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Abstract. We introduce the notion of a k-FIFO queue which may dequeue el-
ements out of FIFO order up to a constant k ≥ 0. Retrieving the oldest element
from the queue may require up to k+ 1 dequeue operations (bounded fairness),
which may return elements not younger than the k + 1 oldest elements in the
queue (bounded age) or nothing even if there are elements in the queue. A k-FIFO
queue is starvation-free for finite k where k+1 is what we call the worst-case se-
mantical deviation (WCSD) of the queue from a regular FIFO queue. The WCSD
bounds the actual semantical deviation (ASD) of a k-FIFO queue from a regu-
lar FIFO queue when applied to a given workload. Intuitively, the ASD keeps
track of the number of dequeue operations necessary to return oldest elements
and the age of dequeued elements. We show that a number of existing concurrent
algorithms implement k-FIFO queues whose WCSD are determined by config-
urable constants independent from any workload. We then introduce so-called
Scal queues, which implement k-FIFO queues with generally larger, workload-
dependent as well as unbounded WCSD. Since ASD cannot be obtained without
prohibitive overhead we have developed a tool that computes lower bounds on
ASD from time-stamped runs. Our micro- and macrobenchmarks on a state-of-
the-art 40-core multiprocessor machine show that Scal queues, as an immediate
consequence of their weaker WCSD, outperform and outscale existing imple-
mentations at the expense of moderately increased lower bounds on ASD.

1 Introduction

We are interested in designing and implementing concurrent FIFO queues that pro-
vide high performance and positive scalability on shared memory, multiprocessor and
multicore machines. By performance we mean throughput measured in queue opera-
tions per second. Scalability is performance as a function of the number of threads in
a system. Figure 1 depicts an exemplified benchmark scenario. The ideal result is lin-
ear scalability and high performance already with few threads. This is nevertheless an
unlikely outcome on multicore hardware where shared memory access is typically or-
ders of magnitude slower than core computation. A still challenging yet more realistic
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Fig. 1. Performance and scalability with an increasing number of threads in an exemplified bench-
mark scenario

outcome and our goal in particular is positive scalability, i.e., increasing performance
with an increasing number of threads, up to as many threads as possible, and high
performance already with few threads. Achieving both performance and scalability is
important since positive scalability but low performance with few threads may be even
worse than negative scalability.

The key to high performance and positive scalability is parallelization with low se-
quential overhead. Earlier attempts to improve the performance and scalability of sim-
ple, lock-based FIFO queues include the lock-free Michael-Scott FIFO Queue [14] and,
more recently, the Flat-Combining FIFO Queue [12], which we have implemented for
our experiments. Both algorithms tend to provide better performance and scale to more
threads than lock-based FIFO queues. Another two recent examples of algorithms that
aim at improving performance and scalability are the Random Dequeue Queue [2] and
the Segment Queue [2], which we have also implemented and study here. An important
difference to the former two algorithms is that the latter two provide only relaxed FIFO
semantics in the sense that elements may be returned out of FIFO order. The goal is to
increase parallelism further while the challenge is to maintain bounds on the relaxation
of semantics.

Based on the same principle of improving performance and scalability at the ex-
pense of strict FIFO semantics we propose Scal queues for implementing FIFO queues
with relaxed semantics. The idea is to maintain (a distributed system of) p instances of a
regular FIFO queue (we chose Michael-Scott for our experiments) and then select, upon
each enqueue or dequeue operation, one of the p instances before performing the opera-
tion on the selected instance without further coordination with the other instances. Thus
up to p queueing operations may be performed in parallel. Selection is done by a load
balancer whose implementation has an immediate impact on performance, scalability,
and semantics. In particular, the load balancer determines how close the semantics of
the Scal queue is to the semantics of a regular FIFO queue. We have implemented a va-



riety of load balancers for our experiments to study the trade-off between performance,
scalability, and semantics with Scal queues relative to the previously mentioned queues.

With the straightforward metric of operation throughput in place for measuring per-
formance, the only remaining challenge is to quantify and to measure difference in
semantics. For this purpose, we introduce the notion of semantical deviation as a metric
for quantifying the difference in semantics between a queue with relaxed FIFO seman-
tics and a regular FIFO queue. Intuitively, when running a given queue implementation
on some workload, semantical deviation keeps track of the number of dequeue opera-
tions necessary to return oldest elements and the age of dequeued elements. However,
measuring actual semantical deviation on existing hardware is only possible indirectly
and approximatively through time-stamping invocation and response events of opera-
tions online, and then computing offline, using a tool that we developed, an approxima-
tion of the actual run that took place. The approximation is a sequence of linearization
points that leads to a lower bound on the actual semantical deviation. We also define an
upper bound on the actual semantical deviation of a given run but have so far not been
able to compute it efficiently.

Here a key observation is that there exist upper bounds on semantical deviation in-
dependent of at least all workloads in a given class (e.g. with a fixed number of threads)
for most of the implementations we consider. It turns out that these implementations are
instances of the notion of a k-FIFO queue for different k≥ 0 where k+1 is their worst-
case semantical deviation from a regular FIFO queue. A k-FIFO queue may dequeue
elements out of FIFO order up to k. In particular, retrieving the oldest element from
the queue may require up to k+ 1 dequeue operations (bounded fairness), which may
return elements not younger than the k+1 oldest elements in the queue (bounded age)
or nothing even if there are elements in the queue. Depending on the implementation k
may or may not depend on workload characteristics such as number of threads or may
even be probabilistic. The non-determinism in the choice of elements to be returned
provides the potential for performance and scalability which, in our benchmarks, tend
to increase with increasing k.

We summarize the contributions of this paper: (1) the notion of k-FIFO queues,
(2) Scal queues, (3) the notion of semantical deviation, and (4) micro- and macrobench-
marks showing the trade-off between performance, scalability, and semantics.

In Section 2, we formally define k-FIFO queues and then discuss the existing con-
current algorithms we consider. In Section 3, we introduce Scal queues along with the
load balancers we have designed and implemented. Semantical deviation is formally
defined in Section 4. Related work is discussed in Section 5, our experiments are pre-
sented in Section 6, and conclusions are in Section 7.

2 k-FIFO Queues

We introduce the notion of a k-FIFO queue where k ≥ 0. Similar to a regular FIFO
queue, a k-FIFO queue provides an enqueue and a dequeue operation but with a strictly
more general semantics defined as follows. Let the tuple (q, l) denote the state of a k-
FIFO queue where q is the sequence of queue elements and l is an integer that counts
the number of dequeue operations since the most recent dequeue operation removed the



enqueuek(e)(q, l) = (q · e, l)

dequeuek(e)(q, l)=





(ε,0) if e = null,q = ε (L1)
(q, l +1) if e = null,q 6= ε, (C1) l < k (L2)
(q′,0) if q = e ·q′ (L3)
(e1 . . . ei−1ei+1 . . . en, l +1) if e = ei,q = e1 . . . en, (L4)

1 < i≤ n, (C2) l < k, (C3) i≤ k+1− l
error otherwise (L5)

Fig. 2. Sequential specification of a k-FIFO queue (a FIFO queue w/o lines (L2), (L4); a POOL
w/o conditions (C1), (C2), (C3))

oldest element. The initial, empty state of a k-FIFO queue is (ε,0). The enqueue oper-
ation of a k-FIFO queue is a function from queue states and queue elements to queue
states. The dequeue operation is a function from queue states and queue elements or
the null return value to queue states. The formal definition of the semantics (sequential
specification) of a k-FIFO queue is shown in Figure 2. In order to keep the definition
simple we assume, without loss of generality, that queue elements are unique, i.e., each
element will only be enqueued once and discarded when dequeued.

A k-FIFO queue is a queue where an enqueue operation, as usual, adds an element
to the queue tail. A dequeue operation, however, may either return nothing (null) al-
though there could be elements in the queue, or else remove one of the k+1− l oldest
elements from the queue with l < k again being the number of invoked dequeue opera-
tions since the most recent dequeue operation that removed the oldest element from the
queue. Retrieving the oldest element from the queue may require up to k+ 1 dequeue
operations (bounded fairness), which may return null or elements not younger than the
k+1− l oldest elements in the queue (bounded age) and which may be interleaved with
any number of enqueue operations. Thus k-FIFO queues are starvation-free for finite k
and a 0-FIFO queue is a regular FIFO queue.

The standard definition of a regular FIFO queue can be obtained from Figure 2 by
dropping lines (L2) and (L4). Just dropping line (L2) provides the definition of a k-
FIFO queue without null returns if non-empty, which is a special case that we have
implemented for some queues. Other combinations may also be meaningful, e.g. keep-
ing line (L2) but dropping condition (C1) results in queues that may always choose to
return null. This feature may be added to any implementation, e.g. for reducing con-
tention by returning null whenever synchronized access to shared memory fails. Note
that Figure 2 without conditions (C1), (C2), and (C3) defines the semantics of a POOL,
which will be used in the definition of semantical deviation in Section 4. In other words,
a POOL is equivalent to a k-FIFO queue with unbounded k.

2.1 Weak k-FIFO Queues

There is an interesting, less constrained version of k-FIFO queues, which we call weak
k-FIFO queues, that can be obtained from Figure 2 by replacing condition (C3) with the



condition i ≤ k+1. A weak k-FIFO queue, as opposed to a k-FIFO queue, may return
elements not younger than the k+1 instead of the k+1− l oldest elements while still
guaranteeing bounded fairness for finite k. Thus an implementation of a k-FIFO queue
is also an implementation of a weak k-FIFO queue but not necessarily vice versa. Note
that all implementations considered in this paper are nevertheless instances of k-FIFO
queues. For some implementations k is unbounded making the distinction betweeen
k-FIFO queues and weak k-FIFO queues less meaningful. However, the distinction is
relevant, in theory as discussed in Section 4, and in work related to k-FIFO queues as
discussed in Section 5.

2.2 Implementations

We study different implementations of k-FIFO queues with k independent from any
workload as well as k dependent on workload parameters such as the number of threads
in the system. In particular, k may or may not be configurable for a given implementa-
tion.

The following queues implement regular FIFO queues: a standard lock-based FIFO
queue (LB), the lock-free Michael-Scott FIFO queue (MS) [14], and the flat-combining
FIFO queue (FC) [12] (FC). LB locks a mutex for each data structure operation. With
MS each thread uses at least two compare-and-swap (CAS) operations to insert an el-
ement into the queue and at least one CAS operation to remove an element from the
queue. FC is based on the idea that a single thread performs the queue operations of
multiple threads by locking the whole queue, collecting pending queue operations, and
applying them to the queue.

The Random Dequeue Queue (RD) [2] is a k-FIFO queue where k = r and r de-
fines the range [0,r− 1] of a random number. RD is based on MS where the dequeue
operation was modified in a way that the random number determines which element
is returned starting from the oldest element. If the element is not the oldest element in
the queue it is marked as dequeued and returned but not removed from the queue. If
the element is already marked as dequeued the process is repeated until a not-dequeued
element is found or the queue is empty. If the element is the oldest element the queue
head is set to the first not-dequeued element and all elements in between are removed.
Hence RD may be out-of-FIFO order by at most r and always returns an element when
the queue is not empty.

The Segment Queue (SQ) [2] is a k-FIFO queue implemented by a non-blocking
FIFO queue of segments. A segment can hold s queue elements. An enqueue operation
inserts an element at an arbitrary position of the youngest segment. A dequeue operation
removes an arbitrary element from the oldest segment. When a segment becomes full a
new segment is added to the queue. When a segment becomes empty it is removed from
the queue. A thread performing a dequeue operation starts looking for an element in the
oldest segment. If the segment is empty it is removed and the thread checks the next
oldest segment and so on until it either finds an element and returns that, or else may
return null if only one segment containing up to s− 1 elements remains in the queue.
The thread returns null if other threads dequeued the up to s− 1 elements before the
thread could find them. Hence, k = s for SQ.



k-FIFO queue k
LB 0
MS [14] 0
FC [12] 0
RD [2] r
SQ [2] s
RR, RR-B t · (p−1)
(H-)RA, (H-)RA-B ∞
(H-)2RA, (H-)2RA-B ∞

Table 1. k-FIFO queue implementations where r is the range of a random variable [0,r−1], s is
the segment size, p is the number of partial FIFO queues, and t is the number of threads.

Next, we discuss new implementations of k-FIFO queues where k depends not only
on constant numbers but also on the workload such as the number of threads or is even
unbounded and may only be determined probabilistically. Table 1 contains a summary
of the k-FIFO queue implementations we consider in this paper.

3 Scal Queues

Scal is a framework for implementing k-FIFO queues as well as potentially other con-
current data structures such as relaxed versions of stacks and priority queues that may
provide bounded out-of-order behavior. In this paper we focus on k-FIFO queues and
leave other concurrent data structures for future work. In the sequel we refer to k-FIFO
queues implemented with Scal as Scal queues.

Scal is motivated by distributed systems where shared resources are distributed and
access to them is coordinated globally or locally. For implementing k-FIFO queues
Scal uses p instances of a regular FIFO queue, so-called partial FIFO queues, and a
load balancer that distributes queueing operations among the p partial FIFO queues.
Upon the invocation of a queueing operation the load balancer first selects one of the
p partial FIFO queues and then calls the actual queueing operation on the selected
queue. The value of p and the type of load balancer determine k, as discussed below,
as well as the performance and scalability of Scal queues, i.e., how many queueing
operations can potentially be performed concurrently and in parallel, and at which cost
without causing contention. Moreover, in our Scal queue implementations selection and
queueing are performed non-atomically for better performance and scalability. Thus
k with Scal queues depends on the number of threads in the system since between
selection and queueing of a given thread all other threads may run. The semantics of
Scal queues may nevertheless be significantly closer to FIFO semantics than what the
value of k may suggest because of the low probability of the worst case, as shown in
Section 6. Note that p and the load balancer may be configured at compile time or
dynamically at runtime with the help of performance counters. For example, a load
balancer may be chosen with p = 1 under low contention and with increasing p as
contention increases. Dynamic reconfiguration is future work.



3.1 Round-Robin Load Balancing

We have implemented a round-robin load balancer (RR) for Scal that selects partial
FIFO queues for enqueue and dequeue operations in round-robin fashion. Two global
counters keep track on which of the p partial FIFO queues the last enqueue and the
last dequeue operation was performed. The counters are accessed and modified us-
ing atomic operations, which can cause contention. However, scalability may still be
achieved under low contention since the load balancer itself is simple. A Scal queue
using RR implements a k-FIFO queue with k = t · (p−1) where t is an upper bound on
the number of threads in the system. Note that k comes down to p−1 if selection and
queueing are performed atomically.

3.2 Randomized Load Balancing

Another approach is to use a randomized load balancer (RA) for Scal that randomly
distributes operations over partial FIFO queues. Randomized load balancing [5, 18, 7]
has been shown to provide good distribution quality if the random numbers are dis-
tributed independently and uniformly. However, generating such random numbers may
be computationally expensive. Therefore, it is essential to find the right trade-off be-
tween quality and overhead of random number generation. We use an efficient random
number generator that produces evenly distributed random numbers [16]. The value of
k for RA Scal queues is unbounded but may be determined probabilistically as part of
future work. A first step is to determine the maximum imbalance of the partial FIFO
queues. Suppose that t threads have performed m operations each on p partial FIFO
queues using RA. Then, with a probability of at least 1−O

(
1
p

)
, the maximum dif-

ference (imbalance) between the number of elements in any partial FIFO queue and

the average number of elements in all partial FIFO queues is Θ
(√

t·m·log p
p

)
[18] if

selection and queueing are performed atomically. However, as previously mentioned,
selection and queueing are performed non-atomically in our implementation. The pre-
sented maximum imbalance is anyway relevant for a comparison with a refined version
of RA discussed next.

In order to improve the load balancing quality of RA, d partial FIFO queues with
1 < d ≤ p may be chosen randomly. Out of the d partial FIFO queues the queue that
contributes most to a better load balance is then selected. More precisely, enqueue and
dequeue operations are performed on the partial FIFO queues that contain among the
d partial FIFO queues the fewest and the most elements, respectively. We refer to such
a load balancer as d-randomized load balancer (dRA). The runtime overhead of dRA
increases linearly in d since the random number generator is called d times. Thus d al-
lows us to trade off balancing quality and global coordination overhead. Here, again the
value of k for dRA is unbounded. However, again with a probability of at least 1−O( 1

p ),
the maximum difference (imbalance) between the number of elements in any partial
FIFO queue and the average number of elements in all partial FIFO queues is now
Θ
(

log log p
d

)
[7] if selection and queueing are performed atomically. Again, determin-

ing the maximum imbalance for the case when selection and queueing are performed



non-atomically, as in our implementation, is future work. However, the presented max-
imum imbalance shows an important difference to RA Scal queues. It is independent
of the state of the Scal queue, i.e., the history of enqueue and dequeue operations. In
particular, d = 2 leads to an exponential improvement in the balancing quality in com-
parison to RA. Note that d > 2 further improves the balancing quality only by a constant
factor [7] at the cost of higher computational overhead.

3.3 Hierarchical Load Balancing

With hierarchical load balancing p partial FIFO queues are partitioned into 0 < s ≤ p
non-overlapping subsets. In this paper we use a two-level hierarchy where the high-
level load balancer chooses the subset and the low-level load balancer chooses one
of the partial FIFO queues in the given subset. For partitioning we take the cache ar-
chitecture of the system into account by making the subsets processor-local, i.e., s is
here the number of processors of the system. For the high-level load balancer we use
a weighted randomized load balancer where the thread running on processor i chooses
the processor-local subset i with a given probability w while one of the remaining sub-
sets is chosen with probability 1−w. This allows us to increase cache utilization and
reduce the number of cache misses. On the lower level we use a randomized (H-RA) or
2-randomized (H-2RA) load balancer to choose the actual partial FIFO queue. Note that
in principle multiple hierarchies of load balancers could be used and in each hierarchy
a different load balancer could run. The value of k for H-RA and H-2RA Scal queues is
again unbounded but may be determined probabilistically similar to the value of k for
RA and 2RA Scal queues, respectively.

3.4 Backoff Algorithm

We have implemented two so-called backoff algorithms for dequeue operations to avoid
null returns on non-empty Scal queues. In particular, we have implemented a perfect
backoff algorithm (no null returns if queue is non-empty) based on the number of ele-
ments in a Scal queue as well as a heuristic backoff algorithm (no null returns, if queue
is non-empty, with high probability given a sufficiently high retry threshold).

In the perfect backoff algorithm a global counter holds the number of elements
in a Scal queue. The counter is incremented after a successful enqueue operation and
decremented after a successful dequeue operation. If a dequeue operation ends up at
an empty partial FIFO queue the backoff algorithm inspects the counter. If it indicates
that the Scal queue is not empty the load balancer selects another partial FIFO queue.
Updating and inspecting the global counter requires synchronization and can lead to
cache conflicts, which may limit performance and scalability.

The heuristic backoff algorithm may simply retry a given number of times deter-
mined at compile-time before having the dequeue operation return null. The average
number of retries depends on different factors such as the application workload. In the
experiments in Section 6 we use a heuristic backoff algorithm with a maximum retry
threshold set high enough to avoid null returns on non-empty Scal queues.



4 Semantical Deviation

We are interested in what we call the semantical deviation of a (weak) k-FIFO queue
from a regular FIFO queue when applied to a given workload. Semantical deviation
captures how many dequeue operations it took to return oldest elements (lateness) and
what the age of dequeued elements was. Since semantical deviation cannot be measured
efficiently without introducing prohibitive measurement overhead we propose lower
and upper bounds of which the lower bounds can be computed efficiently from time-
stamped runs of k-FIFO queue implementations. Our experimental results show that the
lower bounds at least enable a relative, approximative comparison of different imple-
mentations in terms of their actual semantical deviation. Computing the upper bounds
remains future work.

We represent a workload applied to a queue by a so-called (concurrent) history H,
which is a finite sequence of invocation and response events of enqueue and dequeue
operations [11]. We work with complete histories, i.e., histories in which each operation
has a corresponding invocation and response event and the invocation is before the
response event. By 〈op and by op〉 we denote the invocation and response events of the
operation op, respectively. Two operations op1 and op2 in a history H are overlapping
if the response event op1〉 is after the invocation event 〈op2 and before the response
event op2〉, or vice versa. An operation op1 precedes another operation op2 in a history
H, if the response event op1〉 is before the invocation event 〈op2. Two histories are
equivalent if the one is a permutation of the other in which precedences are preserved
(only events of overlapping operations may commute). A history H is sequential if the
first event of H is an invocation event and each invocation event is immediately followed
by a matching response event [11]. Equivalently, a sequential history is a sequence of
enqueue and dequeue operations.

Given a sequential specification C (here FIFO, (weak) k-FIFO, or POOL), an exe-
cution sequence corresponding to a sequential history HS = op1 . . . opm is a sequence
of states C(HS) = s0s1 . . . sm starting from the initial state s0 with s j+1 = op j+1(s j)
for j = 0, . . . ,m− 1. The sequential history HS is valid with respect to the sequential
specification C if no si in C(HS) is the error state error.

In particular, for a sequential history HS = op1 . . . opm, FIFO(HS) is the sequence
of FIFO queue states obtained from the sequential specification of Figure 2 without
lines (L2) and (L4), where s0 = (ε,0) and s j = (q j, l j) with l j = 0 for j = 0, . . . ,m;
k-FIFO(HS) is the sequence of k-FIFO queue states obtained from the sequential speci-
fication of Figure 2, where s0 = (ε,0); and weak-k-FIFO(HS) is the sequence of weak k-
FIFO states obtained from the sequential specification of Figure 2 when condition (C3)
is replaced by i≤ k+1 and s0 = (ε,0). If HS is valid with respect to FIFO, FIFO-valid
for short, i.e., if no queue state in FIFO(HS) is the error state error, then each dequeue
operation in HS returns the head of the queue or null if the queue is empty. Similarly, if
HS is valid with respect to (weak) k-FIFO, (weakly) k-FIFO-valid for short, then each
dequeue operation in HS returns one of the k+1− l (k+1) oldest elements in the queue
(or null) and queue heads are always returned in HS in at most k+1 steps. Every FIFO-
valid sequential history is k-FIFO-valid, and every k-FIFO-valid sequential history is
weakly k-FIFO-valid.



We next define the notion of semantical deviation of a sequential history and char-
acterize validity in terms of it. In order to do that we need the sequential specification
of a POOL. Given a sequential history HS = op1 . . . opm,

POOL(HS) = (q0, l0)(q1, l1) . . . (qm, lm)

is the sequence of POOL states obtained from the sequential specification of Figure 2
without the conditions (C1), (C2), and (C3), where (q0, l0) = (ε,0).

From POOL(HS) we quantify bounded fairness through (maximum) lateness of HS,
denoted L(HS), which is the maximum number of dequeue operations it ever took in HS
to return an oldest element, i.e.,

L(HS) = max1≤ j≤m(l j).

The average lateness ML(HS) is the mean of the number of dequeue operations it took
to return all oldest elements in HS, i.e.,

ML(HS) = mean({l j−1 | l j = 0, j ∈ {1, . . . ,m}}).

From POOL(HS) we also define the sequence of (inverse) ages a0a1 . . . am of HS by

a j =

{
i−1 if q j = e1 . . . en,q j+1 = e1 . . . ei−1ei+1 . . . en
0 otherwise

The (minimum inverse) age of HS, denoted A(HS), is the (inverse) age of the youngest
element ever returned in HS, i.e.,

A(HS) = max1≤ j≤m(a j).

The average (inverse) age MA(HS) is the mean of the (inverse) ages of all elements
returned in HS, i.e.,

MA(HS) = mean1≤ j≤m(a j).

Finally, the (maximum) semantical deviation of HS, denoted SD(HS), is the maximum
of the sums of the lateness and (inverse) age pairs obtained from POOL(HS), i.e.,

SD(HS) = max1≤ j≤m(l j +a j).

Similarly, the average semantical deviation is

MSD(HS) = mean1≤ j≤m(l j +a j).

We are now ready to present the characterization of k-FIFO validity in terms of
lateness, age, and semantical deviation.

Proposition 1 A sequential history HS is weakly k-FIFO-valid if and only if L(HS)≤ k
and A(HS)≤ k. It is k-FIFO-valid if and only if it is weakly k-FIFO-valid and SD(HS)≤
k + 1. Moreover, if HS is weakly k-FIFO-valid then SD(HS) ≤ 2k− 1 for k > 0 and
SD(HS) = 0 for k = 0.



Finally, we recall the notion of linearizability [11] before introducing the remain-
ing concepts. Given a history H and a sequential specification C, lin(H,C) denotes the
set of all sequential histories that are equivalent to H and valid with respect to C. If
lin(H,C) is not empty, H is said to be linearizable with respect to C [11]. Hence, H is
linearizable with respect to FIFO if there is a sequential history HS equivalent to H that
is FIFO-valid; it is linearizable with respect to (weak) k-FIFO if there is a sequential
history HS equivalent to H that is (weakly) k-FIFO-valid. Note that every history lin-
earizable with respect to FIFO is linearizable with respect to k-FIFO as well, and every
history linearizable with respect to k-FIFO is linearizable with respect to weak k-FIFO.
A concurrent implementation of a sequential specification is said to be linearizable if
all histories that can be obtained with the implementation are linearizable [11]. Linear-
izability is thus a consistency condition for specifying the semantics of objects in the
presence of concurrency. The implementations of all (k-FIFO) queues discussed in this
paper are linearizable.

In general, lin(H,C) may contain more than one sequential history if H is lineariz-
able with respect to C. However, we are only interested in the sequential history HA in
lin(H,C) that represents the run that was actually performed. In particular, we are inter-
ested in the actual semantical deviation SD(HA) of H (ASD for short), and similarly in
L(HA) and A(HA). Unfortunately, HA cannot be determined on existing hardware with-
out introducing prohibitive overhead. In practice, only H can be obtained efficiently by
time-stamping the invocation and response events of all operations. We therefore pro-
pose to approximate HA by computing two sequential histories HL and HH in lin(H,C)
such that

L(HL) = min({L(HS)|HS ∈ lin(H,C)})
A(HL) = min({A(HS)|HS ∈ lin(H,C)})

SD(HL) = min({SD(HS)|HS ∈ lin(H,C)})
and, similarly for HH with min replaced by max, holds.

The following proposition is a consequence of Proposition 1 and the definition of a
(weak) k-FIFO queue.

Proposition 2 For all histories H of a linearizable implementation of a k-FIFO queue
we have that

L(HL) ≤ L(HA) ≤ L(HH) ≤ k
A(HL) ≤ A(HA) ≤ A(HH) ≤ k

SD(HL) ≤ SD(HA) ≤ SD(HH) ≤ k+1

and SD(HH) = 0 for k = 0. The same holds for weak k-FIFO except that SD(HH) ≤
2k−1 for k > 0.

We therefore call k the worst-case lateness (WCL) and worst-case age (WCA), and
k+1 (2k−1) for k > 0 and 0 for k = 0 the worst-case semantical deviation (WCSD) of
a (weak) k-FIFO queue.

4.1 Computing HL

We have designed and implemented a tool that computes HL from a given history H
without enumerating lin(H,C) explicitly (assuming that the sequential specification C



is POOL not knowing any k in particular). The tool scans H for invocation events of
dequeue operations in the order of their appearance in H to construct HL in a single
pass (and POOL(HL) to keep track of the queue states and lateness). For each invoca-
tion event 〈op of a dequeue operation op the following computation is performed until
a linearization point for op has been created: (1) if op returns null remember the (in-
verse) age for op as zero, otherwise compute and remember the (inverse) age for op
assuming that the linearization point of the enqueue operation that matches op is as
far in the past as possible under the precedence constraints in H, (2) repeat (1) for all
dequeue operations that overlap with op and are not preceded by any other dequeue
operations that also overlap with op, (3) among the dequeue operations considered in
(1) and (2) find the dequeue operation op′ that returns an element other than null and
has the minimum remembered (inverse) age (any such op′ will do if multiple exist), or
else if only dequeue operations that return null have been considered in (1) and (2) then
take any of those as op′, and finally (4) create a linearization point in HL for the en-
queue operation that matches op′ and move that point under the precedence constraints
in H as far into the past as possible and create a linearization point for op′ in HL right
before the invocation event 〈op. Note that after creating a linearization point for an op-
eration its invocation and response events are not considered anymore in subsequent
computations. The key insight for correctness is that bringing operations forward with
minimum (inverse) age also minimizes lateness and thus produces HL. In contrast to
HL, computing HH may require exploring all possible permutations of overlapping op-
erations, which is computationally expensive, in particular for histories obtained from
k-FIFO queue implementations with large or even unbounded k.

4.2 k-Linearizability

With the definition of (weak) k-FIFO validity, linearizability may be relaxed as follows.

Definition 1 A history H is (weakly) k-linearizable with respect to FIFO if and only if
there exists a sequential history HS equivalent to H that is (weakly) k-FIFO-valid.

Hence, a history H is (weakly) k-linearizable with respect to FIFO if and only if it
is linearizable with respect to (weak) k-FIFO.

This together with Proposition 1 yields the following characterization of (weak)
k-linearizability:

1. A history H is weakly k-linearizable with respect to FIFO if and only if there exists
a sequential history HS equivalent to H with L(HS)≤ k and A(HS)≤ k.

2. A history H is k-linearizable with respect to FIFO if and only if there exists a
sequential history HS equivalent to H with L(HS) ≤ k, A(HS) ≤ k, and SD(HS) ≤
k+1.

The notion of weak k-linearizability presented here can be derived from the gen-
eral framework of quasi-linearizability [2] by choosing a suitable quasi-linearization
factor of k on enqueue operations. Fitting the case of k-linearizability within the quasi-
linearizability framework does not seem to be directly possible. The difference in the
two approaches is that the quasi-linearizability approach relaxes the semantics of a data



structure based on a syntactic distance between sequential histories whereas in our ap-
proach the relaxation is based on semantical deviation. In case of weak k-FIFO, the two
approaches result in the same definition. An in-depth study of relaxed linearizability of
different data structures, exploiting the semantical deviation approach, is an interesting
topic of future work beyond the scope of this paper.

5 Related Work

We relate the notions of a k-FIFO queue and semantical deviation as well as the concept,
design, and implementation of Scal queues to other work.

The topic of this paper is part of a recent trend towards scalable but semantically
weaker concurrent data structures [19] acknowledging the intrinsic difficulties of im-
plementing deterministic semantics in the presence of concurrency [4]. The idea is to
address the multicore scalability challenge by leveraging non-determinism in concur-
rent data structure semantics for better performance and scalability. In the context of
concurrent FIFO queues, the notion of a k-FIFO queue is an attempt to capture the
degree of non-determinism and its impact on performance and scalability in a single
parameter. Many existing implementations of concurrent FIFO queues (with or without
relaxed semantics) are instances of k-FIFO queues. The implementations we consider
here [14, 12, 2] are only a subset of the available choices [10]. Other implementations
such as work stealing queues which may return the same element multiple times before
removing it are not instances of k-FIFO queues but are anyway related in high-level
objective and principle [15].

The notion of semantical deviation is a metric for quantifying the difference in se-
mantics between a queue with relaxed FIFO semantics and a regular FIFO queue. Se-
mantical deviation enables definitions of k-FIFO validity and k-linearizability of which
the weak version of k-linearizability, even if different in nature of the definition, turns
out to be equivalent to a particular instance of quasi-linearizability [2]. The difference
in nature of the definition is the syntactic relaxation of the sequential specification taken
in [2] as opposed to the semantical relaxation in our approach. The difference is visible
in the case of k-linearizability, as discussed in Section 4.2. Another more relaxed con-
sistency condition than linearizability is quiescent consistency [3], for which concurrent
stack data structure implementations exist which may provide superior performance in
comparison to their linearizable counterparts on given workloads. A comprehensive
overview of more versions of weaker and stronger consistency conditions than lineariz-
ability can be found in [10].

The concept of Scal queues can be seen as an example of best-effort computing [8,
1] where inaccuracies introduced on a given level in a system may lead to better overall
performance but must then be dealt with on a higher level in the system. The design
and implementation of Scal queues is related to distributed data structures such as dis-
tributed hash tables with dedicated load balancing components [9]. Another related
example is Memcached [13] which is a widely used cache implementation based on
distributed hash sets with weak consistency guarantees. Scal queues with our hierarchi-
cal load balancers are an example of concurrent FIFO queues with relaxed semantics
that take hardware features into account for better performance and scalability [19].



6 Experiments

We evaluate performance, scalability, and semantics of the k-FIFO queue implementa-
tions described in Section 2.2 and Section 3. In particular, we study the LB, MS, FC,
RD, SQ, and Scal queues (with the RR, RA, 2RA, H-RA, and H-2RA load balancers
without backoff as well as the RR-B, RA-B, 2RA-B, H-RA-B, and H-2RA-B load bal-
ancers with backoff). The partial FIFO queues of the Scal queues are implemented with
MS.

We ran all experiments on an Intel-based server machine with four 10-core 2.0GHz
Intel Xeon processors (40 cores, 2 hyperthreads per core), 24MB shared L3-cache, and
128GB of memory running Linux 2.6.39.

All benchmarked algorithms are implemented in C and compiled using gcc 4.3.3
with -O3 optimizations. In all experiments the benchmark threads are executed with
real-time priorities to minimize system jitter. Each thread pre-allocates and touches a
large block of memory to avoid subsequent demand paging, and then allocates and
deallocates thread-locally all queue elements from this block to minimize cache misses
and to avoid potential scalability issues introduced by the underlying memory allocator.

6.1 Microbenchmarks

We designed and implemented a framework to microbenchmark and analyze differ-
ent queue implementations under configurable contention. The framework emulates a
multi-threaded producer-consumer setup where each thread enqueues and dequeues in
alternating order an element to a shared queue. The framework allows to specify the
number of threads, the number of elements each thread enqueues and dequeues, how
much computation is performed between queueing operations, and which queue imple-
mentation to use. We focus on two microbenchmark configurations. In Section 6.1 we
analyze a high contention configuration where no computational load in between queue-
ing operations is performed. In Section 6.1 we discuss the results of a low contention
configuration where in between any two queueing operations additional computational
load is created by executing an iterative algorithm that calculates in 500 loop iterations
an approximation of π which takes in total on average 1130ns.

We evaluate each queue implementation with an increasing number of threads and
determine its performance, scalability, and semantics. Performance is shown in number
of operations performed per millisecond. Scalability is performance with an increasing
number of threads. Semantics is average lateness ML(HL), average age MA(HL), and
average semantical deviation MSD(HL) of HL as computed by our tool described in
Section 4.1.

For the RD, SQ, and Scal queues we use r = s = p = 80.

High Contention Figure 3(a) depicts the performance result of the high contention
benchmark. The throughput of LB, MS, FC, RD, and SQ decreases with an increasing
number of threads. RR does not scale but performs better then the non-Scal queues. The
non-backoff Scal queues provide better performance then their backoff counterparts.
This is due to the fact that in the non-backoff case a Scal queue may return null if no



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(a) Performance and scalability

 1e+06

 1e+07

 1e+08

 1e+09

1 4 8 12 16 20 24 32 40 48 56 64 72 80 96 120

c
a
c
h
e
 m

is
s
e
s
/t
h
re

a
d
 (

le
s
s
 i
s
 b

e
tt
e
r)

number of threads

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(b) Cache misses

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

a
v
e
ra

g
e
 l
a
te

n
e
s
s
 (

lo
g
s
c
a
le

, 
lo

w
e
r 

is
 b

e
tt
e
r)

number of threads

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(c) Average lateness ML(HL)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

a
v
e
ra

g
e
 a

g
e
 (

lo
g
s
c
a
le

, 
lo

w
e
r 

is
 b

e
tt
e
r)

number of threads

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(d) Average age MA(HL)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1 4 8 16 24 32 40 48 56 64 72 80 96 120

a
v
e
ra

g
e
 s

e
m

a
n
ti
c
a
l 
d
e
v
ia

ti
o
n
  
(l
o
g
s
c
a
le

, 
lo

w
e
r 

is
 b

e
tt
e
r)

number of threads

LB
MS
FC

RD r=80

SQ s=80
RR p=80

RR-B p=80
RA p=80

RA-B p=80
2RA p=80

2RA-B p=80
H-RA p=80

H-RA-B p=80
H-2RA p=80

H-2RA-B p=80

(e) Average semantical deviation MSD(HL)

Fig. 3. High contention microbenchmark with an increasing number of threads on a 40-core (2
hyperthreads per core) server

element is found in the selected partial FIFO queue whereas in the backoff case it has
to retry. The best performance is provided by the hierarchical Scal queues which scale
up to the number of hardware threads in the system.

We measured cache misses with the Linux perf performance counter system [17].
Figure 3(b) depicts the number of cache misses per thread with an increasing number



of threads. We observe a steep increase of cache misses per thread between 20 and 32
threads. Using less than or equal to 20 threads the cache misses per thread are nearly
constant, then the number of cache misses significantly increases, and finally starts
leveling off for 32 or more threads. The trend is visible for all graphs but less distinct
for the queues with hierarchical load balancing. The data shows that hierarchical load
balancing improves cache utilization and reduces the number of cache misses the most,
which correlates with its superior performance and scalability.

The average lateness, average age, and average semantical deviation of HL are de-
picted in Figures 3(c), 3(d) and 3(e), respectively. Note that the graphs for regular FIFO
queues, i.e., LB, MS, and FC, are not visible since their lateness, age, and semantical
deviation are always zero. The results on average lateness and average age are simi-
lar but not equivalent, see H-2RA, for example. Average semantical deviation appears
to be dominated in trend by average age rather than average lateness. Using a backoff
algorithm for Scal queues generally improves the average lateness, average age, and
average semantical deviation of HL by an order of magnitude, except for RR and RR-B.

Scal queues that show higher average semantical deviation of HL clearly outperform
the other queues in terms of performance and scalability. The Scal queue with H-2RA
load balancing appears to offer the best trade-off between performance, scalability, and
semantics on the workload and hardware considered here.

Low Contention Figure 4(a) depicts the performance result of the low contention
benchmark. The LB, MS, FC, RD, and SQ queues scale for up to 8 threads. Between
8 to 16 threads throughput increases only slightly. With more than 16 threads scala-
bility is negative. The RR Scal queue scales for up to 16 threads and then maintains
throughput. The other Scal queues provide scalability up to the number of hardware
threads in the system. The performance difference between backoff and non-backoff is
less significant in the presence of additional computational load. The best performance
and scalability is still provided by the hierarchical Scal queues but the difference to the
non-hierarchical versions is significantly smaller.

Figure 4(b) depicts the number of cache misses per thread for the low contention
configuration. The results are similar to the high contention case. Again, the hierarchical
Scal queues have the lowest number of cache misses.

We note that additional computational load between queueing operations does not
change average lateness, average age, and average semantical deviation significantly on
the workload considered here, see Figures 4(c), 4(d) and 4(e), respectively.

6.2 Macrobenchmarks

We ran two macrobenchmarks with parallel versions of transitive closure and spanning
tree graph algorithms [6] using random graphs consisting of 1000000 vertices where
1000000 unique edges got randomly added to the vertices. All threads start operating on
the graph at different randomly determined vertices. From then on each thread iterates
over the neighbors of a given vertex and tries to process them (transitive closure or
spanning tree operation). If a neighboring vertex already got processed by a different
thread then the vertex is ignored. Otherwise, the vertex is processed and then added
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Fig. 4. Low contention microbenchmark with additional computational load (500 loop iterations)
in between queueing operations and an increasing number of threads on a 40-core (2 hyperthreads
per core) server

to a global queue (which we implemented with a representative selection of our queue
implementations). When a thread processed all neighbors of a given vertex it gets a
new vertex from the global queue. The graph algorithm terminates when the global
queue is empty. Thus we need to use backoff in these experiments to guarantee correct
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(b) Transitive closure performance and scalabil-
ity

Fig. 5. Macrobenchmarks on a random graph with 1000000 vertices and 1000000 edges with an
increasing number of threads on a 40-core (2 hyperthreads per core) server

termination. Note that both algorithms do not require any particular order of elements
in the global queue.

The macrobenchmark results are presented in Figure 5. Each run was repeated 10
times. We present the average number of operations per milliseconds of the 10 runs
as our metric of performance. The Scal queues with RA-B, 2RA-B, H-RA-B, and H-
2RA-B clearly outperform MS, RD, and SQ. The RR-B Scal queue provides a small
performance improvement in the spanning tree case and no performance improvement
in the transitive closure case. Both graph algorithms may produce high cache-miss rates
since accessing the neighbors of a vertex may result in disjoint cache line accesses. A
graph representation that takes hardware features into account may improve scalability
further.

7 Conclusions

We have introduced the notion of a k-FIFO queue which may dequeue elements out of
FIFO order up to k. Several existing queue implementations are instances of k-FIFO
queues for different k. We have also introduced Scal queues, which aim at improving
performance and scalability of FIFO queue implementations through load balancing by
distributing queueing operations across multiple, independent queue instances. Load
balancing directly determines performance, scalability, and semantics of Scal queues,
in particular how close the queueing behavior is to FIFO. In order to quantify the dif-
ference between actual and ideal FIFO semantics, we have introduced the notion of
semantical deviation, which captures how many dequeue operations it took to return
oldest elements (lateness) and what the age of dequeued elements was. Our experi-
ments show that Scal queues with a memory-hierarchy-aware combination of random-
ized and queue-size-based load balancing (H-2RA) offers the best trade-off between
performance, scalability, and semantics on the considered workloads and hardware.



We see many interesting directions for future work. Which applications tolerate se-
mantical deviation to what extent? Our macrobenchmark tolerates any semantical devi-
ation but there are certainly many others that do not. Is the parameter k the right choice
of information that should be exposed to application programmers for performance-
oriented multicore programming (rather than, e.g. the memory hierarchy)? Can con-
current data structures other than FIFO queues be relaxed in a similar way? Stacks
are an obvious choice, of course, but maybe also priority queues, hashtables, and even
software-transactional memory (STM) [20].
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