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Abstract. There is a trade-off between performance and correctness in implementing concurrent
data structures. Better performance may be achieved at the expense of relaxing correctness, by re-
defining the semantics of data structures. We address such a redefinition of data structure semantics
and present a systematic and formal framework for obtaining new data structures by quantitatively
relaxing existing ones. We view a data structure as a sequential specification S containing all “legal”
sequences over an alphabet Σ of method calls. Relaxing the data structure corresponds to defining a
distance from any sequence over Σ to the sequential specification: the relaxed sequential specifica-
tion Sk contains all sequences over Σ within distance k from S. In contrast to other existing work,
our relaxations are semantic (distance in terms of data structure states). As an instantiation of our
framework, we present a simple yet generic relaxation scheme along with several ways of comput-
ing distances. We show that this relaxation, when further instantiated on queues, stacks, and priority
queues, amounts to tolerating bounded out-of-order behavior, which cannot be captured by a purely
syntactic relaxation (distance in terms of sequence manipulation, e.g. edit distance). We also present
various concurrent implementations of queue, stack, and priority queue relaxations and argue that
bounded relaxations provide the means for trading correctness for performance in a controlled way.
The relaxations are monotonic which further highlights the trade-off: increasing k increases the num-
ber of permitted sequences, which increases the performance.

1 Introduction

Concurrent data structures may be a performance and scalability bottleneck and thus prevent effective
use of increasingly parallel hardware [11]. There is a trade-off between scalability (performance) and
correctness in implementing concurrent data structures. A remedy to the scalability problem is to relax
the semantics of concurrent data structures. The semantics is given by some notion of equivalence with
sequential behavior. The equivalence is determined by a consistency condition, most commonly lineariz-
ability [5], and the sequential behavior is inherited from the sequential version of the data structure (e.g.,
the sequential behavior of a concurrent stack is a regular stack). Therefore, relaxing the semantics of
a concurrent data structure amounts to either weakening the consistency condition (linearizability being
replaced with sequential consistency or quiescent consistency) or redefining (relaxing) its sequential spec-
ification. In this paper, we present a framework for relaxing the sequential specification in a quantitative
manner.

For an example of a relaxation, imagine a k-stack in which each pop removes one of the most recent k
elements and an operation size which returns a value that is k away from the correct size. It is intuitively
clear that such a k-stack relaxes a regular stack, but current theory does not provide means to quantify
the relaxation. Our framework does, it provides a way to formally describe and quantitatively assess such
relaxations.

� This work has been supported by the Austrian Science Fund (Elise Richter Fellowship LEGO-CPT, V00125,
and RiSE NFN on Rigorous Systems Engineering, S11402-N23 and S11404-N23), the European Research Coun-
cil (ERC) Advanced Grant QUAREM (Quantitative Reactive Modeling), and the National Science Foundation
(CNS1136141).



We view a data structure as a sequential specification S consisting of all semantically correct se-
quences of method calls. We identify the sequential specification with a particular labeled transition sys-
tem (LTS) whose states are sets of sequences in S with indistinguishable future behavior and transitions
are labeled by method calls. A sequence is in the sequential specification if and only if it is a finite trace
of this LTS.

Our framework for quantitative relaxation of concurrent data structures amounts to specifying costs of
transitions and paths. In the LTS, only correct transitions are allowed, e.g., a transition labeled by poppaq
is only possible in a state of a stack with a as top element. In a relaxation, we are exactly interested in
allowing the wrong transitions, but they will have to incur cost. Our framework makes this possible in a
controlled quantitative way.

The framework is instantiated through specifying two cost functions: A local function, transition cost,
that assigns a penalty to each wrong transition, and a global function, path cost, that accumulates the local
costs (using, e.g., maximum, sum, or average) to obtain the overall distance of a sequence. Via this local-
global dichotomy, we are able to achieve a separation of concerns, modularity and flexibility: Different
transition costs can be used with the same path cost, or vice versa, leading to different relaxations. Once
the distance of a sequence from the original sequential specification S is defined in this way, a k-relaxation
of the data structure becomes the set of all sequences within distance k from S.

Returning to the stack example above, we can set the transition cost of a pop transition at a state to
be the number of elements that are between the popped element and the top of the stack. We can define
the path cost to be the maximum transition cost that occurs along a sequence. Then, the corresponding
k-relaxation precisely captures what we intuitively described.

We instantiate the framework on two levels. On the generic level, we present a generic relaxation,
called out-of-order relaxation, which provides a way to assign transition costs, together with several
different path cost functions for any data structure. On the concrete level, we instantiate the out-of-order
relaxation to queues, stacks, and priority queues. We spell out the effects of the relaxation in each of these
concrete cases and show that they indeed correspond to the intuitive idea of bounded relaxed out-of-order
behavior.

We also give prototype implementations of the out-of-order relaxations of several concurrent data
structures, such as queues, stacks, and priority queues. Our experimental results demonstrate that these
implementations decrease contention. We conclude the paper with a brief survey of related work, putting
special emphasis on quasi-linearizability [1], the only other work we are aware of that also tackled the
problem of quantitatively relaxing sequential data structures for better performance in the concurrent
setting. As opposed to our semantic (state-based) approach in assigning distances to sequences, the relax-
ation of [1] is syntactic (permutation-based). In the final section we argue that (1) the semantic approach
is more expressive than the syntactic one, and (2) it allows the designer of a data structure to formally
capture the intent of a specific relaxation more easily and naturaly.

To conclude, the main contribution of this paper is the framework for quantitative relaxations of data
structures. The way to the framework is paved by formally capturing the semantics of a data structure.
Other contributions made possible by the framework are: the generic out-of-order relaxation of data struc-
tures; characterizations of the out-of-order relaxation in concrete terms for queues, stacks, and priority
queues; and demonstration of the positive effect of relaxations on scalability via several prototype imple-
mentations obtained by out-of-order relaxation.

2 Data structures, specifications, states

Let Σ be a set of methods including input and output values. We will refer to Σ as the sequential alphabet.
A sequential history s is an element of Σ�, i.e., a sequence over Σ. A data structure is a sequential
specification S which is a prefix-closed set of sequential histories, S � Σ�.



The following definition is the core of our way of capturing semantics. Let S be a sequential specifi-
cation.

Definition 21 Two sequential histories s, t P S are S-equivalent, written s�S t, if for any sequence u P Σ�,
su P S if and only if tu P S.

It is clear that �S is an equivalence relation. By rssS we denote the S-equivalence class of s. Intu-
itively, two sequences in the sequential specification are S-equivalent if they lead to the same “state”. The
following simple property follows directly from the definition of S-equivalence.

Lemma 22 If s�S t and su P S, then su�S tu.

The intuition about states is made explicit in the next definition. In addition, we point out particular
“minimal” representatives of a state.

Definition 23 A state of a data structure with sequential specification S is an equivalence class rssS with
respect to �S. For a state q� rssS, the kernel of q is the set

kerpqq � t t P rssS | t has minimal length u.

A sequence s P S is a kernel sequence if s P kerprssSq.

A data structure determines a labeled transition system (LTS) that we define next.

Definition 24 Let S be a (sequential specification of a) data structure. Its corresponding LTS is LTSpSq �
pQ,Σ,Ñ,q0q with set of states Q � S{ �S � trssS | s P Su, set of labels Σ, transition relation Ñ� Q�

Σ�Q given by rssS
m
Ñ rsmsS if and only if sm P S, and initial state q0 � rεsS.

Note that the transition relation is well defined (independent of the choice of a representative) due
to Lemma 22. Also q0 is well defined since S is prefix closed. We write q m

Ñ if there is an m-labeled
transition from q to some state; q m

Û if there is no m-labeled transition from q. We also write q u
Ñ if there

is a u-labeled path of transitions starting from q, and q u
Û if it is not the case that q u

Ñ. The following
immediate observation provides the exact correspondence between the sequential specification of a data
structure and its LTS: S is the set of finite traces of the initial state of LT SpSq.

Lemma 25 Let S be a sequential specification with LTSpSq � pQ,Σ,Ñ,q0q. Then for any u P Σ� we have
u P S if and only if q0

u
Ñ.

Notes on concurrency. Let Σir � ΣiYΣr with Σi � tmi | m P Σu and Σr � tmr | m P Σu be the concurrent
alphabet in which for every method m P Σ we distinguish between its invocation event mi and its response
event mr. A concurrent history c is an element of Σir

� with the property that if mr appears in c then mi
also appears in c and it does so before mr.

Every sequential history “is” a concurrent history as well, i.e., we identify a sequential history s P Σ�

with the concurrent history ps P Σir
�, defined inductively by

pε� ε and xmt� mimrpt for m P Σ and t P Σ�.

A concurrent history c is linearizable with respect to sequential specification S if there exists a per-
mutation ps of c such that s P S is a sequential history, and for any two methods m and n, if mr precedes ni
in c, then m precedes n in s.1

In this paper, we are mainly concerned with the sequential specification of a data structure. By relaxing
it we get a new data structure, a relaxed version of the original one. The relaxation has applications on
the concurrent side: relaxed data structures may allow for better-performing concurrent implementations.

1 For simplicity, we avoid a detailed definition of linearizability here; see [5] for a formal treatment.



Remark 26 A relaxation Sk of a data structure S directly leads to a relaxed notion of linearizability: a
concurrent history c is k-linearizable if it is linearizable with respect to the k-relaxed specification Sk. It is
important to mention here that the actual condition of linearizability does not change, only the sequential
specification does. This approach was used for defining quasi-linearizability [1] and k-linearizability of
FIFO queues [7].

We discuss concurrent implementations of proposed relaxations in Section 6. Until then, we deal with
the sequential specification only.

3 Framework for quantitative relaxations

In this section we present our framework for quantitatively relaxing data structures. Let S � Σ� be a data
structure with LTSpSq � pQ,Σ,Ñ,q0q. Our goal is to relax S to a so-called k-relaxed specification Sk � Σ�

in a bounded way, with k providing the bound.
Giving a relaxation for a data structure S amounts to the following three steps:

1. Completion. From LTSpSq � pQ,Σ,Ñ,q0q we construct the completed labeled transition system
LTScpSq � pQ,Σ,Q�Σ�Q,q0q with transitions from any state to any other state by any method.

2. Transition costs. From LTScpSq a quantitative labeled transition system QLTSpSq � pQ,Σ,Q�Σ�
Q,q0,C,costq is constructed. Here C is a well-ordered cost domain, hence it has a minumum that we
denote by 0, and cost : Q�Σ�QÑC is the transition cost function satisfying

costpq,m,q1q � 0 if and only if q m
Ñ q1 in LTSpSq.

We write q
m,k
Ñ q1 for the quantitative transition with costpq,m,q1q � k. A quantitative path of QLTSpSq

is a sequence

κ� q1
m1,k1Ñ q2

m2,k2Ñ q3 . . .qn
mn,knÑ qn�1.

The sequence τ� pm1,k1qpm2,k2q . . .pmn,knq P pΣ�Cq� is the quantitative trace of κ, notation qtrpκq
and the sequence u � m1 . . .mn is the trace of the quantitative path κ and of the quantitative trace
qtrpκq, notation trpκq � trpqtrpκqq � u. By qtrpuq we denote the set of all quantitative traces of quan-
titative paths starting in the initial state with trace u and by qtrpSq the set of all quantitative traces of
quantitative paths starting in the initial state.

3. Path cost function. We choose a monotone path cost function pcost : qtrpSq Ñ C. Monotonicity
here is with respect to prefix order: if a quantitative trace τ is a prefix of a quantitative trace τ1, then
pcostpτq ¤ pcostpτ1q.

Having performed these three steps, we can define the k-relaxed specification.

Definition 31 The k-relaxed specification Sk for k PC contains all sequences that have a distance at most
k from S,

Sk � tu P Σ� | dSpuq ¤ ku

where dSpuq is the distance of u to the sequential specification S given by

dSpuq �mintpcostpτq|τ P qtrpuqu.

Remark 32 Both the distance dS and the relaxed specification Sk are actually parametric in the transition
cost function as well as in the path cost function. For simplicity, we prefer a light, overloaded notation
that does not explicitly mention these parameters.

Some obvious properties of the quantified relaxations resulting from our framework are:



– S0 � S, ensured by the condition on the transition cost function.
– Every relaxation Sk is prefix closed, ensured by the monotonicity of the path cost function.
– The relaxations are monotone, i.e., if k ¤ m, then Sk � Sm.

To conclude, in order to relax a data structure all that one needs is a cost domain C, a transition cost
for each transition in the completed LTS (item 2. above), and a path cost function (item 3. above).

4 Generic out-of-order relaxation

In this section we illustrate the relaxation framework on one generic example. The value and generality
of this particular example becomes evident in Section 5 when we instantiate it to concrete data structures.
Let S� Σ� be a data structure with LTSpSq � pQ,Σ,Ñ,q0q. We first fix the cost domain to C �NYt8u.
Next, we define a transition cost function scost : Q�Σ�Q ÑC, called segment cost, and mention two
other related transition cost functions. Finally, we suggest several path cost functions to be used along
with the segment cost.

Definition 41 Let t � pq,m,q1q be a transition in LTScpSq. Let v be a sequence with minimal length
satisfying one of the following two conditions:

(1) There exist sequences u, w such that uvw P kerpqq and uw is a kernel sequence and either
(i) ruwsS

m
Ñ ru1wsS and q1 � ru1vwsS, or

(ii) ruwsS
m
Ñ ruw1sS and q1 � ruvw1sS.

(2) There exist sequences u, w such that uw P kerpqq and uvw is a kernel sequence and either
(i) ruvwsS

m
Ñ ru1vwsS and q1 � ru1wsS, or

(ii) ruvwsS
m
Ñ ruvw1sS and q1 � ruw1sS.

Then the segment cost is given by the length of v, scostptq � |v|. If such a sequence v does not exist for t,
then scostptq � 8.

Intuitively, segment cost of a relaxed transition is the length of the shortest subword (v) whose re-
moval (1) or insertion (2) into the kernel sequence enables a transition. Observe that the transition can
be taken in LTSpSq if and only if its segment cost is 0, obtained by setting v � ε. We will see in the next
section that this cost quantifies out-of-order updates or observations, such as removing an element other
than the head of a queue or returning an element other than the top element in a stack. There are two
specializations of the segment cost that we isolate in the next definition.

Definition 42 Discarding cost is the transition cost function defined by Definition 41 when condition
(2) is removed. Filling cost is the transition cost function defined by Definition 41 when condition (1) is
removed.

Let S� Σ� be a data structure, u a sequence over Σ, and τ� pm1,k1qpm2,k2q . . .pmn,knq a quantitative
trace in qtrpSq such that trpτq � u. We define the following path cost functions:

– The maximal cost, pcostmax : qtrpSq Ñ NY t8u, maps τ to the maximal transition cost along it.
Formally, pcostmaxpτq �maxtki |1¤ i¤ nu.

– The L-interval cost, pcostL : qtrpSq Ñ NYt8u, for L � Σ maps τ to the maximum number of L-
labeled transitions in a subpath of τ which contains no L-labeled transitions with transition cost 0.
Formally, let v� u|L � mi1 . . .mil be the projection of u onto the sub-alphabet L. Then we have

pcostLpτq �maxtk� j�1 | kir � 0 for 1¤ j ¤ r ¤ k ¤ lu.



– The L-interval restricted maximal cost, pcostmax|L : qtrpSq Ñ NY t8u, for L � Σ maps τ to the
maximum of the sum of transition cost and the number of L-labeled transitions since the last L-
labeled transition with cost 0. Formally, let again v� u|L�mi1 . . .mil be the projection of u onto the
sub-alphabet L. For 1 ¤ i ¤ n, let li � maxtr� s� 1 | kit � 0 for 1 ¤ s ¤ t ¤ ru if mi P L, i � ir for
some 1¤ r ¤ l, and li � 0 otherwise. Then pcostmax|Lpτq �maxtki� li | 1¤ i¤ nu.

Remark 43 The maximal cost is certainly intuitive and easily understandable. The other two path cost
functions may appear to be less intuitive at first sight. We present them here for two reasons: (1) they
illustrate more complex examples within the variety of possible path cost functions, and (2) when instan-
tiating the generic out-of-order relaxation to concrete data structures (Section 5) they produce intuitively
meaningful path costs.

5 Quantitatively relaxed queues, stacks, and priority queues

In this section we apply the relaxation of Section 4 to FIFO queues, stacks, and priority queues2. In order
to show the full generality of the out-of-order relaxation, we consider additional observer methods like
head, top, max, respectively, and size.

FIFO queue. The set of methods for a FIFO queue, with data set D and Dnull � DYtnullu, is

ΣQ � tenqpdq | d P DuYtdeqpdq | d P DnulluYtheadpdq | d P DnulluYtsizepnq | n P Nu.

The sequential specification SQ consists of all queue-valid sequences, i.e., sequences in which each deq

deques the head of the queue, each enq enqueues at the tail of the queue, each head observes the head
element, and size returns the current size of the queue. For instance, the following sequence sQ �
enqpaqenqpbqdeqpaq is in the sequential specification SQ, whereas the sequence tQ� enqpaqenqpbqdeqpbq
is not.

One can easily show that kernel sequences of a FIFO queue are all sequences s P tenqpdq | d P
Du�. Moreover, for any state q � rssSQ of the FIFO queue, there is a unique sequence in kerpqq, i.e.,
|kerpqq|� 1. This implies that different sequences in s P tenqpdq | d P Du� represent different states. As
a consequence, the transition relation of LTSpSQq can be described in a concise way. Let s be a kernel
sequence of a queue. We have, for the updater methods,

rssSQ
enqpaq
Ñ rs �enqpaqsSQ , rssSQ

deqpaq
Ñ rs1sSQ if s� enqpaq � s1, and rssSQ

deqpnullq
Ñ rεsSQ if s� ε

and for the observer methods

rssSQ
headpaq
Ñ rssSQ if s� enqpaq � s1, rssSQ

headpnullq
Ñ rssSQ if s� ε, and rssSQ

sizepnq
Ñ rssSQ if |s|� n.

Let s be a kernel sequence. A kernel sequence s1 is

– enqpaq-out-of-order-k from s if s1 � u �enqpaq �v where s� uv, v is minimal, and |v|� k;
– deqpaq-out-of-order-k from s if s1 � vu where s� v �enqpaq �u, v is minimal, and |v|� k;
– deqpnullq-out-of-order-k from ε iff |s1|� k;
– headpaq-out-of-order-k (from itself) if s1 � v �enqpaq �u, v is minimal, and |v|� k;
– headpnullq-out-of-order-k (from itself) if |s1|� k;
– sizepnq-out-of-order-k (from itself) if ||s1|�n|� k.

2 In Appendix C, we present another example (relaxed shared counter) that instantiates the quantitative relaxation
framework.



Having these definitions in place, it is not difficult to show the following result, which describes the effect
of the generic out-of-order relaxation on a FIFO queue.

Proposition 51 Let s and s1 be two kernel sequences of a FIFO queue. Then rssSQ
m,k
Ñ rs1sSQ in the out-

of-order relaxation with segment cost if and only if s1 is m-out-of-order-k from s.

From the proof of Proposition 51 (Appendix A.1) it is evident that for enq,deq, and head methods,
discard cost suffices. For size methods, we need also filling cost.

Finally, let us mention that the relaxations can be applied method-wise. In Section 6 we implement
k-relaxed queues with only enq and deq methods, of which only deq is relaxed. We specify these relaxed
queues in the next definition.

Definition 52 We name three versions of k-relaxations of FIFO queues.

– The out-of-order k-FIFO queue is obtained using segment cost for deq-transitions and maximal cost.
In such a k-FIFO queue, each deq dequeues an element that is at most k away from the head.

– The lateness k-FIFO queue is obtained using segment cost and deq-interval cost. In the lateness
k-FIFO queue at most the k-th consecutive deq dequeues the head.

– The restricted out-of-order k-FIFO queue is obtained using the segment cost and deq-interval re-
stricted maximal cost. In the restricted out-of-order k-FIFO queue, each deq removes an element at
most k� l away from the head, where l is the current lateness of the head.

Stack. Here we describe the out-of-order relaxation of a stack. For simplicity, we focus only on push and
pop methods. A complete treatment of stack relaxations (including observer methods) can be found in
Appendix A.2. The set of methods of a stack, with data in a set D, is

ΣS � tpushpdq | d P DuYtpoppdq | d P DYtnulluu.

The sequential specification SS consists of all stack-valid sequences, i.e., sequences in which each pop

pops the top of the stack and each push pushes an element at the top.
Kernel sequences of a stack are all sequences s P tpushpdq | d P Du�. Moreover, for any state q we

again have |kerpqq|� 1. Therefore, the transitions of LT SpSSq are fully described by

rssSS
pushpaq
Ñ rs �pushpaqsSS , rssSS

poppaq
Ñ rs1sSS if s� s1 �pushpaq, and rssSS

poppnullq
Ñ rεsSS if s� ε.

In a similar way as for FIFO queue, we can define when a kernel sequence is m-out-of-order-k from an-
other kernel sequence, for m being a stack method. The analogue of Proposition 51 (obtained by replacing
“FIFO queue” by “stack”) holds for a stack as well, resulting in analogous stack relaxations.

Priority queue. The data set of a priority queue needs to be well-ordered, since data items carry priority
as well. We take the data set to be N. The smaller the number, the higher the priority. As for a stack,
we present only the core of the out-of-order relaxation for priority queue, more details (also for observer
methods) can be found in Appendix A.3. The set of methods is

ΣP � tinspnq | n P NuYtrempnq | n P NYtnulluu.

The sequential specification SP consists of all priority-queue-valid sequences, i.e., sequences in which
each rem removes an element with highest available priority.

Kernel sequences of a priority queue are all sequences s P tinspnq | n P Nu�. Unlike for queue and
stack, there may be more than one sequence representing a state. For a state q, if s P kerpqq, then also any
permutation of s is in kerpqq. Nevertheless, the order provides a canonical representative of a state: the



unique kernel sequence ordered in non-decreasing priority3. Let s be a canonical kernel sequence. The
transitions of LT SpSPq are fully described by

rssSP
inspnq
Ñ rs �inspnqsSP , rssSP

rempnq
Ñ rs1sSS if s� inspnq � s1, and rssSS

rempnullq
Ñ rεsSS if s� ε.

Again, we define when a kernel sequence is m-out-of-order-k from another kernel sequence, where m is
a priority queue method. Then the analogue of Proposition 51 (obtained by replacing “FIFO queue” by
“priority queue”) holds as well, resulting in analogous priority queue relaxations.

6 Implementations of relaxed data structures

In this section, we examine k-relaxed versions of a concurrent FIFO queue (k-FIFO queue). We present
prototype implementations with restricted out-of-order relaxation, out-of-order relaxation, and lateness
relaxation of the dequeue operation. We have also implemented a k-stack and a k-priority queue, based
on Treiber’s lock-free stack [12] and a skiplist-style priority queue [8], respectively. The details of the
implementations and experiments are similar to the k-FIFO implementations but omitted due to lack of
space.

k-FIFO queue. Our prototype implementation of a k-FIFO queue is based on the lock-free Michael-Scott
FIFO queue (MS) [9], which uses a singly-linked list as queue representation. With MS the enqueue
operation always operates on the tail pointer using a compare-and-swap (CAS) operation and the dequeue
operation always operates on the head pointer using a CAS operation. In a high-contention scenario where
multiple threads work concurrently and in parallel on the queue these pointers may become a scalability
and performance bottleneck. Hence, reducing contention on any of these pointers may be beneficial. In our
prototype implementation, we leave the enqueue operation unmodified, but relax the dequeue operation
in a generic way to reduce contention on the head pointer. In particular, we add a field to each queue
element for marking elements as already returned but not yet removed from the queue so that elements
other than the oldest element can be returned at any time without being immediately removed from the
queue [1]. Marked elements are removed later more efficiently when the head pointer is set to a younger
element.

ana5a4a3a2a1Head

restricted out-of-order k=3

out-of-order k=3

Tail

lateness k=3

Fig. 1. The ranges of elements which may be returned by a dequeue operation of a k-FIFO queue with restricted
out-of-order, out-of-order, and lateness relaxation with k � 3. An already returned but not yet removed element (a2)
is marked in grey.

Figure 1 shows the ranges of elements which may be returned by a dequeue operation of a k-FIFO
queue with restricted out-of-order relaxation (light grey), out-of-order relaxation (medium grey), and
lateness relaxation (dark grey) with k � 3. An already returned but not yet removed element (a2) is
marked in grey.

3 The canonical representative is a matter of choice. Equally justified is using the unique kernel sequence ordered in
non-increasing priority, in which case the transitions of a priority queue resemble more the transitions of a stack,
highlighting the duality between FIFO queues and stacks.



Listing 1.1. Generic lock-free dequeue operation of a k-FIFO queue
1 Object dequeue() {
2 whi le (true) {
3 Node first = head;
4 Node last = tail;
5 Node next = first.next;
6 i f (first == head) {
7 i f (first == last) {
8 i f (next == null) {
9 re turn null;

10 }
11 set(tail , next);
12 } e l s e {
13 index = select_unmarked_element(first , k);
14 i f (index < 0) {
15 fixup(head);
16 } e l s e {
17 element = get_element(first , index);
18 i f (mark(first , index)) {
19 re turn element;
20 }
21 }
22 }
23 }
24 }
25 }

The generic structure of a lock-free dequeue operation of a k-FIFO queue is shown in Listing 1.1. If the
queue is empty, null is returned. If it is not empty, the dequeue operation attempts to select an unmarked
element in the queue using the select_unmarked_element function, which has to be specified for each
concrete relaxation. If no element is selected, e.g. because all elements in the queue have already been
returned but not yet removed, the dequeue operation attempts to fix up the head pointer by setting it, using
a CAS operation, to the oldest unmarked element, if it exists; otherwise, to null to indicate an empty
queue. If the fixup of the head pointer fails due to a concurrent head modification by another thread,
the dequeue operation retries. If an unmarked element is selected, it is marked using a CAS operation
which may fail as well if another thread marks the same element concurrently. In that case, the dequeue
operation also retries. Otherwise, the marked element is returned. Note that the head pointer is modified
only when all of the k oldest elements have already been returned which significantly reduces contention
on the head pointer in comparison to the non-relaxed version.

The restricted out-of-order relaxation is implemented in the select_unmarked_element function by
traversing the linked list of enqueued elements starting from the head pointer and selecting randomly an
unmarked element among the k oldest elements. The out-of-order relaxation is implemented similarly
except that an unmarked element is randomly selected among the k oldest unmarked elements indepen-
dently of the number of marked elements in the queue. The lateness relaxation is implemented using a
counter that is incremented atomically whenever an element other than the oldest element is returned. If
the counter is less than k the select_unmarked_element function traverses the linked list of enqueued
elements starting from the head pointer and selects randomly an unmarked element in between the queue
head and tail. Otherwise, it resets the counter to zero and returns the oldest element. We refer the reader
to Appendix B for a proof that these algorithms are instances of out-of-order relaxation.

Experiments. We present performance and scalability data obtained with our previously discussed pro-
totype implementations of the restricted out-of-order, out-of-order, and lateness k-FIFO queues. Baseline
is the MS FIFO queue. We also include data obtained with our implementations of the so-called Random
Dequeue Queue (RQ) and Segment Queue (SQ) [1]. Both RQ and SQ implement restricted out-of-order
k-FIFO queues. So-called Scal queues [6, 7] also implement relaxed FIFO queues with similar relax-
ations as ours but are based on distributed FIFO queues and load balancing. Scal queues have already



been shown to provide superior performance and scalability in comparison to many existing regular and
relaxed FIFO queue implementations.

All experiments ran on a server machine with four 6-core 2.1GHz AMD Opteron processors (24 cores)
and 48GB of memory on Linux 2.6.32. In all experiments the benchmark threads are executed with real-
time priorities to minimize system jitter. All algorithms are implemented in C and compiled using gcc
4.3.3 with -O3 optimizations. Allocation and deallocation of queue elements is done thread-locally to
minimize cache contention and other scalability issues that may be introduced by the allocator.
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Fig. 2. Throughput in data structure operations/ms with an increasing number of threads on a 24-core server machine

The data shown in Figure 2(a) was obtained by having each thread alternate between enqueueing and
dequeueing an element one million times where the queue is initially empty and k� 24. MS shows the best
performance for up to eight threads. Beyond that our prototype implementations generally perform better
(also than RQ and SQ) but only in an area of negative scalability for all. The data shown in Figure 2(b)
was obtained by having each thread dequeue one million elements where the queue is initially filled with
t (number of threads) million elements and again k � 24. Here our prototype implementations generally
show better performance and scalability in comparison to MS, RQ, and SQ. In sum, contention can be
reduced using our prototypes but so far only on dequeue-dominated workloads.

7 Related work

The general topic of this paper is part of a recent trend towards scalable but semantically weaker concur-
rent data structures [11]. We first discuss work related to our framework and then focus on work related
to our prototype implementations.

Framework. Our work generalizes previous work on so-called semantical deviation and k-FIFO
queues [6] which correspond to restricted out-of-order k-FIFO queues here. So-called weak k-FIFO
queues [7] correspond to a combination of out-of-order and k-FIFO queues here.

Our work is closely related to relaxing the semantics of concurrent data structures through quasi-
linearizability [1]. Just like quasi-linearizability, we provide quantitative relaxations of concurrent data
structures. Unlike quasi-linearizability which uses syntactic distances, our relaxations are based on se-
mantical distances from a sequence to the sequential specification. In our opinion, semantical distances
are better suited than syntactic ones, they lead to intuitively expected relaxations. We briefly present



the quasi-linearizability approach here and identify three main differences between our work and quasi-
linearizability.

We call two sequences x, x1, both of length n, permutation equivalent, written x � x1, if there exists
a permutation p on t1, . . . ,nu such that for all 1 ¤ i ¤ n, xpiq � x1pppiqq. We write x �p x1 to emphasize
the permutation witnessing x � x1. In such a case, the permutation distance between x and x1 is given as
maxt|i� ppiq| |1 ¤ i ¤ nu. Let S be a sequential specification over Σ such that x1 P S and x R S. In [1]
the cost of obtaining x1 from x is defined via a collection D of subsets of Σ. For A P D, let kA denote the
permutation distance between x|A and x1|A. Then, x1 is quasi-linearizable with quasi-linearization factor
Q : DÑ N, if for all A P D, kA ¤ QpAq. The main differences to our work are:

1. Distance of sequence x to specification S. For a queue, consider the sequence

enqp1qenqp2qenqp3qdeqp1qdeqp2qenqp4qdeqp4q

whose last transition has a discarding cost of 1, since the last dequeue operation is executed when the
queue contains 3 and 4, with the former at the head. In order to capture this, quasi-linearizability employs
a scheme where only enq operations are allowed to commute. Formally, quasi-linearizability uses D �
tEnq,Dequ with QpEnqq � k and QpDeqq � 0, where Enq (resp., Deq) contains all enq (resp., deq)
symbols. However, with this scheme the sequence

deqpiqnenqpiqn

which removes n elements before these elements are enqueued will always be in any k relaxation of the
queue because the permutation equivalent sequence enqpiqndeqpiqn will give kEnq � kDeq � 0, indepen-
dent of the value n. In [1] the authors argue that there is no quasi-linearization factor for such imple-
mentations, i.e., if an implementation generates such a propheting-deque sequence, then it will generate
anything. Thus, quasi-linearizability is not suitable for assigning relaxation costs to single sequences.
Observe that the latter sequence contains transitions with 8 discarding cost, which means that prophetic
executions are not allowed at all in our relaxation.

2. Semantic distance. For a stack, consider the sequence

x� pushpaqrpushpiqpoppiqsnpushpbqrpushpjqpoppjqsmpoppaq

where prior to the last pop operation, the stack contains a and b, with the latter at the top position. The
distance in the out-of-order relaxation induced by maximal path cost and segment (discarding) cost in this
case is 1 since the element popped is immediately after the top entry. However, with quasi-linearization
factor Q, it is impossible to precisely capture out-of-order penalty for data structures like stacks. The
reason is that in order to get a permutation x1 of x such that x1 is a valid sequence of a stack, either one
of poppaq or pushpbq has to move over m copies of push and pop operations, or one of pushpaq or
pushpbq has to move over n copies of push and pop operations. So either D is empty which allows for
any sequence to be in the relaxation or it is always possible to pick the values for n and m such that the
penalty is arbitrarily large.

3. Limits of permutation. For a queue, consider the sequence

x� enqp1qenqp2qsizep4q

This represents a relaxation for the size operation which can return values close enough to the actual size
of the queue. In this example, the return value of the size operation overshoots by 2, which intuitively
should also be the cost of the relaxation. However, since quasi-linearizability can only explore permu-
tation equivalent sequences, such a relaxation is not expressible. Observe that the maximum cost with
segment transition cost for x is 2, obtained by considering any state which has a sequence of length 4 in
its kernel.



As opposed to relaxing the sequential specification of a concurrent data structure one may also relax
the consistency condition, e.g., quiescent consistency [2] instead of linearizability. We should note that
linearizable out-of-order relaxation of a queue is stronger than a quiescently consistent queue. For this,
consider a concurrent history c with two threads t1 and t2. c starts with the invocation of pushpaq by t1,
followed by a sequence poppiqnpushpiqn all executed by t2. This sequence is quiescently consistent for
queue because the reordering of methods (even those that do not overlap in time) is allowed as long as
they are not separated by a quiescent state. On the other hand, any linearization of c will have to observe
out-of-order pop operations since push and pop operations do not overlap. A comprehensive overview of
variants of weaker and stronger consistency conditions than linearizability can be found in [4].

Implementation. Our prototype implementations are related to implementations of relaxed FIFO queues
such as the previously mentioned Random Dequeue and Segment Queues [1] as well as Scal queues [6,
7]. In [3] the authors show that implementing deterministic data structure semantics requires expensive
synchronization mechanisms which may prohibit scalability in high contention scenarios. We agree with
that and show in our experiments that the non-determinism introduced in the sequential specification of
our k-FIFO queues may result in reduced contention. In [10] the authors present a work-stealing queue
with relaxed semantics where queue elements may be returned multiple times instead of just once. In
comparison to other state-of-the-art work-stealing queues with non-relaxed semantics this may provide
better performance and scalability. Again the introduced non-determinism pays off.

References

1. Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability: Relaxed consistency for improved concurrency. In
Proc. Conference on Principles of Distributed Systems (OPODIS), pages 395–410. Springer, 2010.

2. J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the ACM, 41:1020–1048, 1994.
3. H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and M. Vechev. Laws of order: expensive syn-

chronization in concurrent algorithms cannot be eliminated. In Proc. of Principles of Programming Languages
(POPL), pages 487–498. ACM, 2011.

4. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers Inc., 2008.
5. M. Herlihy and J. Wing. Linearizability: a correctness condition for concurrent objects. ACM Transactions on

Programming Languages and Systems (TOPLAS), 12(3):463–492, 1990.
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A FIFO queue, stack, priority queue relaxations

In this section we fill in the missing details from Section 5.

A.1 FIFO queue

To ease the notation, we write S instead of SQ throughout this section. We first show the following two
simple properties.

Lemma A1 If s is a kernel sequences of a FIFO queue, then s P tenqpdq | d P Du�.

Proof. Let s P S. If s� u �headpaq �v, then s�S uv and hence it is not minimal in its class. The same holds
if s� u �sizepnq �v. Now, if s� u �deqpaq �v, then it must be that u� u1 �enqpaq �u2 and s�S u1u2v, and
again s is not minimal in its class. In all cases, the arguments that a sequence is S-equivalent to another
sequence can be made precise by induction on the length of the future. [\

Lemma A2 Let s,s1 P tenqpdq | d P Du�. If s�S s1, then s� s1.

Proof. Let s,s1 P tenqpdq | d P Du� and s � s1. Then it must be the case that s � u �enqpaq � v, s1 � uw
and w does not start with enqpaq for some u � enqpa1q . . .enqpanq, n ¥ 0, or vice versa. Now take
x� deqpa1q . . .deqpanq. We have sx �deqpaq P S but s1xdeqpaq R S showing that s�S s1. [\

As a consequence, we get what we were after.

Corollary A3 Kernel sequences of a FIFO queue are exactly the elements of tenqpdq | d P Du� and for
every state q of a FIFO queue, it holds that |kerpqq|� 1.

Proof. Let s P tenqpdq | d P Du� and let k P rssS be a kernel sequence. By Lemma A1, k P tenqpdq | d P
Du�. By Lemma A2 since k �S s we get that k � s. Hence, the elements of tenqpdq | d P Du� are kernel
sequences. Another application of Lemma A2 yields that |kerpqq|� 1 for any state q. [\

We next present the proof of Proposition 51.

Proof (of Proposition 51). Let q � rssS,q1 � rs1sS with s,s1 kernel sequences. Note that from Def-
inition 41 and from the m-out-of-order-k definitions we have that the following are equivalent: (1)
scostpq,m,q1q � 0; (2) q m

Ñ q1; and (3) s1 is m-out-of-order-0 from s. For costs larger than 0, we treat
each method separately. Careful inspection of Definition 41 and the transitions of a FIFO queue shows
the following:

1. m� enqpaq. Then scostpq,m,q1q � k>0 if and only if condition p1qpiq applies for |v|� k>0 if and

only if s� uvw,s1 � u1vw, and ruwsS
enqpaq
Ñ ru1wsS for |v|� k>0 if and only if w� ε, u1 � u �enqpaq,

s� uv,s1 � u1v for |v|� k>0 if and only if s� uv,s1 � u �enqpaq �v for |v|� k>0 if and only if s1
is enqpaq-out-of-order-k from s.

2. m� deqpaq. Then scostpq,m,q1q � k>0 if and only if condition p1qpiiq applies for |v|� k>0 if and

only if s� uvw,s1� uvw1, and ruwsS
deqpaq
Ñ ruw1sS for |v|� k>0 if and only if u� ε, w� enqpaq�w1,

s � vw,s1 � vw1 for |v| � k>0 if and only if s � v �enqpaq �w1,s1 � vw1 for |v| � k>0 if and only
if s1 is deqpaq-out-of-order-k from s.

3. m � deqpnullq. Then scostpq,m,q1q � k > 0 if and only if condition p1qpiq or p1qpiiq applies for
|v|� k>0 if and only if (since deqpnullq is only possible in the empty state) s� s1� v for |v|� k>0
if and only if s1 is deqpnullq-out-of-order-k from s.



4. m � headpaq. Then scostpq,m,q1q � k> 0 if and only if condition p1qpiiq applies for |v| � k> 0 if

and only if s� uvw,s1 � uvw, and ruwsS
headpaq
Ñ ruwsS, rusS

headpaq
Û rusS for |v|� k>0 if and only if

u� ε, w� enqpaq �x, s� vw,s1 � s for |v|� k>0 if and only if s� v �enqpaq �x,s1 � s for |v|� k>0
if and only if s1 is headpaq-out-of-order-k from s.

5. m � sizepnq. In this case it is not important to distinguish cost 0 from cost larger than 0. We have
scostpq,m,q1q � k if and only if s � s1 and one of (1)(i), (1)(ii), (2)(i), or (2)(ii) holds, if and only if
s � s1 and (s � uvw, |uw|� n, |v|� k in case |s|¥ n or s � uw, |uvw|� n, |v|� k in case |s|¤ n),
if and only if s� s1 and (|s|� n�k or |s|� n�k), if and only if s� s1 and ||s|�n|� k if and only if
s is sizepnq-out-of-order-k from s1.

[\

A.2 Stack

The set of methods of a stack (including observer methods), with data in a set D and Dnull �DYtnullu,
is

ΣS � tpushpdq | d P DuYtpoppdq | d P DnulluYtheadpdq | d P DnulluYtsizepnq | n P Nu.

The sequential specification SS consists of all stack-valid sequences, i.e., sequences in which each pop

pops the top of the stack, each push pushes an element at the top, each top observes the top of the stack,
and each size returns the correct size of the queue. The sequence sS � pushpaqpoppaqpushpbq is in the
sequential specification SS, whereas the sequence tS � pushpaqpushpbqpoppaq is not.

Similarly as for FIFO queue, we can show the following.

Lemma A4 Kernel sequences of a stack are exactly the elements of tpushpdq | d P Du� and for every
state q of a stack, it holds that |kerpqq|� 1.

Therefore, the transitions of LT SpSSq are fully described by

rssSS
pushpaq
Ñ rs �pushpaqsSS , rssSS

poppaq
Ñ rs1sSS if s� s1 �pushpaq, and rssSS

poppnullq
Ñ rεsSS if s� ε.

and for observer methods by

rssSS
toppaq
Ñ rssSS if s� s1 �pushpaq, rssSS

toppnullq
Ñ rssSS if s� ε, and rssSS

sizepnq
Ñ rssSS if |s|� n.

Let s be a kernel sequence. A kernel sequence s1 is

– pushpaq-out-of-order-k from s if s1 � u �pushpaq �v where s� uv, v is minimal, and |v|� k;
– poppaq-out-of-order-k from s if s1 � uv where s� u �pushpaq �v, v is minimal, and |v|� k;
– poppnullq-out-of-order-k from ε if |s1|� k;
– toppaq-out-of-order-k (from itself) if s1 � u �pushpaq �v, v is minimal, and |v|� k;
– toppnullq-out-of-order-k from ε if |s1|� k;
– sizepnq-out-of-order-k (from itself) if ||s1|�n|� k.

Just like for a FIFO queue, by inspecting all cases, we can show the following proposition.

Proposition A5 Let s and s1 be two kernel sequences of a stack. Then rssSS
m,k
Ñ rs1sSS in the out-of-order

relaxation with segment cost if and only if s1 is m-out-of-order-k from s.

Again, the relaxations can be applied method-wise. We implemented k-relaxed stacks with only push

and pop methods, of which only pop is relaxed according to the segment cost (discard cost). The inter-
pretation of the path cost functions from Section 4 and the corresponding relaxations are as follows:



– The maximal cost represents the maximal distance from the top of a popped element, leading to an
out-of-order k-stack. Hence, in an out-of-order k-stack, each pop pops an element that is at most k
away from the top.

– The deq-interval cost represents lateness, i.e., the maximal number of consecutive pops needed to
pop the top, leading to a lateness k-stack. Hence, in a lateness k-stack at most the k-th consecutive
pop pops the top.

– The deq-interval restricted maximal cost represents the maximal size of a “shrinking window” start-
ing from the top from which elements can be popped, leading to a restricted out-of-order k-stack. In
a restricted out-of-order k-stack, each pop removes an element at most k� l away from the top, where
l is the current lateness of the top.

A.3 Priority queue

The set of methods (including observer methods) for a priority queue is

ΣP � tinspnq | n P NuYtrempnq | n P NnulluYttoppnq | n P NnulluYtsizepnq | n P Nu

where N is the data and priority set and Nnull � NYtnullu.
We first present two simple properties related to kernel sequences of a priority queue, of which the

second one is obvious.

Lemma A6 Kernel sequences of a priority queue are all sequences in tinspnq | n P Nu�.

Proof. It is easy to see that for any sequence that contains other methods than ins there is a shorter
equivalent sequence. Hence, kernel sequences contain only ins methods. For the opposite direction,
assume that for a sequences of ins methods there exists a shorter sequence equivalent to it. Then there is
a method in the first one that is not in the second, and we can provide a future (sequence of rem methods)
that will distinguish them, contradicting the equivalence assumption. [\

Lemma A7 Let s,s1 P tinspnq | n PNu�. Then s�S s1 if and only if s� s1, i.e., two kernel sequences are
equivalent if and only if they are permutation equivalent.

Hence, in a priority queue, there may be more than one kernel sequence in a state. Nevertheless, the order
provides a canonical representative of a state, that we define next.

Definition A8 The canonical representative of a state q of a priority queue is the unique kernel sequence
ordered in non-decreasing priority (note: the smaller the number the higher the priority). We call a
sequence canonical kernel sequence if it is the canonical representative of some state.

Let s be a canonical kernel sequence. The transitions of LT SpSPq are fully described by

rssSP
inspnq
Ñ rs �inspnqsSP , rssSP

rempnq
Ñ rs1sSP if s� inspnq � s1, and rssSP

rempnullq
Ñ rεsSP if s� ε.

Let s be a canonical kernel sequence. A canonical kernel sequence s1 is

– rempnq-out-of-order-k from s if s1 � vu where s� v �inspnq �u, v is minimal, and |v|� k;
– rempnullq-out-of-order-k from ε if |s1|� k;
– toppnq-out-of-order-k (from itself) if s1 � v �inspnq �u, v is minimal, and |v|� k;
– toppnullq-out-of-order-k (from itself) if |s1|� k;
– sizepnq-out-of-order-k (from itself) if ||s1|�n|� k.



Note that inspnq-transitions are always in order, such transitions have either zero or infinite segment cost.
Again, by inspecting all cases of Definition 41, similarly as for FIFO queue and stack, we can show

the following proposition.

Proposition A9 Let s and s1 be two canonical kernel sequences of a priority queue. Then rssSP
m,k
Ñ rs1sSP

in the out-of-order relaxation with segment cost if and only if s1 is m-out-of-order-k from s.

We mention the implemented versions of priority queue out-of-order relaxations. They are k-relaxed
priority queues with only ins and rem methods, of which only rem is relaxed according to the segment
cost (discard cost). The interpretation of the path cost functions from Section 4 and the corresponding
relaxations are as follows:

– The maximal cost represents the maximal number of elements with a higher priority than a removed
element, leading to an out-of-order k-priority queue. Hence, in an out-of-order k-priority queue, each
rem removes an element for which there are at most k elements with higher priority in the queue.

– The rem-interval cost represents lateness, i.e., the maximal number of consecutive removes needed to
remove a top-priority element, leading to a lateness k-priority queue. Hence, in a lateness k-priority
queue at most the k-th consecutive rem removes a top-priority element.

– The rem-interval restricted maximal cost represents the maximal size of a “shrinking window” start-
ing from “the” top priority element from which elements can be dequeued, leading to a restricted
out-of-order k-priority queue. In a restricted out-of-order k-priority queue, each rem removes an el-
ement for which there are at most k� l higher-priority elements, where l is the current lateness of
“the” top priority element.

B Prototype Implementations and Relaxations

In this section, we will sketch the proof that each prototype implementation, given in Section 6, is a
linearizable out-of-order relaxation.

Lemma B1 The following are satisfied by the prototype implementations given in Sec. 6:

– The restricted out-of-order k-FIFO queue implementation is linearizable with respect to the restricted
out-of-order k-FIFO queue.

– The out-of-order k-FIFO queue implementation is linearizable with respect to the out-of-order k-
FIFO queue.

– The lateness k-FIFO queue implementation is linearizable with respect to the lateness k-FIFO queue.

Proof (Sketch). For all implementations, the commit point of a deq operation that returns null is the read
of first.next (line 5) in the last iteration of the main loop. For the out-of-order and the restricted out-of
order k-FIFO queue implementations, the commit point of a deq operation that returns a non-null value
is the step selecting the node to be eventually removed by this operation (line 13). For the lateness k-FIFO
queue implementation, the commit point of a deq operation that returns a non-null value is either the
atomic increment of the counter keeping track of the number of consecutive times the head element is not
removed when the counter has value less than k, or the removal of the node pointed to by head (the current
oldest element), in case counter was found to be equal to k. For an enq operation in all implementations,
we use the same commit points as that of the original MS queue. For simplicity, we assume that the nodes
that cannot be reached from the head pointer are reclaimed by a garbage collector only when no thread
can access them.

In order to show that the linearizability claim holds for the given implementations, we have to show
that there is a sequential history in which the concurrent methods are ordered according to their commit



points in the respective relaxations of queue. This is equivalent to requiring that whenever a deq commits,
the node it reads the value from must satisfy the out-of-order constraints (cf. Fig. 1). First, observe that
if a deq returns null, it means that at its commit point, head and tail were pointing to the same node
and the next pointer of this common node was null. This implies that at the commit point, the queue is
logically empty. For a deq returning a non-null value, we have the following cases.

– For restricted out-of-order k-FIFO queue implementation, the node selected cannot be more than k
nodes (marked and unmarked combined) away from the head. This is because the head pointer4

moves only towards the end of the list, and if at some point q during the execution, head and some
node n reachable from head are l nodes apart, then at all points q1 occurring after q, either n is
reachable from head and they are j ¤ l nodes apart, or n is not reachable from head. Once n cannot
be reached from head, it stays unreachable.

– For out-of-order k-FIFO queue implementation, the node selected cannot be more than k unmarked
nodes away from head. The argument is similar to the restricted out-of-order case.

– For the lateness k-FIFO queue implementation, we have two sub-cases to consider:
Counter less than k. If the counter was j<k prior to incrementing, then it means that at most j many

deq’s have committed by removing elements all of which are different from the oldest element.
This implies that at the commit point for this deq the lateness requirement will not be violated.

Counter equal to k. Since we assume that this deq operation returned a non-null value, it must be
the value contained in the oldest element (the node pointed to by head). As long as the counter’s
value is equal to k, only the nodes pointed to by head are allowed to be removed, and their
commit points (removal of the node from the list) are in correct temporal order. Since all of such
concurrent deq calls can only terminate after either resetting the counter or seeing a value less
than k, they cannot contribute to the lateness count of any other element. Once the counter is reset
to 0 by any of the concurrent deq’s, the node pointed to by head at the time of resetting becomes
the new oldest element (some node n1), satisfying the property that no node reachable from n1

could have been removed between the counter being reset and the update of the head pointer.
[\

C Shared Counter

In this section, we will further illustrate the application of our framework. We consider a new data struc-
ture, called a shared counter. We will define two relaxations on this data structure and follow the steps
of our methodology, by defining cost domains, transition and path cost functions for each relaxation. We
begin with the formal definition of a shared counter.

Definition C1 A shared counter SSC is a set of sequences over the alphabet ΣSC � tget&Incpiq | i P Nu.
The empty sequence ε is in Ssc and a sequence x of length n> 0 is in Ssc iff xpiq � get&Incpiq, for all
1¤ i¤ n.

Monotonicity Relaxation. First, we remove the requirement that the numbers returned by get&Inc are
consecutive, but maintain the requirement that in any sequence a number occurs at most once. For in-
stance,

get&Incp2qget&Incp4qget&Incp1qget&Incp5q

is a sequence that will be allowed by this relaxation. Following our framework, we should define, after
assuming that LTSpSSCq is completed to LTScpSSCq, the transition and path cost functions. We choose the
cost domain to be ZYt8u.

4 Strictly speaking, the next pointer of the sentinel node head points to.



For the transition cost, we define a slightly modified version of the segment cost, called directional
cost. Note that each state q in LTSpSSCq has a unique sequence in its equivalence class and a unique

transition enabled at it. In other words, a state q can do the transition q
get&Incpiq

Ñ q1 in LTSpSSCq iff
q� kerpqq � tget&Incp1q . . .get&Incpi�1qu and q1 � tget&Incp1q . . .get&Incpiqu. For simplicity,
we will identify q with the sequence it contains. The directional cost will measure the cost of updating
the current state so that the transition it does is enabled.

Definition C2 The directional cost of transition t � pq,m,q1q, written as costdirptq, is equal to5 |q̂|� |q|
if there exists q̂ such that q̂ m

Ñ q1 is a transition in LTSpSSCq; otherwise, costdirptq � 8.

Observe that t is allowed in LTSpSSCq if and only if its directional cost is 0.
For the path cost, we define a separation path cost function, pcostSC, that returns the longest separation

between two consecutively generated numbers in the sequence, provided that no number appears more
than once in the sequence. Otherwise, if a number occurs more than once in a sequence, then its path cost
is set to 8.

Definition C3 Let τ � pm1,k1q . . .pmn,knq be a quantitative trace of qtrpSSCq. The separation path cost
pcostSC :qtrpSSCq Ñ ZYt8u maps τ to 8 if there exist 1 ¤ i< j ¤ n such that mi � m j; otherwise,
pcostSCpτq �maxt|ki| |1¤ i¤ nu.

Monotonicity relaxation of the shared counter is achieved when instantiating our framework with the
directional cost and the separation path cost.

Uniqueness Relaxation. As another alternative relaxation for shared counter implementation, we now
consider ignoring the requirement that the numbers generated in a sequence are consecutive but maintain
that they remain in a monotonically non-decreasing order. For instance,

get&Incp1qget&Incp4qget&Incp4qget&Incp5q

is a sequence that will be allowed by this relaxation. Note that, the two relaxations, uniqueness and
monotonicity, are not comparable.

Again, with LT ScpSSCq as before, we set the cost domain to ZYt8u. For transition cost, we define a
new function called iteration cost.

Definition C4 Let t � pq,m,q1q be a transition in LTScpSSCq. The iteration cost of t, written as icostptq,
is given by |u|�1, where u P Σ�

SC is the (unique) sequence such that q u
Ñ q1.

Intuitively, there are two categories of transitions allowed by the uniqueness relaxation. The first category
consists self-loops at each state. The iteration cost for this category is given as -1, since the only sequence
that causes self-loop in the original specification LTSpSSCq is the empty sequence. The second category
consists of arbitrarily long invisible iterations for a single transition. The iteration cost for this category
is one less than the total number of transitions, which assigns an iteration cost of 0 to a (correct) single
iteration. Again, a transition gets cost 0 if and only if it was allowed in the original specification.

If we are interested in counting the maximum leap due to a single transition, we can simply use the
path cost function pcostmax (see Section 4), which will return the maximum iteration number per transition
over any given path. However, imagine that we are interested in how many times the shared counter fails
to produce a new number. For that, we can define a new path cost function called total failure cost as
follows:

5 Here we use |q| for the length of the unique (kernel) sequence in q.



Definition C5 Let τ � pm1,k1q . . .pmn,knq be a quantitative trace of qtrpSSCq. The total failure cost,
pcost f ail :qtrpSSCq Ñ ZYt8u, maps τ to the number of elements of the form pget&Incpiq,�1q in τ,
pcost f ailpτq � |ti |ki ��1u|.

We have thus showed two possible ways to quantitatively relax a shared counter. This example again
demonstrates the flexibility of our framework: defining different cost functions (both for transition and
path costs) allows to obtain different intuitively desirable relaxations.


