, (2) the S machine proceeds to the
next instruction when t completes provided t completes be-
fore the timeout expires, or else (3) the S machine proceeds
to the instruction at the address a when the timeout expires
before t completes.

An idle(m) instruction makes the S machine idle until
the timeout m expires even though there may be released

a0: dispatch(t2)
dispatch(t1)
idle(release(t2))
dispatch(t2)
idle(release(t1))
fork(a0)

Figure 5: Synchronous S code

tasks. The S machine proceeds to the next instruction when
the timeout expires.

A fork(a) instruction marks the S code at the address
a for execution in parallel to the S code that follows the
instruction. The S code at a is a new S thread of execution.
The running thread instances are kept in a thread set from
which instances are chosen non-deterministically to execute.
If multiple threads dispatch more than a single task at any
instant the S machine throws a run-time exception, called
time-share violation.

We use dispatch(t) to abbreviate dispatch(t, false, a) as
well as dispatch(t, m) to abbreviate dispatch(t, m, a), where
a is the address of the next instruction.

S Code Examples
We present several S code examples that schedule the tasks
t1 and t2 of Section 2 in different ways. Recall that t1 is re-
leased once every 20ms while t2 is released once every 10ms.
Figure 5 shows S code that dispatches t1 and t2 as follows:
the S machine starts executing the S code at the address
a0 after both tasks have been released for the first time.
t2 is dispatched first. When t2 completes, t1 is dispatched.
When t1 completes, the S machine idles until t2 is released
again. Then t2 is dispatched again until t2 completes at
which point the S machine idles until t1 is released again.
Then the S machine forks back to the S code at a0. Since
there is no S code following the fork(a0) instruction, the
current thread is terminated. Even in this case a fork is
different than a jump to a0 because, upon forking, the new
thread instance is assigned the current clock value as its ref-
erence time for timeouts. This will be explained in more
detail below.

Figure 6 shows an execution trace of the S code. The
S code guarantees the time-safe execution of the E code in
Figure 3 if both tasks t1 and t2 complete within 10ms, i.e., if
the tasks are never preempted by the release of a task. We
call S code synchronous if, in any execution of the S code,
all released tasks always complete before another task is
released.

In contrast, the S code in Figure 7 allows the task t1 to
be preempted by the release of t2, e.g., the E machine, and
then the execution of t2 itself. At startup, t2 executes until
completion. Then the dispatch(t1, release(t2)) instruction

t2

0 10 20

4 8 14

Real
Time

Time
Soft

t1

Figure 6: An execution trace of the S code of Fig-
ure 5

a0: dispatch(t2)
dispatch(t1, release(t2), a1)
idle(release(t2))

a1: dispatch(t2)
dispatch(t1)
idle(release(t1))
fork(a0)

Figure 7: Preemptive S code

executes t1 until either t1 completes or t2 is released again.
If t2 is released before t1 completes, t1 is preempted and the
S machine continues executing the S code at the address a1.
Here, t2 is dispatched until completion before t1 resumes
its execution. If, however, t1 would have completed before
t2 was released, the dispatch(t1) instruction following the
instruction at a1 would have no effect on t1. The execution
trace of the S code corresponds to the execution trace of the
E code using an EDF scheduler as shown in Figure 4. Thus
the S code describes an EDF schedule for the E code. We call
S code preemptive if, in any execution of the S code, tasks
may be preempted by (1) the release and (2) the execution
of other tasks.

The S code in Figure 8 again allows the task t1 to be pre-
empted by the release of t2 but then resumes the execution
of t1 instead of executing t2. If t1 does not complete before
t2 is released again, t1 is dispatched resuming its execution
before t2 is dispatched. Figure 9 shows an execution trace
of the S code. We call S code non-preemptive if, in any ex-
ecution of the S code, tasks are at most preempted by the
release but not by the execution of other tasks. Synchronous
S code is non-preemptive but not vice versa.

In Section 6, we will show experimental evidence that ex-
ecuting E and S code of different classes occurs at different
administrative overhead because of scheduling and context
switching. As shown in Figure 10, it turns out that syn-
chronous S code causes less overhead than the other classes
because there is neither dynamic scheduling nor context
switching required. However, the drawback of synchronous
S code is that (1) tasks have to compute faster than the
basic unit of time, i.e., at least as fast as the most-frequent
system activity, and (2) system utilization may be poor. At
the other end, there is E code using a task scheduler instead
of S code. Depending on the scheduler, tasks may be pre-
empted at any time and system utilization may reach 100%,
at the cost of scheduling and context switching overhead.
Preemptive S code can reduce the overhead because fewer
scheduling decisions are made at run-time. However, con-
text switching is still necessary. Non-preemptive S code can
reduce the overhead even further because context switch-
ing is only necessary between system and tasks but not
between tasks. Generating non-preemptive S code, on the
other hand, is an NP-hard problem [12, 3] and can thus only
be approximated.

The S code in Figure 11 enables a time-sliced execution
of the tasks t1 and t2. Here, a time slice is 5ms long. First,

a0: dispatch(t2) a1: dispatch(t1)
dispatch(t1, release(t2), a1) dispatch(t2)
idle(release(t2)) idle(release(t1))
dispatch(t2) fork(a0)
idle(release(t1))
fork(a0)

Figure 8: Non-preemptive S code

16

0 10 20

4

Real
Time

Time
Soft

t1

t2

20

Figure 9: An execution trace of the S code of Fig-
ure 8

t2 is dispatched for 5ms, then t1 for 5ms. After 10ms, t2
is dispatched again for 5ms, then t1 for 5ms. The S code
guarantees time safety provided t1 has a WCET of 10ms and
t2 has a WCET of 5ms. An execution trace of the S code
is shown in Figure 12. Executing the S code in Figure 13
results in the same execution trace. Here, the S code forks
two threads: the S code at the address a1 dispatches t1
whereas the S code at the address a2 dispatches t2. Both
tasks are dispatched in disjoint time slots. We say that
the S code is time-sharing. Thus a scheduler may generate
S code in a modular fashion with one thread of S code for
each task that needs to be dispatched.

The S code in Figure 14 demonstrates multi-processor
S code as it is generated by a prototypical Giotto com-
piler that targets distributed architecures. Suppose there
are two hosts h1 and h2 where each host runs an S ma-
chine. The hosts are connected by an Ethernet network.
Moreover, there is a clock synchronization service running
between both S machines. h1 executes the S code at the
address a1. h2 executes the S code at the address a2 in a
synchronized fashion with h1. Both hosts also execute dif-
ferent subsets of the E code of Figure 3. However, here it is
only important that the intertask driver di of Figure 2 will
be invoked by h1. Recall that the task t1 receives the output
of the task t2 at a rate of 20ms when di is invoked. Thus the
output of the second invocation of t2 must be sent across the
network after the invocation completed and before the 20ms
period is finished. The S code on h2 dispatches a task s21

that sends the output of t2 across the network within the
15-20ms time slot. The S code on h1 dispatches at the same
time a task r21 that receives the output. Figure 15 shows
an execution trace of the distributed system. Note that an-
other interesting target platform for this kind of S code is
the time-triggered architecture [15].

S Code Execution
We define the S code semantics operationally using a pseudo-
code description.

Data Structures. An S program consists of ports, tasks,
and timeouts, as well as S code. Similar to E code, we use a
function Instruction(a) to fetch the S code instruction at the
address a and a function Next(a) that returns the address

Less Overhead More Overhead

S Code

Synchronous

S Code

Non−Preemptive Preemptive

S Code Scheduler

EDF

Figure 10: The relative overhead for executing dif-
ferent classes of S code and an EDF scheduler

a0: dispatch(t2, 5ms)
idle(5ms)
dispatch(t1, 10ms)
idle(10ms)
fork(a0)

Figure 11: Time-sliced S code

10

0 10 20
Real
Time

Time
Soft

t1

t2

205 15

Figure 12: An execution trace of the S code of Fig-
ure 11

a0: fork(a2)
a1: idle(5ms) a2: dispatch(t2, 5ms)

dispatch(t1, 10ms) idle(10ms)
idle(10ms) fork(a2)
fork(a1)

Figure 13: Multi-threaded and time-sliced S code

of the next instruction. A configuration of an S program
consists of the port values, a set of thread instances called
the thread set, a reference time, a running task, and an
S code program counter. The reference time is the clock
value at the instant when the current thread was started.
The running task is the currently dispatched task. A thread
instance is of the form (t, b, m, a, s), which is created by the
three S code instructions. t is either a task or the special
idle task for which b is ⊥. Otherwise, b is the address from
which the S machine continues executing when t completes
before the timeout m expires. When m expires before t

completes, we say that the thread instance is enabled and
the S machine continues executing S code at the address a.
The clock value s is the reference time at which the thread
instance was started by a fork instruction.

a1: dispatch(t1, 5ms) a2: dispatch(t2, 5ms)
idle(10ms) idle(10ms)
dispatch(t1, 15ms) dispatch(t2, 15ms)
idle(15ms) idle(15ms)
dispatch(r21, 20ms) dispatch(s21, 20ms)
idle(20ms) idle(20ms)
fork(a1) fork(a2)

Figure 14: Multi-processor S code

r21

0 10 20
Real
Time

Time
Soft

t1

t2

205 1510

s21

Figure 15: An execution trace of the S code of Fig-
ure 14

Algorithm 4 The Scheduling Machine

YieldToTask := false

while ¬ YieldToTask do

if there is a completed task t in ThreadSet then

choose a thread instance (t, b, m, a, s)
and remove it from ThreadSet

invoke the S code interpreter (Algorithm 5)
with ReferenceTime := s
and ProgramCounter := b

else if there is an enabled thread in ThreadSet then

choose an enabled thread instance (t, b, m, a, s)
and remove it from ThreadSet

invoke the S code interpreter (Algorithm 5)
with ReferenceTime := s
and ProgramCounter := a

else

YieldToTask := true

end if

end while

if there is a task t 6= idle in ThreadSet then

RunningTask := t
else

RunningTask := idle

end if

Operational Semantics. The execution of an S program
starts with a single thread instance (idle,⊥, true, a0, 0) in the
thread set where a0 is the address of an initial S code instruc-
tion. As soon as the first event interrupt occurs, all event
interrupts are disabled and the S machine (Algorithm 4)
is invoked. Then the S machine scans the thread set for
completed tasks and enabled thread instances. Each thread
instance (t, b, m, a, s) containing a completed task t (or an
expired timeout m) is removed from the thread set and the
S code at the address b (a) is executed by invoking the S code
interpreter (Algorithm 5) with the program counter set to
b (a). Thus, similar to the E code interpreter, the S code
interpreter is initially invoked with the program counter set
to the initial address a0.

The S code interpreter implements the S code instructions
as follows: a dispatch(t, m, a) instruction creates a thread
instance (t, b, m, a, s) where b is the address of the next in-
struction and s is the reference time at which the current
thread was started. Here, the interpreter may check for a
possible time-share violation by verifying that all thread in-
stances in the thread set contain the special idle task. If
there is a thread instance with a task in the thread set, the

Algorithm 5 The S Code Interpreter

YieldToThreads := false

while ProgramCounter 6= ⊥ and ¬ YieldToThreads do

i := Instruction(ProgramCounter)
if dispatch(t, m, a) = i then

insert the thread instance
(t,Next(ProgramCounter), m, a,ReferenceTime)
into ThreadSet

YieldToThreads := true

else if idle(m) = i then

insert the thread instance
(idle,⊥, m,Next(ProgramCounter),ReferenceTime)
into ThreadSet

YieldToThreads := true

else if fork(a) = i then

insert the thread instance (idle,⊥, true, a, s) into
ThreadSet where s is the current clock value

end if

ProgramCounter := Next(ProgramCounter)
end while

a0: call(da) a1: call(ds)
call(ds) schedule(t2)
call(di) future(g, a0)
schedule(t1) dispatch(t2)
schedule(t2)
future(g, a1)
dispatch(t2)
dispatch(t1)

Figure 16: System code implementing the E code of
Figure 3 interacting with the S code of Figure 5

interpreter may throw a run-time exception, i.e., not execute
the violating dispatch instruction but jump to some other
S code that handles the situation. An idle(m) instruction
creates a thread instance (idle,⊥, m, a, s) where a is the ad-
dress of the next instruction and s is the reference time at
which the current thread was started. A fork(a) instruction
creates an already enabled thread instance (idle,⊥, true, a, s)
in the thread set where s is the current time. Thus the S code
at a will be executed in the current instant as soon as the in-
terpreter finishes executing the S code that follows the fork

instruction. When there are no more completed tasks or
enabled thread instances in the thread set, the S machine
chooses a running task, enables the event interrupts and re-
linquishes control of the processor to the running task until
the next event interrupt occurs at which the S machine is
invoked again. If the S code is time-sharing, there is at most
a single task in the thread set that can become the running
task. Otherwise, the running task is the special idle task.

4. INTERACTING E AND S MACHINES
We discuss an implementation of interacting E and S ma-

chines. Instead of implementing both machines side-by-side,
we propose an implementation that integrates the E and
S machine into a single machine, which constitutes the core
of the programmable microkernel. An important aspect of
an integrated implementation is to determinize correctly the
logical order in which the E and S machine are invoked. For
example, logically, the E machine should be invoked before
the S machine when an E code trigger is enabled at the same
time instant when an S code timeout expires because the
E code may release tasks that require immediate scheduling
service from the S code. An integrated E and S machine in-
terprets system code that may consist of E code and S code
instructions. Figure 16 shows an example of system code
that implements the E code of Figure 3 interacting with the
S code of Figure 5. Logically, after the E code at the address
a0 in Figure 3 has been executed, the S machine is invoked
to execute the S code at the address a0 in Figure 5. Op-
erationally, instead of executing E and S code in different
programs, we append the S code to the E code as shown in
the example and use the integrated machine. For example,
after executing the future(g, a1) instruction, the machine
immediately proceeds to the dispatch(t2) instruction, cre-
ates a thread instance with the task t2, and then executes t2.
Logically, the E machine terminates and is then followed by
an invocation of the S machine, which evaluates the release
ports to determine the release status of the tasks. System
code is a more succinct representation of this behavior. Note
that the idle and fork instructions in the S code of Figure 5
are not necessary in the system code of Figure 16.

Algorithm 6 The Event Loop of the Integrated Machine

YieldToTask := false

while ¬ YieldToTask do

if there is a completed task t in ThreadSet then

choose a thread instance (t, b, m, a, s)
and remove it from ThreadSet

invoke the system code interpreter
with ReferenceTime := s
and ProgramCounter := b

else if there is an enabled trigger in TriggerQueue then

choose the first enabled trigger binding (g, a, s)
and remove it from TriggerQueue

invoke the system code interpreter
where ReferenceTime is the current clock value
and ProgramCounter := a

else if there is an enabled thread in ThreadSet then

choose an enabled thread instance (t, b, m, a, s)
and remove it from ThreadSet

invoke the system code interpreter
with ReferenceTime := s
and ProgramCounter := a

else

YieldToTask := true

end if

end while

if ThreadSet 6= ∅ then

if there is a task t 6= idle in ThreadSet then

RunningTask := t
else

RunningTask := idle

end if

else

invoke the task scheduler (Algorithm 3) if present
end if

Data Structures. We need the following data structures for
the integrated implementation. A system program consists
of ports, drivers, tasks, triggers, and timeouts, as well as sys-
tem code. A configuration of a system program consists of
a system program, a trigger queue, a thread set, a reference
time, a running task, and a system code program counter.

Implementation. Algorithm 6 implements the integrated
E and S machine. Since there are instants at which both
the E machine and the S machine must be invoked, event in-
terrupts are evaluated in the following, deterministic order:
(1) task completion in the thread instances first, then (2) en-
abled triggers in the trigger bindings, and finally (3) expired
timeouts in the thread instances. There are two motivations
for this particular order. (1) before (2): task completion
may require special handling, e.g., through driver calls in
system code, prior to executing any other system code; and
(2) before (3): enabled triggers may invoke system code that
releases tasks, which require scheduling service from system
code. Note that the integrated E and S machine may also
use a task scheduler (Algorithm 3) to schedule released tasks
if there are no thread instances in the thread set in order to
support the execution of E code without S code.

The integrated E and S machine uses a system code in-
terpreter, which can execute any E and S code. The in-
terpreter implements a straightforward merge of the E and
S code interpreters. As a consequence, system code is in fact
more general than interacting E and S code. For example,
a thread written in system code, as opposed to S code, may
call drivers, which may actually be useful in practice. How-
ever, we have presented E and S code separately because
both types of code address equally important but orthogo-
nal aspects of real-time systems. System code is an efficient

representation of interacting E and S code but generating
system code may still benefit from keeping the logical dif-
ference of E and S code in mind.

5. MICROKERNEL IMPLEMENTATION
In this section, we discuss the implementation of the pro-

grammable microkernel on a StrongARM SA-1110 proces-
sor running at 206MHz. We use a motherboard that was
designed originally at ETH Zürich as part of a model heli-
copter project and is now available from weControl, an ETH
spin-off company. The board was already used to implement
a Giotto-based flight controller [13] for the helicopter. The
implementation is a patch of the custom-designed real-time
operating system HelyOS [17] written in Oberon [19]. We
have implemented a number of optimizations that exploit
features of the processor and the compiler. We discuss the
architecture-dependent aspects of the implementation at the
end of this section.

Architecture-Independent Implementation
We present pseudo-code descriptions of the Oberon code
that embeds the integrated E and S machine (Algorithm 6)
and the system code interpreter into the microkernel.

Data Structures. We use the following data structures.
The system state consists of two parts: (1) a system pro-
gram and its configuration; and (2) a kernel state, which
consists of a preempted task, a processor context, and a set
of task instances called task set. The running task becomes
the preempted task when an event interrupt occurs that pre-
empts the running task. The processor context is a set of
variables that contain the values of all registers of the pro-
cessor. Typically, the stack and frame pointers as well as
the processor status are stored in reserved registers. A task
instance consists of a task and a processor context. For ef-
ficiency, all sets and queues are implemented by fixed-size
arrays.

Implementation. At system startup, the bootstrap pro-
gram (Algorithm 7) initializes the microkernel as follows:
first, the initial task instance of the special idle task (Algo-
rithm 8) is inserted into the task set. Then the trigger queue,
thread set, and system program are initialized to be empty.
The auxiliary system code and run variables are used by
the idle task to receive system code from the host computer.
Next, a HelyOS I/O handler is bound to an input and an
output interrupt. We maintain two cyclic buffers that decou-
ple the microkernel from the hardware: (1) an input buffer
that is filled by the I/O handler when data is received from
the host computer (on a serial link); and (2) an output buffer

Algorithm 7 The Bootstrap Program

disable all interrupts
add (idle, InitialContext(idle)) to TaskSet
TriggerQueue := ⊥; ThreadSet := ∅
SystemProgram := ⊥; SystemCode := ⊥
Run := true

bind HelyOS I/O handler to I/O interrupts
bind the event interrupt handler (Algorithm 9)

to system clock interrupt
enable all interrupts
invoke idle task (Algorithm 8)
disable all interrupts
shutdown system

that is emptied by the I/O handler, which sends the content
to the host computer. The next step of the bootstrap pro-
gram is to bind the event interrupt handler (Algorithm 9)
that invokes the integrated E and S machine to the system
clock interrupt. We have not yet bound the event interrupt
handler to other interrupts although this is possible. Fi-
nally, all interrupts are enabled and the idle task is invoked.
The idle task only returns when a shutdown command from
the host computer was received. Then all interrupts are dis-
abled and the system is shutdown. Note that during system
operation the I/O interrupts remain enabled even when the
microkernel is running achieving nanosecond-latency I/O.

The idle task checks in a while loop whether commands
from the host computer were received and sends logging in-
formation generated by the microkernel and the tasks to
the host computer. Algorithm 8 shows only two commands:
(1) the switchcode command announces system code sent
from the host computer; and (2) the shutdown command
terminates the idle task and shuts down the system. The
host computer sends system code along with the switchcode
command. The idle task receives the code, and stores it if
it passes an integrity check of opcodes and arguments. In
Section 7 we discuss various other integrity checks as well
as more potential commands for the microkernel. The idle

switches the system program executed by the microkernel to
the received system code as soon as a safe instant is reached.
Here, a safe instant is any instant when all tasks have com-
pleted. Other, less trivial choices are possible.

Now, suppose that the idle task is running and an event
interrupt (system clock tick) occurs. The event interrupt
handler (Algorithm 9) is invoked, which immediately dis-
ables the event interrupts and then saves the registers in
the processor context variables. Then the running task is
saved as the preempted task before the event loop of the in-
tegrated machine checks for system code to be executed and
determines the next running task. If the preempted task is
again chosen to be the next running task, the registers are
restored from the processor context variables and the han-
dler returns from the interrupt. For this (often frequent)
case, we demonstrate below in an architecture-dependent
way that saving and restoring the processor context can en-
tirely be avoided.

If the next running task is different from the preempted
task, the preempted task instance in the task set is updated

Algorithm 8 The Idle Task

while Run do

receive Command from host
if Command = switchcode then

receive SystemCode from host
if checking SystemCode integrity fails then

SystemCode := ⊥
end if

else if Command = shutdown then

Run := false

end if

if SystemCode 6= ⊥ then

disable event interrupts
if TaskSet = {(idle, c)} then

SystemProgram := SystemCode; SystemCode := ⊥
TriggerQueue := 〈(true, 0, ∅)〉; ThreadSet := ∅

end if

enable events interrupts
end if

send logging information to host
end while

Algorithm 9 The Event Interrupt Handler

disable event interrupts
save registers in ProcessorContext
PreemptedTask := RunningTask
invoke the event loop (Algorithm 6)
if RunningTask 6= PreemptedTask then

update (PreemptedTask ,ProcessorContext) in TaskSet
if there is a RunningTask instance in TaskSet then

get (RunningTask ,ProcessorContext) from TaskSet
else

ProcessorContext := InitialContext(RunningTask)
add (RunningTask ,ProcessorContext) to TaskSet
set stack pointers according to ProcessorContext
leave interrupt handler by invoking RunningTask

with enabled event interrupts
disable event interrupts
remove RunningTask instance from TaskSet
invoke the event loop (Algorithm 6)
invoke the completion handler (Algorithm 10)
// never returns here

end if

end if

restore registers from ProcessorContext
return from interrupt with enabled event interrupts

with the current processor context. Then, if the next run-
ning task has previously been preempted, its processor con-
text is retrieved from the task set, the registers are restored,
and the handler returns from the interrupt. Otherwise, if
the next running task has not been dispatched before, the
processor context variables are initialized for the task and
an initial task instance is created in the task set. Then,
the stack pointers are set according to the processor context
variables before the handler leaves the interrupt by invoking
the task. When the task completes, the processor returns
to the event interrupt handler with an empty stack where
the event interrupts are disabled before its task instance is
removed from the task set. This part of the event inter-
rupt handler is in fact not handling a processor interrupt
anymore. Next, the event loop of the integrated machine is
invoked to execute system code and to determine the next
running task. Once the machine is finished, the completion
handler (Algorithm 10) is invoked to dispatch the task. The
completion handler is similar to the event interrupt handler
except that context switching is explicit rather than upon
returning from a processor interrupt.

Architecture-Dependent Optimization
We describe an architecture-dependent optimization that re-
duces the number of context switches when the microkernel

Algorithm 10 The Completion Handler

if there is a RunningTask instance in TaskSet then

get (RunningTask ,ProcessorContext) from TaskSet
restore registers from ProcessorContext
switch context and enable event interrupts
// never returns here

else

ProcessorContext := InitialContext(RunningTask)
add (RunningTask ,ProcessorContext) to TaskSet
invoke RunningTask with enabled event interrupts
disable event interrupts
remove RunningTask instance from TaskSet
invoke the event loop (Algorithm 6)
invoke the completion handler (Algorithm 10)
// never returns here

end if

Figure 17: Context Switching on an Oscilloscope

is invoked by an event interrupt. The StrongARM SA-1110
has 16 registers R0–R15 of which R0-R11 are general pur-
pose registers and R12–R15 are reserved for system-specific
use such as the stack and frame pointers. A context switch
on the StrongARM requires to save all 16 registers to mem-
ory and then restore the registers from memory. The pro-
cessor can operate in six different modes. In our implemen-
tation we use three of the six modes: (1) the HelyOS I/O
handler runs in the IRQ mode; (2) the microkernel runs in
the fast interrupt mode (FIQ); and (3) the tasks (including
the idle task) run in the supervisor mode (SVC). The im-
portant difference among these modes is that the FIQ mode,
unlike the IRQ and SVC modes, has a private set of registers
R8–R15 that cover the registers R8–R15 of the other modes
when the processor is in the FIQ mode. Thus a context
switch in the FIQ mode can be avoided if the FIQ handler,
i.e., the microkernel, only uses the registers R8–R15 and if
the FIQ handler decides that, upon leaving the FIQ mode,
the processor should resume the execution from where it was
preempted.

In order to implement the optimization four modifications
of our code were required: (1) we modified the Oberon com-
piler to support a procedure annotation that restricts the
choice of registers the compiler can use to compile an an-
notated procedure; then, (2) we annotated the microkernel
and compiled it to machine code that only uses the R8–
R15 registers. Most importantly, drivers called by the mi-
crokernel are excluded from this restriction because (3) we
modified the system code interpreter to save all 16 regis-
ters before a driver is called. This can easily be generalized
such that the interpreter distinguishes restricted from unre-
stricted drivers. Finally, (4) we changed the event interrupt
handler (Algorithm 9) as follows: we removed the code at
the beginning and the end of the handler that saves and
restores the registers in the processor context. Then, we
inserted the code that saves the registers right before the
processor context is needed to update the preempted task
instance in the task set. Finally, we inserted the code that
restores the registers right after the next running task in-
stance is retrieved from the task set. Now, when an event
interrupts occurs, the processor enters the FIQ mode and
invokes the event interrupt handler, which first disables the
event interrupts. Then, the handler immediately saves the
running task as the preempted task and invokes the event
loop of the integrated machine without saving any of the
registers in the processor context. When the event loop is
finished and the next running task and the preempted task
are equivalent, the handler immediately returns from the in-
terrupt without the need of restoring any of the registers.
Otherwise, the registers are saved and then restored for the
next running task.

EDF EDF
S code

EDF
S code
opt

RM
S code

0

100

200

300

400

500

600

700

800

900

1000

S code

E code

Scheduler Type

In
st

ru
ct

io
ns

Figure 18: E and S code size for 100 tasks

Figure 17 shows the performance gain of the optimization.
The measurement (A) shows an invocation of the event in-
terrupt handler without the optimization and (B) with the
optimization. An invocation begins with the first rising edge
and ends with the second falling edge. The time between the
two pulses is the time it takes the microkernel to determine
in the event loop whether system code needs to be executed.
Here, system code is not executed. The mean time it takes
to go through the event loop with a single trigger binding in
the trigger queue and a single thread instance in the thread
set is around 2µs in our experiments. The first pulse of (A)
shows the time (1.26µs) it takes to set the next timer inter-
rupt and to save the registers. Each pulse includes a 200ns
I/O overhead to toggle from zero to one and back, which
we exclude in the numbers. Thus the actual execution time
of the handler is 400ns shorter than shown in the Figure.
The second pulse of (A) shows the time (1.05µs) it takes to
restore the registers. Thus the minimum execution time to
handle a timer interrupt without the optimization is 4.31µs.
The first pulse of (B) shows the time (0.43µs) it takes to set
only the next timer interrupt while the second pulse of (B)
shows only the time (200ns) to toggle from zero to one and
back. Thus the minimum execution time to handle a timer
interrupt with the optimization is 2.43µs. The measurement
(C) shows a task completion followed by an invocation of
the microkernel that determines a next running task that
requires initializing the processor context. The first pulse of
(C) shows only the time (200ns) it takes to toggle from zero
to one and back while the second pulse of (C) shows the time
(0.94µs) it takes to initialize the processor context and load
the registers. Thus the minimum time it takes to complete
the execution of a task and to determine the next running
task (using S code) is 2.94µs. Here, the optimization has no
effect.

6. MICROKERNEL BENCHMARKS
The binary code size of the programmable microkernel

is 8kB, which includes the I/O handling code of HelyOS.
Thus, due to its small size, the microkernel can even be used
on small embedded devices with limited CPU and mem-
ory resources. For the benchmarks, the microkernel is in-
voked at 1kHz. Thus tasks are preempted every 1ms, called
the microkernel period. We evaluated the microkernel on
four periodic, non-harmonic task sets with 4, 10, 50, and
100 tasks. Each set consists of four equally large task groups
with 16.66Hz, 33.33Hz, 50Hz, and 100Hz tasks The task sets
are described by E code. There is an E code block for each
instant in the hyperperiod of the task sets at which tasks
are released.

System Code Size. Each task set is scheduled using four
different methods: (1) an EDF scheduler; (2) preemptive
(EDF) S code generated by the EDF scheduler; (3) non-
preemptive (EDF) S code; and (4) preemptive (RM) S code
generated by a rate-monotonic (RM) scheduler. We have
implemented the EDF scheduler as default task scheduler
of the microkernel. The non-preemptive (EDF) S code was
generated from the preemptive (EDF) S code by reordering
task execution, which was not always possible. The preemp-
tive (RM) S code was generated such that at each instant all
tasks are dispatched in the order of decreasing frequencies.

In order to avoid WCET analysis of task code, we gen-
erated all S code at run time and implemented the tasks
without branching such that the actual execution times are
close to the WCETs. The task code consists of integer oper-
ations (the StrongARM has no FPU) and I/O operations in
order to visualize the task behavior on an oscilloscope. For
each task set we used three different task implementations
with short, medium, and long execution times.

We ran a total of 48 different test cases. For each test,
we measured (per invocation of the microkernel): (1) the
overall system code (microkernel) execution time as well as
its parts: (2) the E code execution time; (3) the S code
execution time; (4) the EDF scheduler execution time. We
also measured the total CPU utilization (U) and counted the
number of task preemptions (P) per hyperperiod (60ms) as
well as the number of S code and E code instructions. For
the time measurements, we used the internal 3.6864Mhz OS
timer of the StrongARM. The test results are summarized
in Table 1, 2, and 3.

Figure 18 shows the system code size (E code and S code)
for 100 tasks that are scheduled according to the four differ-
ent scheduling methods (the E code is always the same). The
preemptive (RM) S code is larger than the (EDF) S code be-
cause each task is dispatched according to its frequency but
independently of its execution time. In other words, tasks
may have already completed before they are (unnecessarily)
dispatched again.

E code Execution Overhead. Figure 19 shows E code exe-
cution times with respect to the number of tasks released by
the E code. Independently of the task scheduling method,
the increase of E code execution times is linear in the num-
ber of tasks because the number of E code instructions grows
in a linear fashion with the number of tasks.

Scheduling Overhead. Figure 20 shows the scheduling over-
head of the microkernel. The EDF scheduler maintains a
sorted list to determine the next running task. The S code

0 25 50 75 100
0

20

40

60

80

100

Tasks

T
im

e
(u

s)

Figure 19: E code execution overhead

4 10 50 100
0

5

10

15

20

25

30

35

40

EDF

EDF S code

EDF S code opt

RM S code

Tasks

T
im

e
(u

s)

Figure 20: Scheduling overhead (EDF scheduling
and S code execution)

we consider here, on the other hand, determines the next
running task directly through current control locations in
S code, which explains the near constant growth. Note that
more efficient implementations of our EDF scheduler using
multiple lists [20] are possible but do not achieve S code
performance. The S code shown here trades space for time
although the S code size even for 100 tasks is still small.
The preemptive (RM) S code is slower than other S code
because the (RM) S code dispatches more often already com-
pleted tasks. The execution times of preemptive and non-
preemptive (EDF) S code for 50 and 100 tasks are equivalent
since preemptions do not occur in both cases.

System Overhead. Figure 21 shows the total system over-
head in terms of system code execution times (E code and
S code execution times plus the execution time of the EDF
scheduler when used). With S code, it is possible to keep
the system overhead under 10µs even for 100 tasks.

CPU Utilization. Figure 22 shows the CPU utilization
with different scheduling methods. CPU utilization improves
with the number of tasks when switching from the EDF
scheduler to preemptive (EDF) S code. With 100 tasks,
S code performs 35% better than the traditional EDF sched-
uler (51% utilization versus 78% utilization).

7. CAPABILITIES
We have presented a new software system architecture

for the implementation of hard real-time applications. The
core of the system is a programmable microkernel that ex-
ecutes system-level functionality written in system code,
which consists of E and S code. Semantic structure and

4 10 50 100
0

5

10

15

20

25

30

35

40

EDF

EDF S code

EDF S code opt

RM S code

Tasks

M
ea

n
tim

e
(u

s)

Figure 21: E and S code execution overhead

4 10 50 100
0

10

20

30

40

50

60

70

80

90

100

EDF

EDF s code

RM s code

Tasks

U
til

iz
at

io
n

%

Figure 22: CPU utilization

predictability are the key properties of system code that
form the foundation of the microkernel’s capabilities. E and
S code address semantically orthogonal issues. E code de-
fines the reactivity of the system with respect to the physical
environment while S code defines application task schedul-
ing. System code is dynamic in the sense that it can be re-
placed, modified, extended, and communicated at run-time.
Modifying an E code portion of system code changes the
reactive behavior of the system while modifying the S code
part changes the scheduling scheme. The semantic structure
of system code enables the analysis and composition of real-
time programs on the system level. System code does not
necessarily replace traditional real-time scheduling technol-
ogy. Partial system code can be complemented at run-time,
e.g., by a real-time scheduler that either executes application
tasks not handled by system code, or generates the missing
system code on-the-fly. Predictability and composability of
system code enables portability and mobility of real-time
programs.

Analyzing System Code. System code is amenable to pro-
gram and schedulability analysis. There are at least two in-
teresting problems that involve checking time safety: (1) is
some given E code time-safe, i.e., do all tasks released by the
E code complete on time, with respect to a given schedul-
ing strategy and WCETs; and (2) does some given S code
guarantee the time-safe execution of some given E code and
does the S code follow a given scheduling strategy? For gen-
eral E code with conditional branching, the first problem is
difficult but becomes easier if the E code has a particular
structure, e.g., is generated from Giotto or simply describes
a set of periodic tasks [10]. In this case, the second problem
can be solved fast even for non-trivial scheduling schemes
such as non-preemptive scheduling [11]. Thus time safety
of E code combined with S code can be verified by the mi-
crokernel at run-time, e.g., as part of the integrity check
in the idle task. Another interesting problem is to improve
time safety checking using control-sensitive program anal-
ysis techniques. Note that a control-insensitive check is a
conservative approximation, which may fail on a time-safe
program because the check considers program paths that are
actually never taken.

Composing System Code. An important feature of system
code is its composability. E code may be composed with
other E code at compile time, or even at run-time through
the trigger queue of the E machine. Logically, the reac-
tive behavior of E code does not change when composed
with other E code since E code execution is instantaneous.

However, operationally, the instantaneousness of E code ex-
ecution degrades with the number of E code instructions
executed at the same instant. S code may also be composed
with other S code at compile time, or at run-time through
the thread set. In general, composing E code that uses
S code for task scheduling requires regenerating the S code
from scratch unless the S code was generated according to
a compositional scheduling strategy. For example, if S code
components are assigned exclusive time slots in which tasks
are dispatched, then the composed S code is time-sharing,
i.e., dispatches at most a single task at the same time,
provided each S code component is already time-sharing.
Thus S code can be used to study and utilize compositional
scheduling strategies. Note that the time-triggered architec-
ture [15] already offers a similar compositional strategy to
time-share a communication bus that connects a distributed
and fault-tolerant system of computers.

Partial System Code. If the microkernel has a default task
scheduler, then it is not necessary that system code describes
all behaviors of a real-time program. In fact, the microkernel
can generate missing system code at run-time. For example,
S code may only dispatch a subset of all tasks. The task
scheduler of the microkernel can then either dispatch the rest
of the tasks whenever the S code execution completed, or else
generate additional S code that dispatches the remaining
tasks. Once the additional S code has been generated, it can
execute repeatedly without the need for the task scheduler.
Besides improved run-time performance, a benefit at design
time is that prototypes of system code can be developed
gradually and executed before the code is complete. We have
already taken advantage of this feature in the development
and testing of the microkernel and the Giotto compiler.

System code may also be optimized at run-time based on
information only available at run-time. For example, in the
spirit of dynamic code optimization at run-time [14], the
microkernel can reduce the number of task preemptions by
rearranging S code instructions. We have used this tech-
nique for our benchmarks to obtain non-preemptive S code
from preemptive S code.

Portable and Mobile System Code. Portability and mo-
bility of real-time programs are truly as challenging as they
are desirable. Here are two examples: embedded systems
such as control computers for satellites or power plants,
which cannot easily be rebooted, would benefit from portable
and mobile real-time code; or the performance of communi-
cation devices such as cell phones or network routers could
be software-calibrated remotely while speaking or download-
ing. Predictability and composability of system code en-
able portability and mobility. For example, environment-
triggered system code [9] whose triggers only refer to events
such as the system clock tick or external signals is portable
code as long as time safety can be guaranteed. It is also
mobile code because system code is represented hardware-
independently as byte code with symbolic references to func-
tional code.

8. REFERENCES
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub,

R. Rashid, A. Tevanian, and M. Young. Mach: A new
kernel foundation for UNIX development. In Proc. of
the USENIX Summer Conference, pages 93–113, 1986.

[2] B. Bershad, S. Savage, P. Pardyak, E. Sirer,

D. Becker, M. Fiuczynski, C. Chambers, and
S. Eggers. Extensibility, safety and performance in the
SPIN operating system. In Proc. of the 15th ACM
Symposium on Operating System Principles
(SOSP’95), 1995.

[3] Y. Cai and M.C. Kong. Nonpreemptive scheduling of
periodic tasks in uni- and multiprocessor systems.
Algorithmica, 15(6):572–599, 1996.

[4] J. Chapuis, C. Eck, M. Kottmann, M.A.A. Sanvido,
and O. Tanner. Control of Complex Systems, chapter
Control of Helicopters, pages 359–392.
Springer-Verlag, 2001.

[5] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling, S. Thesing, and
R. Wilhelm. Reliable and precise WCET
determination for a real-life processor. In Proc. First
International Workshop on Embedded Software
(EMSOFT), LNCS 2211, pages 469–485.
Springer-Verlag, 2001.

[6] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer, 1993.

[7] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The performance of µ-kernel-based systems.
In Proc. of the 16th ACM Symposium on Operating
Systems Principles (SOSP’97). ACM Press, 1997.

[8] T.A. Henzinger, B. Horowitz, and C.M. Kirsch.
Giotto: A time-triggered language for embedded
programming. Proceedings of the IEEE, 91(1):84–99,
2003.

[9] T.A. Henzinger and C.M. Kirsch. The Embedded
Machine: Predictable, portable real-time code. In
Proc. of the International Conference on Programming
Language Design and Implementation, pages 315–326.
ACM Press, 2002.

[10] T.A. Henzinger, C.M. Kirsch, R. Majumdar, and
S. Matic. Time-safety checking for embedded
programs. In A. Sangiovanni-Vincentelli and
J. Sifakis, editors, EMSOFT 02: Embedded Software,
LNCS 2491, pages 76–92. Springer-Verlag, 2002.

[11] T.A. Henzinger, C.M. Kirsch, and S. Matic.
Schedule-carrying code. Technical Report No.
UCB//CSD3-1230, University of California at
Berkeley, February 2003.

[12] K. Jeffay, D.F. Stanat, and C.U. Martel. On
non-preemptive scheduling of periodic and sporadic
tasks. In Proc. of the 12th IEEE Real-Time Systems
Symposium, pages 129–139. IEEE Computer Society
Press, 1991.

[13] C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and
W. Pree. A Giotto-based helicopter control system.
In A. Sangiovanni-Vincentelli and J. Sifakis, editors,
EMSOFT 02: Embedded Software, LNCS 2491, pages
46–60. Springer-Verlag, 2002.

[14] T. Kistler and M. Franz. Continuous program
optimization: Design and evaluation. IEEE
Transactions on Computers, 50(6):549–566, Jun 2001.

[15] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer, 1997.

[16] J. Liedtke. Toward real microkernels. Communications
of the ACM, 39(9):70–77, 1996.

[17] M.A.A. Sanvido. A computer system for model
helicopter flight control; technical memo nr. 3: The
software core. Technical Report 317, ETH Zürich,

Institute for Computer Systems, 1999.

[18] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach:
Towards a predictable real-time system. In Proc. of
the USENIX Mach Workshop, pages 73–82, 1990.

[19] N. Wirth and J. Gutknecht. Project Oberon - The
Design of an Operating System and Compiler. ACM
Press, 1992.

[20] K.M. Zuberi, P. Pillai, and K.G. Shin. EMERALDS: a
small-memory real-time microkernel. In Proc. of the
17th ACM Symposium on Operating Systems
Principles (SOSP’99), pages 277–299. ACM Press,
1999.

Tasks Mode System code (µs) U P S code E code EDF E+S code S code
(#) peak min average (%) (#) (µs) (µs) (µs) (#) (#)

4 EDF 12.207 1.356 3.778 0.818 4 0 4.653 1.473 30 0
EDF sc 20.888 2.170 3.884 0.818 4 1.411 5.574 0 60 30
EDF sco infeasible 64 34
RM sc 13.563 1.356 3.600 0.867 5 1.549 4.643 0 48 18

10 EDF 21.159 1.356 6.129 0.917 4 0 8.792 3.658 54 0
EDF sc 26.855 2.170 4.472 0.850 4 1.565 9.510 0 107 53
EDF sco infeasible 111 57
RM sc 17.632 1.356 4.386 0.934 5 1.762 8.842 0 108 54

50 EDF 129.120 1.356 21.767 0.950 4 0 44.972 18.508 174 0
EDF sc 120.710 1.899 6.822 0.750 0 2.207 52.882 0 347 173
EDF sco 115.020 1.899 6.843 0.750 0 2.212 52.885 0 351 177
RM sc 100.910 1.356 7.263 0.917 5 3.036 48.450 0 468 294

100 EDF 287.000 1.356 38.573 0.786 4 0 81.749 36.074 318 0
EDF sc 247.400 1.899 7.628 0.517 0 2.258 116.190 0 636 318
EDF sco 248.210 2.170 7.643 0.518 0 2.248 116.790 0 640 322
RM sc 177.950 1.356 8.625 0.569 2 3.897 98.331 0 912 594

Table 1: Tasks with long execution times

Tasks Mode System code (µs) U P S code E code EDF E+S code S code
(#) peak min average (%) (#) (µs) (µs) (µs) (#) (#)

4 EDF 12.207 1.356 3.087 0.350 1 0 4.608 1.384 30 0
EDF sc 20.888 2.170 4.065 0.350 1 1.428 5.513 0 60 30
EDF sco 20.888 2.170 4.061 0.351 0 1.439 5.528 0 61 31
RM sc 12.478 1.356 3.083 0.352 1 1.619 4.933 0 48 18

10 EDF 21.159 1.356 4.730 0.350 1 0 8.647 3.460 54 0
EDF sc 27.127 2.170 4.676 0.350 1 1.595 9.588 0 108 54
EDF sco 27.127 27.127 4.682 0.350 0 1.601 9.668 0 109 55
RM sc 16.819 1.356 3.988 0.351 1 1.843 8.958 0 108 54

50 EDF 126.680 1.356 17.929 0.417 1 0 43.574 16.983 174 0
EDF sc 113.390 1.899 6.799 0.334 0 2.152 52.417 0 348 174
EDF sco 116.100 1.899 6.816 0.333 0 2.163 52.701 0 349 175
RM sc 87.348 1.356 7.156 0.384 1 3.239 47.878 0 468 294

100 EDF 281.850 1.356 36.765 0.601 2 0 81.655 35.190 318 0
EDF sc 247.120 1.899 7.584 0.368 0 2.229 113.880 0 636 318
EDF sco 251.740 1.899 7.591 0.367 0 2.230 115.550 0 638 320
RM sc 174.420 1.356 8.590 0.400 4 3.935 97.230 0 912 594

Table 2: Tasks with medium execution times

Tasks Mode System code (µs) U P S code E code EDF E+S code S code
(#) peak min average (%) (#) (µs) (µs) (µs) (#) (#)

4 EDF 12.207 1.356 3.091 0.352 1 0 4.693 1.382 30 0
EDF sc 20.888 2.170 4.063 0.350 1 1.435 5.468 0 60 30
EDF sco 20.888 2.170 4.061 0.350 0 1.441 5.548 0 61 31
RM sc 12.478 1.356 3.084 0.351 1 1.623 4.942 0 48 18

10 EDF 21.159 1.356 4.730 0.350 1 0 8.661 3.460 54 0
EDF sc 27.127 2.170 4.677 0.351 1 1.595 9.606 0 108 54
EDF sco 27.127 2.170 4.682 0.352 0 1.601 9.683 0 109 55
RM sc 16.819 1.356 3.988 0.351 1 1.843 8.959 0 108 54

50 EDF 131.020 1.356 16.902 0.234 1 0 41.721 16.905 174 0
EDF sc 116.370 1.899 6.742 0.200 0 2.160 51.498 0 348 174
EDF sco 118.270 1.899 6.754 0.200 0 2.169 51.701 0 349 175
RM sc 89.789 1.356 7.025 0.201 1 3.286 46.539 0 468 294

100 EDF 300.560 1.356 34.913 0.349 1 0 81.572 34.844 318 0
EDF sc 242.510 1.899 7.580 0.200 0 2.216 115.570 0 636 318
EDF sco 243.600 1.899 7.580 0.200 0 2.211 115.700 0 637 319
RM sc 177.140 1.356 8.535 0.201 1 3.979 98.032 0 912 594

Table 3: Tasks with short execution times

	Introduction
	The Embedded Machine
	The Scheduling Machine
	Interacting E and S Machines
	Microkernel Implementation
	Microkernel Benchmarks
	Capabilities
	REFERENCES

