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Abstract. We introduce fast and scalable algorithms that implement bounded-
and unbounded-size, lock-free, linearizable k-FIFO queues with empty (and full)
check. Logically, a k-FIFO queue can be understood as queue where each ele-
ment may be dequeued out-of-order up to k− 1 or as pool where each element
is dequeued within a k-bounded number of dequeue operations. We show exper-
imentally that there exist optimal and robust k that result in best performance
and scalability. We then demonstrate that our algorithms outperform and outscale
many state-of-the-art concurrent queue and pool algorithms on different work-
loads. We finally demonstrate a prototypical controller which aims at identifying
optimal k automatically at runtime for best performance.

1 Introduction

We are interested in the design and implementation of fast concurrent FIFO queues and
pools whose access performance scales with the number of available processing units
on parallel, shared memory hardware. We introduce two algorithms that implement
bounded-size (BS) and unbounded-size (US), lock-free, linearizable k-FIFO queues
with empty (and full) check. Logically, enqueueing an element into a k-FIFO queue
appends the element at the end of the queue. A k-FIFO queue can then be understood as
queue where each element may be dequeued out-of-order up to k−1 or as pool where
each element is dequeued within m+k number of dequeue operations and m is the num-
ber of elements in the pool when the element was enqueued. Thus a 1-FIFO queue is a
regular FIFO queue and a k-FIFO queue provides bounded fairness [6] for finite k. The
details are discussed in Section 2.

The BS algorithm maintains a bounded-size array of elements that is dynamically
partitioned into segments of size k called k-segments while the US algorithm maintains
an unbounded list of k-segments. Thus up to k enqueue and k dequeue operations may
be performed in parallel. The US algorithm simplifies for k = 1 to an algorithm that
implements a lock-free FIFO queue similar to the lock-free Michael-Scott FIFO queue
(MS) [12] but without a sentinel node. The details are discussed in Section 3. Logically,
the idea of k-segments is similar to the idea of segments in the Segment Queue (SQ) [4].
On data structure (but not code) level SQ is related to the US algorithm, which improves
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upon SQ in performance and scalability through less overhead and reduced contention
and in features through a linearizable empty check. We discuss the relation to SQ in
detail in Section 4.

In Section 5, before presenting a detailed performance analysis of our algorithms
relative to a variety of concurrent FIFO queue and pool algorithms, we show experi-
mentally that there exist optimal and robust k that result in best performance and scal-
ability. Interestingly, performance generally increases with k but only up to a certain
point which is determined by a tradeoff between degree of parallelism and management
overhead. Our algorithms outperform and outscale all other algorithms that we consid-
ered in almost all threading and contention scenarios. Finally, we discuss a prototypical
controller that adjusts k dynamically and automatically at runtime outperforming any
static and manual k configuration on the workload that we considered.

2 k-FIFO Sequential Specification

enqueuek(e)(q,w) = (q · e,w)

dequeuek(e)(q,w) =





(ε,k) if e = null,q = ε (L1)
(q′,k) if q = e ·q′ (L2)
(e1 . . . ei−1ei+1 . . . en,w−1) if e = ei,q = e1 . . . en, (L3)

1 < i≤ min(w,n)
error otherwise (L4)

Fig. 1. k-FIFO sequential specification

We define a sequential specification of the k-FIFO queue algorithms to facilitate
a high-level discussion here and a linearizability argument in Section 3. The formal
definition of the sequential specification is shown in Figure 1. Similar to a regular FIFO
queue, a k-FIFO queue provides an enqueue and a dequeue operation.

Let the tuple (q,w) denote the state of a k-FIFO queue where q is the sequence of n
queue elements with n≥ 0 and w≥ 1 is an integer called window size, which determines
the range of elements starting at the oldest queue element out of which one element is
selected to be removed and returned by a dequeue operation. The initial, empty state of
the k-FIFO queue is (ε,k).

The enqueue operation is a function from queue states and queue elements to queue
states. It logically inserts an element at the end of the queue. The dequeue operation
is a function from queue states and queue elements or the null return value, which in-
dicates an empty queue, to queue states. It logically removes an element among the
elements e1 . . . ei from the queue where i = min(w,n), if the queue is not empty, and
otherwise returns null. The window size w is maintained with every enqueue operation,
decreases with every dequeue operation that returns an element ei with i > 1, and is
reset to k when element e1 is dequeued. Intuitively, with a k-FIFO queue up to k−1
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younger elements may be dequeued before a given element where each dequeued el-
ement is not younger than the w-oldest element, and null is only returned when the
queue is empty. In particular, dequeueing an element ei from a k-FIFO queue e1 . . . en
with k > 0 may take anywhere between l and u dequeue operations that may return the
elements e1 . . . ei−1ei+1 . . . eu+1 where l = b i

kc · k and u = min(l + k,n)−1. Thus a 1-
FIFO queue is a regular FIFO queue and a k-FIFO queue provides bounded fairness [6]
for finite k. For brevity we use the terms enqueue and dequeue with queues as well as
pools throughout the paper.

3 k-FIFO Queue Algorithms

We present the algorithms of the lock-free bounded-size (BS) and unbounded-size (US)
k-FIFO queues for k > 0. The pseudo code of the algorithms is depicted in Listing 1.1.
The occurrence of the ABA problem is made unlikely through standard ABA counters.
We refer to values enhanced with ABA counters as atomic values. The gray highlighted
code is only used in the BS version. We present the general idea of the algorithms fol-
lowed by a detailed discussion of the BS algorithm. We then discuss the US algorithm
by outlining its differences to the BS algorithm and finally show informally lineariza-
bility with respect to the k-FIFO sequential specification.

When implementing a linearizable FIFO queue the head and tail pointers may be-
come scalability bottlenecks. The principle idea of the BS and US k-FIFO queue algo-
rithms is to reduce contention on the head and tail pointers by maintaining an array (BS)
or a list (US) of so-called k-segments each consisting of k slots, instead of maintaining
an array or list of plain queue elements. A slot may either point to null indicating an
empty slot or may hold a so-called item, which is our implementation concept for en-
queued elements. An enqueue operation is served by the tail k-segment and a dequeue
operation is served by the head k-segment. Hence, up to k enqueue and k dequeue op-
erations may be performed in parallel.

The BS k-FIFO queue algorithm is based on an array of atomic values of a given
size, which may hold pointers to the actual inserted items or point to null indicating
an empty slot. For simplicity we restrict size to be a multiple of k. The queue tail
and queue head pointers are also atomic values. Both initially point to the slot at index
zero.

The enqueue method is depicted in Listing 1.1 (line 1). Given an item representing
an element to be enqueued, the method returns true when the item is successfully
inserted and false when the queue is full. First the method tries to find an empty slot
in the tail k-segment which is located in between the indices [tail,tail+ k[ using the
find empty slot method (line 5). The find empty slot method randomly selects
an index in between [tail,tail+ k[ and then linearly searches at most TESTS ≥ 1
array locations for an empty slot starting with the selected index wrapping around at
index tail+ k−1. In our experiments we observed that TESTS = k results in the best
performance. Afterwards the enqueue method checks if the k-FIFO queue state has
been consistently observed by checking whether tail changed in the meantime (line
6) which would trigger a retry. If an empty slot is found (line 7) the method tries to insert
the item at the location of the empty slot using a compare-and-swap (CAS) operation
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Listing 1.1. Lock-free bounded-size (BS) and unbounded-size (US) k-FIFO queue al-
gorithms. Gray highlighted code is only used in the BS version

1 bool enqueue(item):
2 while true:
3 tail_old = get_tail();
4 head_old = get_head();
5 item_old , index = find_empty_slot(tail_old , k, TESTS);
6 if tail_old == get_tail():
7 if item_old.value == EMPTY:
8 item_new = atomic_value(item , item_old.counter + 1);
9 if CAS(&tail_old[index], item_old , item_new):

10 if committed(tail_old , item_new , index):
11 return true;
12 else:
13 if queue_full(head_old , tail_old):
14 if segment_not_empty(head_old , k) && head == get_head():
15 return false;
16 advance_head(head_old , k);
17 advance_tail(tail_old , k);
18

19 bool committed(tail_old , item_new , index):
20 if tail_old[index] != item_new:
21 return true;
22 head_current = get_head();
23 tail_current = get_tail();
24 item_empty = atomic_value(EMPTY , item_new.counter + 1);
25 if in_queue_after_head(tail_old , tail_current , head_current):
26 return true;
27 else if not_in_queue(tail_old , tail_current , head_current):
28 if !CAS(&tail_old[index], item_new , item_empty):
29 return true;
30 else: //in queue at head
31 head_new = atomic_value(head_current.value , head_current.counter + 1);
32 if CAS(&head , head_current , head_new):
33 return true;
34 if !CAS(&tail_old[index], item_new , item_empty):
35 return true;
36 return false;
37

38 item dequeue():
39 while true:
40 tail_old = get_tail();
41 head_old = get_head();
42 item_old , index = find_item(head_old , k);
43 if head_old == head:
44 if item_old.value != EMPTY:
45 if head_old.value == tail_old.value:
46 advance_tail(tail_old , k);
47 item_empty = atomic_value(EMPTY , item_old.counter + 1);
48 if CAS(&head_old[index], item_old , item_empty):
49 return item_old.value;
50 else:
51 if head_old.value == tail_old.value && tail_old == get_tail():
52 return null;
53 advance_head(head_old , k);

(line 9). If the insertion is successful the method verifies whether the insertion is also
valid by calling the committed method (line 10), as discussed below. If any of these
steps fails a retry is performed. If no empty slot is found in the current tail k-segment
the enqueue method tries to increment tail by k using CAS (line 17) and then retries.
Hence in the worst-case only TESTS slots may be used in a k-segment if TESTS < k.
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If tail cannot be incremented without overtaking head (line 13) and the k-segment
to which head old points is empty (line 14) the method tries to increment head by k
using CAS (line 16). If this k-segment is not empty and head old did not change in the
meantime the queue is full and false is returned (line 15).

The committed method (line 19) validates an insertion. It returns true when the
insertion is valid and false when it is not valid. An insertion is valid if the inserted item
already got dequeued at validation time by a concurrent thread (line 20, 28, 37) or the
tail k-segment where the item was inserted is in between the current head k-segment and
the current tail k-segment but not equal to the current head k-segment (line 25). If the
tail k-segment where the item was inserted is not in between the current head k-segment
and the current tail k-segment (line 28) the method tries to undo the insertion using CAS
(line 28). If the tail k-segment where the item was inserted is equal to the current head
k-segment a race with concurrent dequeueing threads may occur which may not have
observed the insertion and may try to advance the head pointer in the meantime. This
would result in loss of the inserted item. To prevent that the method tries to increment
the ABA counter in the head atomic value using CAS (line 32). If this fails a concurrent
dequeue operation may have changed head which would make the insertion potentially
invalid. Hence after that the method tries to undo the insertion using CAS (line 34).

The dequeue method is depicted in Listing 1.1 (line 38). It returns an item if the
queue is not empty, and returns null if the queue is empty. Similarly to the enqueue
method the dequeue method first tries to find an item in between the indices [head,head+
k[ using the find item method. The find item method randomly selects an index in
between [head,head+ k[ and then linearly searches for an item starting with the se-
lected index wrapping around at index head+ k− 1. Afterwards the dequeue method
checks if the queue state has been consistently observed by checking whether head
changed in the meantime (line 43) which would trigger a retry. If an item was found
(line 44) the method first checks whether head equals tail (line 45). If this is the case
the method tries to increment tail by k to prevent starvation of items in the queue and
to provide a linearizable empty check. Afterwards the method tries to remove the item
using CAS (line 48) and returns it if the removal was successful (line 49). Otherwise
a retry is performed. If no item is found, head equals tail, and tail did not change
in the meantime null is returned indicating an empty queue (line 52). Otherwise the
method tries to increment head by k (line 53) and performs a retry.

Note that to hold n items in the BS k-FIFO queue size has to be at least d n
TESTSe×

k+ k. The additional k-segment is necessary to implement linearizable empty and full
checks.

3.1 US k-FIFO Queue Algorithm

The US k-FIFO queue algorithm differs from the BS version in the implementation
of the committed, advance tail, and advance head methods. The gray highlighted
code in Listing 1.1 is not used in the US version since there is no full state. Hence the
enqueue method always returns true.

The US k-FIFO queue algorithm implements a FIFO queue of k-segments, called
k-segment queue. An enqueue operation is served by the tail k-segment. When this k-
segment is full a new k-segment is added to the tail. A dequeue operation is served by
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the head k-segment. When this k-segment is empty it is removed from the k-segment
queue except if it is the only k-segment in the queue.

Any FIFO queue algorithm may be used to implement the k-segment queue. We
developed a lock-free FIFO queue which performs better than the lock-free Michael-
Scott FIFO queue (MS) [12] when used as k-segment queue in the US k-FIFO queue
algorithm. We implemented the k-segment queue such that there is always at least one
k-segment, even if it is empty, in the queue, which enables fast and direct access to
the head and tail k-segments. The pseudo code of our k-segment queue is shown in
the Appendix B. The advance tail method adds a new k-segment to the k-segment
queue if tail did not change in the meantime, i.e., tail still points to tail old. The
advance head method removes the head k-segment if it is not the only k-segment in the
queue and if it did not change in the meantime, i.e., head still points to head old. Be-
fore removing the head k-segment it marks that k-segment as deleted. The committed
method in the US version is similar to the BS version. It decides based on whether the
current head k-segment is marked as deleted or not if it has to undo the insertion, instead
of performing a range check.

The US algorithm simplifies for k = 1 to an algorithm that implements a lock-free
FIFO queue similar to the MS algorithm but without a sentinel node. In particular,
the empty US 1-FIFO queue contains an empty 1-segment in which the first enqueued
element is stored, in contrast to MS. Subsequent dequeue operations may lead to a queue
with an empty 1-segment at the head but only because 1-segments are removed lazily
(which may also be done eagerly avoiding empty 1-segments altogether in a non-empty
queue). The pseudo code is in Appendix C.

3.2 Correctness

We informally show that both the BS and US k-FIFO queue algorithms are lineariz-
able [8] with respect to the k-FIFO sequential specification in Section 2.

The linearization point [8] of the enqueue method that inserts an item is the suc-
cessfully executed CAS in line 9 if the committed method subsequently returns true. In
the BS version, the queue may be full. The linearization point of the full check is in line
14 if the tail k-segment was found to be full, an item was found in the head k-segment,
and the head pointer did not change in the meantime.

The linearization point of the dequeue method that returns an item is the success-
fully executed CAS in line 48. The linearization point of the empty check is in line 51 if
no item was found in the head k-segment and head still points to tail.

The BS and US k-FIFO queue algorithms are linearizable with respect to the k-FIFO
sequential specification if for each obtained concurrent history [8] there is a sequential
history in which concurrent methods are ordered according to their linearization points
and these linearization points are within the k-FIFO sequential specification. This is
equivalent to requiring that for the linearization point of a dequeue method, the value of
the item must satisfy the k-FIFO sequential specification. An enqueue method always
inserts an item at a random position in the tail k-segment. An enqueue method encoun-
tering the full state in the BS k-FIFO queue means that at the linearization point tail is
pointing to the k-segment before head, the tail k-segment is full, and the head k-segment
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contains at least one item. This implies that at the linearization point, the queue is log-
ically full. A dequeue method returning null means that at its linearization point head
and tail were pointing to the same k-segment and the k-segment was found to be empty.
This implies that at the linearization point, the queue is logically empty. Let l be the
number of items in the head k-segment and let w be the window size which according
to the k-FIFO sequential specification is set to k before the first item gets dequeued
from that k-segment. For the dequeue method returning a non-null item the selected
item cannot be younger than the l-oldest item in the k-FIFO queue for l ≤ w ≤ k. This
is because one of the l items is the youngest item in the k-segment and younger items
than the l-oldest item can only get dequeued when the head pointer advances, i.e., after
dequeueing the l items for which w ≥ l. Moreover, an item can at most be overtaken
by l− 1 ≤ w− 1 ≤ k− 1 younger items. This is because no new items can get added
to the head k-segment when dequeue methods remove items from it. If head and tail
point to the same k-segment the dequeue method first advances tail before an item
is removed. Hence the head k-segment has to become empty before younger items are
dequeued, i.e., after dequeueing the l +1 items with w≥ l.

The BS and US k-FIFO queue algorithms are lock-free [7] since the enqueue and
dequeue methods may not make progress only when other concurrent threads success-
fully enqueue or dequeue an element. An informal discussion is in the Appendix A.

4 Related Work

The topic of this paper is part of a recent trend towards scalable but semantically weaker
concurrent data structures [13, 10, 11] acknowledging the intrinsic difficulties of im-
plementing deterministic semantics in the presence of concurrency [5]. We relate our
BS and US k-FIFO queue algorithms to existing concurrent data structure algorithms,
which we also implemented and evaluated in a number of experiments in Section 5.

The following queues implement regular unbounded-size FIFO queues: a standard
lock-based FIFO queue (LB), the lock-free Michael-Scott FIFO queue (MS) [12], and
the flat-combining FIFO queue (FC) [9] (FC). LB locks a mutex for each data structure
operation. With MS each thread uses at least two CAS operations to insert an element
into the queue and at least one CAS operation to remove an element from the queue.
FC is based on the idea that a single thread performs the queue operations of multiple
threads by locking the whole queue, collecting pending queue operations, and applying
them to the queue. The lock-free bounded-size FIFO queue (BS) [1] is based on an
array of fixed size where elements get inserted and removed circularly and enqueue
operations may fail when the queue is full, i.e. every array slot holds an element.

The Random Dequeue Queue (RD) [4] implements the k-FIFO sequential specifi-
cation where k = r and r defines the range [0,r−1] of a random number. RD is based
on MS where the dequeue operation was modified in a way that the random number
determines which element is returned starting from the oldest element. RD does not
scale better than MS in experiments reported on elsewhere [4].

The Segment Queue (SQ) [4] is similar to the US k-FIFO queue but without a lin-
earizable empty check. Hence SQ may return empty even if the queue is not empty. SQ
is implemented by a lock-free FIFO queue of segments but here the queue of segments
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may become empty. A segment can hold s queue elements. An enqueue operation in-
serts an element at an arbitrary position of the youngest segment. A dequeue operation
removes an arbitrary element from the oldest segment. When a segment becomes full
a new segment is added to the queue. When a segment becomes empty it is removed
from the queue. A thread performing a dequeue operation starts looking for an element
in the oldest segment. If the segment is empty it is removed and the thread checks the
next oldest segment and so on until it either finds an element and returns that, or else
may return null. SQ does not perform better than MS in experiments reported on else-
where [4]. A reason for that may be that SQ tries to atomically swap each value in a
segment using CAS until a valid item is removed or inserted, respectively. In comparison
the US k-FIFO queue algorithm first tries to find a corresponding index in the k-segment
and only performs a CAS on the location of the index.

The lock-free linearizable pool (BAG) [14] is based on thread-local lists of blocks
of elements. Each block is capable of storing up to a constant number of elements. A
thread performing an enqueue operation always inserts elements into the first block of
its thread-local list. Once the block is full, a new block is inserted at the head of the
list. A thread performing a dequeue operation always tries first to find an element in
the blocks of its thread-local list. If the thread-local list is empty, work stealing from
other threads’ lists is used to find an element. The work-stealing algorithm implements
a linearizable empty check by repeatedly scanning all threads’ lists for elements and
marking already scanned blocks which are unmarked when elements are inserted. The
implementation works only for a fixed number of threads.

The lock-free elimination-diffraction pool (ED) [3] uses FIFO queues to store el-
ements. Access to these queues is balanced using elimination arrays and a diffraction
tree. While the diffraction tree acts as a distributed counter balancing access to the
queues, elimination arrays in each counting node increase disjoint-access parallelism.
Operations hitting the same index in an elimination array can either directly exchange
their data (enqueue meets dequeue), or avoid hitting the counter in the node that con-
tains the array (enqueue meets enqueue or dequeue meets dequeue). If based on non-
blocking FIFO queues, the presented algorithm lacks a linearizable empty check. If
based on blocking queues, there is no empty state at all. Parameters, i.e., elimination
waiting time, retries, array size, tree depth, number of queues, queue polling time, need
to be configured to adjust ED to different workloads.

The synchronous rendezvousing pool (RP) [2] implements a single elimination ar-
ray using a ring buffer. Both enqueue and dequeue operations are synchronous. A de-
queue operation marks a slot identified by its thread id and waits for an enqueue op-
eration to insert an element. An enqueue operation traverses the ring buffer to find a
waiting dequeue operation. As soon as it finds a dequeue operation they exchange val-
ues and return. There exist adaptive and non-adaptive versions of the pool where the
ring buffer size is adapted to the workload.

5 Experiments

We evaluate the performance and scalability of the BS and US k-FIFO queue algo-
rithms. All experiments ran on an Intel-based server machine with four 10-core 2.0GHz
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Intel Xeon processors (40 cores, 2 hyperthreads per core), 24MB shared L3-cache, and
128GB of memory running Linux 2.6.39. We implemented a framework to benchmark
and analyze different queue and pool implementations under configurable scenarios.
The framework emulates a multi-threaded producer-consumer workload where each
thread is either a producer or a consumer. The framework can be configured for a dif-
ferent number of threads (n), number of enqueue or dequeue operations each thread per-
forms (o), the computational load performed between each operation (c), the number of
pre-filled items (i), and the queue implementation to use. The computational load c be-
tween two consecutive operations is created by iteratively calculating π. A computation
with c = 1000 takes a total of 2300ns on average. We fix the operations per thread to
o = 1000000 and the number of producers and consumers to n

2 for all benchmarks. We
evaluate the performance and scalability of the queues under low (c = 10000), medium
(c = 7000), high (c = 4000) and very high (c = 1000) contention. The framework uses
static preallocation for memory used in the data structures with touching each page
before running the benchmark to avoid paging issues.

5.1 Understanding k

In order to provide a better understanding of the effect of k on performance and scal-
ability we first evaluate the performance of the BS version with increasing k. We omit
the measurements for the US version as the results are similar. Performance is measured
under very high (c = 1000) contention without (i = 0) and with (i = 5000) pre-filling
the queue. Other contention scenarios lead to similar results. We relate the performance
of our producer-consumer benchmark, measured in operations per millisecond, to the
number of retries per operation and the number of so-called failed reads. Retries are
an indicator of contention among CAS operations. They occur whenever an enqueue
(line 2) or a dequeue (line 39) operation has to take another iteration of the while loop.
Failed reads are attempts to find empty slots or items in find empty slot (line 5) and
find item (line 42), respectively. Both retries and failed reads produce overhead and
should thus be minimized in order to improve overall performance.

Figure 2 depicts this performance analysis with non-pre-filled results on the left and
pre-filled results on the right side. Intuitively, one would expect that a larger k results in
fewer retries because of reduced contention among the inserting (line 9) and removing
(line 48) CAS operations. Figure 2(b) shows that this is true for a setting where the queue
is pre-filled with items, i.e., a queue with an initially dense population in the k-segment
that is used for dequeueing. However, for a workload where the queue is initially empty
there exists a turning point from which the number of retries starts to grow with in-
creasing k. Figure 2(a) depicts this behaviour which appears when the k-segment used
for dequeueing is only sparsely populated most of the time. In this case the dequeueing
operations are likely to contend on the same, rare items in the head k-segment. Fig-
ure 2(c) and 2(d) illustrate the number of failed reads. As long as the number of retries
is decreasing, failed reads are slowly increasing with larger k since the k-segments to
search for items or empty slots get bigger. As soon as the number of retries reaches the
turning point in the pre-filled case failed reads are increasing exponentially. Figure 2(e)
and 2(f) then visualize the impact of an increasing k on the performance and show that
there exists an optimal k with respect to performance. The optimal k is also robust in the

9



 0.0625

 0.1250

 0.2500

 0.5000

 1.0000

 2.0000

 4.0000

 8.0000

16.0000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

re
tr

ie
s 

p
e
r 

o
p
e
ra

tio
n
 (

lo
g
sc

a
le

, 
le

ss
 is

 b
e
tt
e
r)

k (logscale)

1 thread
20 threads

40 threads
60 threads

80 threads
100 threads

(a) BS number of retries per operation of
very high contention producer-consumer
benchmark (c = 1000, i = 0)

 0.0625

 0.1250

 0.2500

 0.5000

 1.0000

 2.0000

 4.0000

 8.0000

16.0000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

re
tr

ie
s 

p
e
r 

o
p
e
ra

tio
n
 (

lo
g
sc

a
le

, 
le

ss
 is

 b
e
tt
e
r)

k (logscale)

1 thread
20 threads

40 threads
60 threads

80 threads
100 threads

(b) BS number of retries per operation of
very high contention producer-consumer
benchmark (c = 1000, i = 5000)

      1

      4

     16

     64

    256

   1024

   4096

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

fa
ile

d
 r

e
a
d
s 

p
e
r 

o
p
e
ra

tio
n
 (

lo
g
sc

a
le

, 
le

ss
 is

 b
e
tt
e
r)

k (logscale)

1 thread
20 threads

40 threads
60 threads

80 threads
100 threads

(c) BS number of failed reads per oper-
ation of very high contention producer-
consumer benchmark (c = 1000, i = 0)

      1

      4

     16

     64

    256

   1024

   4096

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

fa
ile

d
 r

e
a
d
s 

p
e
r 

o
p
e
ra

tio
n
 (

lo
g
sc

a
le

, 
le

ss
 is

 b
e
tt
e
r)

k (logscale)

1 thread
20 threads

40 threads
60 threads

80 threads
100 threads

(d) BS number of failed reads per oper-
ation of very high contention producer-
consumer benchmark (c = 1000, i = 5000)

      0

   2000

   4000

   6000

   8000

  10000

  12000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

o
p
e
ra

tio
n
s/

m
s 

(m
o
re

 is
 b

e
tt
e
r)

k (logscale)

1 thread
20 threads

40 threads
60 threads

80 threads
100 threads

(e) BS performance of very high con-
tention producer-consumer benchmark
(c = 1000, i = 0)
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(f) BS performance of very high con-
tention producer-consumer benchmark
(c = 1000, i = 5000)

Fig. 2. Very high and low contention producer-consumer microbenchmarks with an increasing
number of k for different amounts of threads on a 40-core (2 hyperthreads per core) server

sense that there exists only a single range of close-to-optimal k. Furthermore, the popu-
lation density of a k-segment that is used for dequeueing has an impact on the range of k
where good performance can be observed. If k gets too large, i.e., the population in the
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(a) Performance and scalability of very high
contention
producer-consumer benchmark (c = 1000, i =
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(b) Performance and scalability of high con-
tention
producer-consumer benchmark (c = 4000, i =
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(c) Performance and scalability of medium con-
tention
producer-consumer benchmark (c = 7000, i =
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(d) Performance and scalability of low con-
tention
producer-consumer benchmark (c = 10000, i =
0)

Fig. 3. Producer-consumer microbenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) server

dequeueing segment is sparse, the performance significantly decreases. The depicted
behaviour of k suggests a controller that optimizes k to dynamic workloads.

5.2 Performance and Scalability

We study the performance of LB, BS, MS, FC, RD, SQ, BS k-FIFO and US k-FIFO
queues, and ED, BAG, and RP pools. For the RD, SQ, BS k-FIFO, and US k-FIFO
queues we configure r = s = k = 64, which turned out be a good k (on average) for a
broad range of thread combinations and workloads. We use the non-adaptive version
of the RP algorithm since the number of threads is constant in each run. The BAG im-
plementation differs from the originally proposed one in a randomized work stealing
selection. This modification was necessary to make BAG competitive in our bench-
marks. Figure 3(a) illustrates the results for the very high contention workload where
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(b) US k-FIFO queue

Fig. 4. Variable-load producer-consumer microbenchmarks with an increasing number of static k
versus a dynamically controlled k on a 40-core (2 hyperthreads per core) server

MS and RD perform best for up to 20 threads. With more than 20 threads scalability is
negative for all data structures except RP, BS k-FIFO, and US k-FIFO. The BS k-FIFO
queue algorithm is the only algorithm that scales near-linearly.

Similarly, the results with our high contention scenario, depicted in Figure 3(b),
show that the scalability turnaround is at 30 threads and that both k-FIFO versions
outperform and outscale all other algorithms. As the contention gets less in Figures 3(c)
and 3(d), the turnaround gets shifted to a larger number of threads. The difference in
performance and scalability of all algorithms is less significant with more computational
load. Note that SQ returns up to 2000 times falsely null due to the non-linearizable
empty check.

5.3 Dynamic k

We implemented a prototypical PID controller which aims at identifying optimal k au-
tomatically at runtime for best performance. Each thread i stores performed enqueue
operations oi and performed retries in enqueue operations ri in thread-local counters.
The controller runs in an extra thread, reads the thread-local counters of all n threads
periodically (100ms), and resets them to 0 after reading. The goal of the controller is to

minimize the ratio
n
∑

i=1
ri/

n
∑

i=1
oi. The controller operates in the approximately linear part

of this ratio. With the US k-FIFO algorithm the controller determines the k-segment
size that enqueue operations use to create new segments which store their size for de-
queue operations to look up. For the BS k-FIFO algorithm the maximum k needs to be
bounded to provide a linearizable empty check.

We use a variable-load producer-consumer microbenchmark to evaluate the perfor-
mance of the controller. Each thread performs o = 4000000 operations and starts with
c = 1000. The workload changes for each thread whenever o/4 operations are per-
formed by changing c to 500, 2000, and 1500. We compare the BS and US k-FIFO
algorithms with dynamically controlled k to the unmodified baseline versions with stat-
ically configured k ranging from 1 to 120. Figure 4(b) shows the performance of the
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dynamic US k-FIFO queue. Here the controller improves the performance by 60% over
the best statically configured configurations. The dynamic BS k-FIFO queue performs
about 30% faster than the best statically configured configuration, see Figure 4(a).

6 Conclusions

We have introduced fast and scalable algorithms that implement bounded- and unbounded-
size, lock-free, linearizable k-FIFO queues with empty (and full) check. We showed
experimentally for both algorithms that there exist optimal and robust k that result in
best performance and scalability. Moreover, we demonstrated in experiments that our
algorithms outperform and outscale many state-of-the-art concurrent queue and pool
algorithms on different concurrent producer-consumer workloads. Finding the right k
for different workloads is key for best performance and scalability. We suggest to ei-
ther set k statically to around the number of available parallel processing units or use a
controller which automatically adjusts k at runtime as shown in our experiments.
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A k-FIFO Queues are Lock-free

An algorithm is lock-free if it guarantees that infinitely often some method call finishes
in a finite number of steps [7]. This liveness property ensures that at least one thread
in a system makes progress at any time. We show informally that k-FIFO queues are
lock-free, c.f. [12].

In the US and BS k-FIFO queues an enqueue operation only loops in the following
cases:

– The condition in line 6 fails. This is the case if tail is changed concurrently by
some other thread in line 17, after the tail k-segment has been observed as full, or
in line 46, to prohibit starvation of items in the first k-segment. A retry that happens
because other threads observed the tail k-segment as full (and thus did advance
tail) does not cause starvation, because tail would have to be fixed in the local
thread anyways (causing a retry). Both types of retries are bounded by one loop
iteration. If tail changes subsequently, other threads were able to perform enqueue
or dequeue operations.

– The condition in line 7 never becomes true. This is the case if the k-segment is
always full, meaning that other threads did succeed in enqueueing items.

– The inserting CAS in line 9 fails. This is the case if either the item or the ABA
counter of the item in the slot changed. The item changes if some other thread was
able to concurrently enqueue an item , indicating overall progress. Furthermore the
CAS also fails (due to the ABA counter) if an item has been concurrently enqueued
and dequeued in this slot. This is either the case if some threads have been faster
and concurrently performing an enqueue and dequeue operation, leaving the item
back as null, or some enqueue operation had to be undone (see next point). In both
cases the system makes progress.

– The committed method returns false in line 10. This is the case if an opera-
tion successfully enqueued an item, and then successfully undid the operation by
removing it. The undo step is required if both, head and tail, have been moved
while an item has been inserted and the inserted item is not in the range of those
two pointers. However, moving head and tail is only done while enqueueing and
dequeueing items, indicating overall progress.

– (Only BS.) The condition in line 13 is true and the one following in line 14 is
false. This is the case if the queue is observed as full while the head k-segment is
empty. It is then necessary to make this head k-segment usable again (for insertion)
by advancing head. This can only be a condition for starvation if other threads
succeed in enqueueing and dequeueing items.

In the US and BS k-FIFO queues a dequeue operation only loops in the following
cases:

– The condition in line 43 fails. This is the case if head is changed concurrently by
some other thread in line 16 (BS only) or line 53, after observing that the head
k-segment is empty. A retry that happens because other threads observed the head
k-segment as empty (and thus did advance head) does not cause starvation, because
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head would have to be fixed in the local thread anyways (causing a retry). This
type of retry is bounded by one loop iteration. If head changes subsequently, other
threads were able to dequeue items.

– The dequeueing CAS in line 48 fails. This is the case if either the item or the ABA
counter of the item in the slot changed. The item changes if some other thread was
able to concurrently dequeue an item, indicating overall progress. Furthermore the
CAS may also fail (due to a different item, or same item with different ABA counter)
if a dequeue and enqueue operation happen concurrently.

– The condition in line 51 fails. This is the case if some other thread observed the
head k-segment as empty. The condition then only fails if head is not tail or tail
changed. This means that the pointer to the empty head k-segment can be advanced,
which is bounded by one round and would otherwise have to be done in the local
thread.
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B k-Segment Queue

Listing 1.2. k-segment queue algorithm
1 global head;
2 global tail;
3

4 void init():
5 new_ksegment = calloc(sizeof(ksegment));
6 head = atomic_value(new_ksegment , 0);
7 tail = atomic_value(new_ksegment , 0);
8

9 atomic_value get_head():
10 return head;
11

12 atomic_value get_tail():
13 return tail;
14

15 void advance_tail(atomic_value tail_old):
16 tail_current = get_tail();
17 if tail_current == tail_old:
18 next_ksegment = tail_old ->ksegment.next;
19 if tail_old == get_tail():
20 if next_ksegment.value != null:
21 CAS(&tail , tail_old , next_ksegment);
22 else:
23 new_ksegment = calloc(sizeof(ksegment));
24 if CAS(&tail_old ->ksegment.next , next_ksegment , new_ksegment):
25 CAS(&tail , tail_old , new_ksegment);
26

27 void advance_head(atomic_value head_old):
28 head_current = head;
29 if head_current = head_old:
30 tail_current = get_head();
31 tail_next_ksegment = tail_current ->ksegment.next;
32 head_next_ksegment = head_current ->ksegment.next;
33 if head_current == get_head():
34 if head_current.value == tail_current.value:
35 if tail_next_ksegment.value == null:
36 return;
37 if tail_current == get_tail():
38 CAS(&tail , tail_current , tail_next_ksegment);
39 head_old ->item.deleted = true;
40 CAS(&head , head_old , head_next_ksegment);
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C Unbounded-size (US) 1-FIFO Queue

Listing 1.3. Unbounded-size (US) 1-FIFO queue algorithm (get head, get tail,
advance head, and advance tail are implemented by the pseudo code of the k-
segment queue in Listing 1.2 with k = 1)

1 bool enqueue(item):
2 while true:
3 tail_old = get_tail();
4 head_old = get_head();
5 item_old = tail_old ->item;
6 if tail_old == get_tail():
7 if item_old.value == EMPTY:
8 item_new = atomic_value(item , item_old.counter + 1);
9 if CAS(&tail_old ->item , item_old , item_new):

10 return true;
11 else:
12 advance_tail(tail_old);
13

14 item dequeue():
15 while true:
16 tail_old = get_tail();
17 head_old = get_head();
18 item_old = head_old ->item;
19 if head_old == head:
20 if item_old.value != EMPTY:
21 item_new = atomic_value(EMPTY , item_old.counter + 1);
22 if CAS(&head_old ->item , item_old , item_new):
23 return item_old.value;
24 else:
25 if head_old.value == tail_old.value && tail_old == get_tail():
26 return null;
27 advance_head(head_old);
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