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Abstract. Workload-oriented programming is a design methodology for
specifying throughput and latency of real-time software processes on the
level of individual process actions. The key programming abstraction is
that the workload involved in executing a process action such as a system
or procedure call fully determines the action’s response time, indepen-
dently of any previous or concurrent actions. The model thus enables
sequential and concurrent real-time process composition while maintain-
ing each action’s workload-determined real-time behavior. We introduce
a process model and an EDF-based scheduler as foundation for workload-
oriented programming along with a prototypical implementation and ex-
perimental results. We show that the scheduler can effectively manage
in constant time any number of processes up to available memory while
maintaining throughput and latency of individual process actions within
a bounded range.

1 Introduction

Real-time software processes typically process quantifiable amounts of data un-
der known temporal application requirements and resource constraints. Appli-
cation requirements are, for example, the usually throughput-oriented rates at
which video frames in an MPEG encoder must be processed, or the mostly
latency-oriented rates at which sensor data in a control system must be han-
dled. Resource constraints might be the maximum rate at which memory can
be allocated or at which data can be written to a harddisk. Both application
requirements and resource constraints in turn can often directly be related to the
workload, in particular, the amount of involved data. For example, a real-time
process that compresses video frames usually needs to process a given number
of frames within some finite response time. Similarly, resource performance may
be characterized by the execution time needed to process a given number of
frames. If the execution time does not depend on any other parameters than the
workload, because of the nature of the involved resources or the limited range of
workloads, we speak of a compositional action of the process. The resulting re-
source utilization is then fully characterized by the ratio between execution and
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response times, and leaves easy-to-check room for compositional actions of other,
concurrent processes. Workload-oriented programming is a design methodology
for composing real-time processes while maintaining their actions’ individual
workload-determined response times provided the resource utilization stays be-
low the maximum resource capacity.

We introduce a process model, a utilization-based schedulability test, and an
EDF-based scheduling algorithm as foundation for workload-oriented program-
ming along with a prototypical implementation and experimental results. The
test and algorithm have been designed with a focus on reducing runtime overhead
and improving predictability by trading off schedulability precision (test) as well
as system utilization (algorithm) for less time complexity of managing process
admission and more predictable administrative overhead of making scheduling
decisions, respectively. In the experiments, we show that our prototype can ef-
fectively admit and schedule in constant time any number of real-time processes
up to available memory while guaranteeing workload-oriented throughput and
latency of individual process actions within a bounded range. This work is the
second step in an ongoing effort of building a compositional real-time operating
system called Tiptoe [8]. As first step, we have already developed a real-time
memory management algorithm called compact-fit [9], which will be used by
user processes running on Tiptoe but also by the Tiptoe kernel itself. Tiptoe
processes are meant to be implemented using workload-oriented programming
and will be managed by the scheduling scheme proposed here.

The structure of the rest of the paper is as follows. We start by introducing
workload-oriented programming in Section 2 followed by a discussion of related
work in Section 3. We then describe the process model and a theoretical schedu-
lability result in Section 4, which shows correctness of our scheduling algorithm
presented in Section 5. In Section 6, we analyze the algorithm’s complexity under
different choices of data structures. The results of our experiments are shown in
Section 7. Section 8 gathers the conclusions.

2 Programming Model

For an example of workload-oriented programming consider Listing 1.1, which
shows the pseudo-code implementation of a real-time software process P . The
process reads a video stream from a network connection, compresses it, and fi-
nally stores it on disk, all in real time. More specifically, P periodically adapts
the frame rate, allocates memory to store new frames prior to receiving them
from the network connection, then compresses the frames, writes the result to
disk, and finally deallocates the previously allocated memory to prepare for the
next iteration. As a side note, allocating and deallocating memory periodically
may appear wasteful to real-time programmers but raises the level of program-
ming abstraction because it avoids the need for managing otherwise statically
allocated memory. Our compact-fit memory management algorithm bounds frag-
mentation and guarantees execution times for malloc and free that are at most
linear in the size of the involved objects, independently of the memory state [9].



1 loop {

2 int number_of_frames = determine_rate ();

3

4 allocate_memory(number_of_frames );

5 read_from_network(number_of_frames );

6

7 compress_data(number_of_frames );

8

9 write_to_disk(number_of_frames );

10 deallocate_memory(number_of_frames );

11 } until (done);

Listing 1.1. A real-time software process P

Note that, with an adequate real-time garbage collector, deallocating memory
explicitly in P could be avoided, thus raising the level of abstraction even more.

The determine rate and compress data procedures implement process func-
tionality and are therefore referred to as process code. The other procedures are
system code since they provide system functionality and may involve other re-
sources than the CPU such as network and disk devices. In our process model, we
call an invocation of process or system code an action of the invoking process.
An action has an optional workload parameter, which describes the workload
involved in executing the action. In the example, P has five actions with the
same workload parameter, which specifies the number of frames to be handled.
The parameter may be omitted in actions that only involve process code if the
action’s time complexity is constant or unknown. The determine rate action
does not have a workload parameter because the action always executes in con-
stant time. For unknown complexity, an omitted workload parameter implicitly
represents CPU time, see below for more details.

For each action, there are two discrete functions, fR and fE , which char-
acterize the action’s performance in terms of its workload parameter. Figure 1
shows example functions for the allocate memory action.

Response Time The response-time (RT) function fR : N→ Q+ characterizes the
action’s response time bound for a given workload, independently of any previous
or concurrent actions. Here, fR is a linear function, which states that allocating
memory, e.g., for 24 frames, may take up to 100ms, even when interrupted by
other concurrent processes. RT-functions do not have to be linear or even mono-
tonically increasing, but might be at least the latter in most cases. RT-functions
map any workload to a non-zero, positive bound of which the smallest is the ac-
tion’s intrinsic response delay dR. In the example, dR = 4ms since fR(w) ≥ 4ms
for all w ∈ N, which means that allocating memory may take at least 4ms on
any workload.

RT-functions help trading off throughput and latency. For example, if mem-
ory is allocated latency-oriented, say, just for a single frame, the response time



is only at most 8ms but the resulting allocation rate merely provides enough
memory for 125 frames per second (fps) if the action were invoked repeatedly as
fast as possible. If memory is allocated throughput-oriented, say, for 24 frames
at once, there could be enough memory for at least 240fps because dR plays a
smaller role, but the action’s response time would also increase to 100ms in the
worst case.

dR

dE

9.8 ms

100 mstime(ms)

dR = 4 ms

number of frames

dE = 200µs

cU = 10%

fE(w) = 0.4w + 0.2

fR(w) = 4w + 4

0 4 8 12 16 20 24

Fig. 1. Timing of the allocate memory action

Because of the non-branching control flow of P , we can derive, from the indi-
vidual actions’ RT-functions, an exact RT-function fP for P , which is simply the
sum of its actions’ RT-functions. For example, P can process 24fps if 24 frames
are handled in one iteration and all actions other than the allocate memory
action take together no more than 900ms. Notice, however, that RT-functions of
processes with branching control flow may in general just be approximated, or
described more accurately, but only in languages richer than plain arithmetics,
e.g., as in [7].

An RT-function provides an upper bound on an action’s response time, i.e.,
the action may take less time but not more. However, in order to trade off re-
sponsiveness for determinacy, we can also see the bound as both upper and lower
bound, similar to the notion of logical execution time (LET) [11]. In this case,
we speak of a logical-response-time (LRT) function. The LET model can be seen
as a special case of LRT-functions that map all workloads to a constant logical
response time. Our scheduler implementation so far supports RT semantics only.
However, an LRT extension is simple since it only involves delaying actions that
would otherwise finish before their logical response times expired.

Execution Time The execution-time (ET) function fE : ED → Q+ characterizes
the action’s execution time bound for workloads in the action’s execution domain
ED ⊆ N, in the absence of any concurrent actions. In the example, fE is also a
linear function with ED = N, which states that allocating memory, say, again for
24 frames, may take up to 9.8ms if not interrupted by any other process. Similar
to RT-functions, ET-functions do not have to be linear or even monotonically



increasing but, at least, map any workload to a non-zero, positive bound of
which the smallest is the action’s intrinsic execution delay dE . In the example,
dE = 200µs since fE(w) ≥ 200µs for all w ∈ ED, which means that allocating
memory may take at least 200µs on any workload, if not interrupted.

The notion of worst-case execution time (WCET) can be seen as a special
case of ET-functions that map to a constant execution time bound for all work-
loads. In turn, this means that determining ET-functions requires parametric
forms of WCET analysis, e.g., as in [3]. Moreover, not all actions may be ET-
characterized, i.e., compositional, on large execution domains. For example, the
temporal behavior of write accesses to harddisks is known to be unpredictable
just in terms of the workload. However, even such actions may be properly ET-
characterized by limiting workloads to smaller execution domains.

Utilization The ratio between fE and fR induces a discrete (partial) utilization
function fU : ED → Q+

0 with:

fU (w) =
fE(w)− dE
fR(w)− dR

assuming there is zero administrative overhead for handling concurrency. In the
example, fU is a function that maps any workloads w ∈ N+ to a constant
cU = 0.1 or 10% CPU utilization when allocating memory. In general, only
workloads w ∈ ED with 0 ≤ fU (w) ≤ 1 (and ratios 0 ≤ dE/dR ≤ 1) may
be handled properly. We call the set of such workloads the action’s utilization
domain UD ⊆ ED. Even if fU (w) is not constant for all w ∈ UD, there is still
a minimal upper bound cU such that fU (w) ≤ cU for all w ∈ UD. We discuss a
conservative but fast cU -based schedulability test below.

Recall that workload parameters are omitted in actions that only involve pro-
cess code but have unknown time complexity. In this case, RT-functions directly
determine the resulting CPU utilization. For example, consider a process that
invokes process code with an unknown execution time. Then, the RT-function
translates CPU time into real time by stating that, e.g., 10ms CPU time may
take up to 100ms real time. The result is 10% CPU utilization since the ET-
function is simply the identity function from CPU time to real time.

Programming Styles Response-time and execution-time functions characterize
application requirements and resource constraints, respectively, while utilization
functions determine resource utilization and thus process relevance, or inversely,
remaining resource capacity and processing capabilities. Depending on which
two functions are given the third follows and requires appropriate validation. For
example, “system-driven programming” of fR and fE creates utilization bounded
by fU , “platform-driven programming” of fE and fU determines relevant real-
time behavior fR, and “application-driven” programming of fR and fU requires
sufficient resource capacities fE .

Scheduler We propose a schedulability test (Section 4) and a scheduling algo-
rithm (Section 5) for workload-oriented programming with a focus on reducing



runtime overhead and improving predictability by trading off schedulability pre-
cision (test) as well as system utilization (algorithm) for less time complexity
of managing process admission and more predictable administrative overhead of
making scheduling decisions, respectively. In other words, the schedulability test
may not admit a schedulable process but can be performed fast (in constant time
with a fixed number of resources) and the scheduling algorithm may interrupt
the system more frequently but does so predictably often and makes schedul-
ing decisions fast (in constant time with a fixed timeline but for any number of
processes).

}
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Fig. 2. The execution of allocate memory

Figure 2 shows, for a workload of up to 4 frames, the scheduled execution
of the allocate memory action. Consider the invocation for 4 frames where the
response time is 20ms. The scheduler could in principle immediately release the
action with a 20ms-deadline and apply earliest-deadline-first (EDF) schedul-
ing [15]. This strategy would, however, involve schedulability tests that depend
on action invocation times and thus require analyzing process implementations
and interactions. Moreover, the strategy only works with actions for which work-
loads are known prior to invoking the actions. We therefore propose to use the
concept of virtual periodic resources [19] for action scheduling.

A virtual periodic resource R has a period π and a limit λ, which control,
in our case, the execution of process actions. A process declares a finite set of
such resources. Each process action uses exactly one resource declared by the
process. In the example, the resource used by the allocate memory action has a
period of 2ms and a limit of 200µs. Upon arrival, the action is released according
to one of two possible release strategies, called early and late release strategy.
In the late release strategy, the release time of the action is delayed until the
beginning of the next period, unless the arrival is already at the beginning. In
the example the late release strategy is shown, the arrival is late, and thus the
first period is already lost. In the early release strategy, the action is released
immediately when it arrives, but its resource limit is decreased proportional to



the available time in the current period. All released actions are then EDF-
scheduled using their resources’ periods as deadlines but are prevented from
executing for more than their resources’ limits. When the action has exhausted
the limit, it is again delayed until the beginning of the next period and so on,
until the action completes. In the example, the action executes for 9 periods after
being delayed in the first period and completes in the tenth period. Finally, for
the invoking process to proceed to the next action, the completed action must
be terminated (or finished) by the scheduler, which does that at the end of the
period in which the action completed, i.e., the tenth period in the example. With
the given limit, the action may have executed for up to 1.8ms, which is exactly
its execution time bound for 4 frames.

The duration from the action’s arrival until its termination is denoted by the
scheduled-response-time (SRT) function fS . For all w ∈ ED, we have that:

fS(w) ≤ π − 1 + π ·
⌈
fE(w)
λ

⌉
if the system utilization through the most-utilized resources R of each process
P is less than or equal to 100%, i.e., if∑

P

max
R

λ

π
≤ 1 (1)

as shown in Section 4. The upper bound (yellow step function in Figure 2) occurs
if the action arrives right after a new period begins, and can be reached in both
release strategies. If the schedulability test holds, then the scheduled-response-
time function also has a lower bound, that varies in both strategies. We have

fS(w) ≥


π ·
⌈
fE(w)
λ

⌉
, for late release

π ·
⌈
fE(w)
λ

⌉
− π + 1 , for early release

In the late release strategy, the lower bound for fS (green step function in Fig-
ure 2) occurs if the involved action arrives exactly at the beginning of a new
period. In the early release strategy, the lower bound is achieved for particular
action loads, namely such that the early release actually saves one period of
execution. More precisely, the lower bound is achieved if the arrival time is one
time unit before a period instance, and

1
π
· λ ≥ fE(w)−

⌊
fE(w)
λ

⌋
· λ > 0.

The schedulability test (1) is a sufficient condition for schedulability. A more
precise or even necessary condition is an interesting target for future work but
may require incorporating details of process implementations and interactions.

Finally, for the link back to workload-oriented programming, it is necessary
to identify constraints on π and λ such that the scheduled response time fS(w)



of an action’s invocation on a workload w ∈ UD is less than or equal to its
specified response time fR(w) (red function in Figure 2). With λ = π · cU , we
only have that fS(w) ≤ fR(w) + π if π divides dR evenly, i.e., π | dR, and

0 < π ≤ dR −
dE
cU

This is true even if π does not divide dR evenly, but only for π less than or
equal to half of the upper bound. The constraint is a sufficient condition, which
ensures that at least the dE portion of an action’s invocation will be completed
within dR time even when the first period of the invocation is not used. In our
example, the upper bound is 2ms, which would come down to, say, 1ms if dE were
increased to 300µs. Note that, with dE approaching 400µs, i.e., 10% utilization,
π would have to become zero because of the potentially unused first period.
In order to have that fS(w) ≤ fR(w) actually holds, π also needs to divide the
remaining response time fR(w)−dR evenly, i.e., π | (fR(w)−dR) or equivalently
λ | (fE(w)−dE), which is true in the example. In general, checking this constraint
may be difficult, in particular, on unbounded utilization domains, but is easy
in case fR or fE are linear functions. For example, if fR(w) = aR · w + dR,
then π | (fR(w) − dR) for all w ∈ N if and only if π | aR. Other less restrictive
constraints than the above might also exist but their investigation is left for
future work.

Implementation We have implemented our scheduling algorithm and bench-
marked it on synthetic workloads. The processes that generate the workload were
run in a simulation against the algorithm for lack of a stable process management
in the Tiptoe kernel. The scheduling algorithm essentially manages a deadline-
ordered set of released processes (ready queue) and a release-time-ordered set of
delayed processes (blocked queue), as described in Section 5.

list array matrix

time O(n2) O(log(t) + n · log(t)) Θ(t)

space Θ(n) Θ(t+ n) Θ(t2 + n)

Table 1. Time and space complexity per plugin

We are interested in the algorithm’s time complexity, i.e., the amount of time
the scheduler needs to make a scheduling decision, in terms of the number of
time instants (t) the scheduler can distinguish, i.e., look into the future, and the
number of processes (n) in the system. In our implementation, we have separated
the scheduling algorithm from the data structures implementing the ready and
blocked queues, and then developed plugins based on lists, arrays, and matrices.
The algorithm’s time complexity is dominated by the queue operations’ time
complexities since the algorithm itself is loop-free and therefore runs in constant
time. Table 1 shows the algorithm’s time and space complexities distinguished



by plugin. With the array and matrix plugins, the number of time instants t
is fixed. The matrix-based scheduler is therefore an O(1) scheduler. Section 6
provides more details and also discusses a space-optimized version of the matrix
plugin based on trees.

3 Related Work

We have mentioned work related to workload-oriented programming in the pre-
vious section. In this section, we relate our process model as well as the scheduler
concept and implementation to other work. Virtual periodic resources [19], which
we use in our scheduler, are related to resource reservations, which were intro-
duced in [16] as CPU capacity reserves. Follow-up work [5] within the real-time
operating system Eclipse employs resource reservations (reserves) for additional
resources. The process model in [5] is very similar to ours, except that the re-
source reserve is a rate or a percentage of the resource that a process might use,
and not a pair of a limit and a period. As a consequence, there is no notion
of a deadline of a task that could be scheduled with classical algorithms. The
Rialto [14] system also considers the possibility of multiple resources and uses
an even stronger notion of resource reserves for resource management. However,
there is no model of sequential actions in the Rialto system. Another scheduler
using reservation support via fair queuing is SMART [17].

The work on the Constant Bandwidth Server [1] is highly related to ours. The
differences are that only a single resource is considered and, although resource
reserves are described in terms of limit and period, the resource reserve is con-
stant per process, whereas in our model different actions within one process may
have different reserves. Another point of similarity is the use of an EDF-based
algorithm for scheduling. A scheduling scheme that uses the concept of a con-
stant bandwidth server has been developed in [10] for the purpose of scheduling
multi-threaded real-time and non-real-time applications running concurrently in
an open system. However, there is no notion of sequentiality within a thread/pro-
cess there, i.e. no counterpart of our actions. A slightly different process model
is used by RBED [4], which also employs an EDF-based scheduler. Similar to
our choice, each action is assigned a resource reserve via a limit and a period.
Unlike in our model, the ratio of limit over period is constant per process.

A different approach to real-time scheduling with resource reserves is via the
use of a resource kernel [18], providing timely, guaranteed, and enforced access
to physical resources for the process. A process requests a certain amount of a
resource, whose availability is then guaranteed by the kernel, and not, like in all
the above cases, by the scheduler.

Finally, we compare our scheduler implementation to other work in the con-
text of the scheduler complexity. By n we denote the number of processes. The
SMART [17] scheduler’s complexity is given by the complexity of managing a
special list and the cost of managing the working schedule. The list requires
O(n) work, which can be reduced to O(log(n)) if tree data structures are used.
The worst-case complexity of managing the schedule is O(n2

R), where nR is the



number of some particular active real-time tasks. In special cases this complex-
ity can be reduced to O(n) and O(1). The Move-to-Rear List scheduling of the
Eclipse [5] operating system implies several operations that are constant time
while in total it takes O(n), which can also be optimized to O(log(n)) time. In the
EDF-based scheduler of Rialto [13] the scheduling decision takes O(1) time, but
the scheduling algorithm is not compositional and requires a pre-computation of
a so-called scheduling graph. The latest Linux 2.6 scheduler runs in O(log(n))
time. There is also an earlier O(1) version, which, like our algorithm, makes use
of bitmaps to improve performance.

4 Process Scheduling

We work with a discrete time domain, i.e., the set of natural numbers N is the
timeline. The main ingredients of the process model are virtual periodic resources
and processes composed of actions.

4.1 Resources and Processes

Each process declares a finite set of virtual periodic resources that it uses. A
virtual periodic resource is an abstract notion, although one can think of the
usual resources as CPU, memory, or I/O devices, that handle workloads of a
certain type, with additional periodic capacity bounds. If no confusion arises, we
will say resource for virtual periodic resource. More precisely, a virtual periodic
resource is a triple

R = (N,λ, π)

where N is the resource name, and the pair (λ, π) is the (virtual periodic) re-
source capacity. Here, λ stands for limit and π for period. The limit λ specifies
the maximum amount of time the resource R can be used (by a process) within
the period π. We assume that in a resource capacity (λ, π), λ ≤ π. In case the
name is not important, we may just consider that a resource is a pair represent-
ing a resource capacity. We allow for an arbitrary finite set of resources denoted
by R.

A process P is a finite or infinite sequence of action invocations,

P = α0α1α2 . . .

for αi ∈ Act, where Act = N × R. An action invocation α ∈ Act is a pair
α = (l, R) where l standing for load is a natural number, which denotes the exact
amount of time the process will perform the action on the virtual resource R.
The load of an action is computable from the ET-function fE of the action.

Note that the notion of load simplifies the model definition, although in the
implementation it is in general not known a-priori: it is known for actions using
resources such as memory and I/O, but not for the CPU. By P we denote a
finite set of processes under consideration. If no confusion arises, we will just use
the term action instead of action invocation.



Resource demands of the processes are expressed via the virtual periodic
resources of their actions. If for a process action invocation we have α = (l, R)
for R = (N,λ, π), then the limit λ specifies the maximum amount of time the
process P can perform on the resource R within the period π, while performing
the action α.

Example 1. Assume we have the following resources,

R = {(C, 1, 2), (M, 1, 4), (I, 1, 3)}

where C stands for computation i.e. CPU, M for memory, and I for interaction or
an I/O channel, and all the time units are seconds. We consider a finite process P
that first does a computation for 3 seconds, then works on allocating/deallocating
memory objects of size 200KB, which takes 2 seconds, then it produces output
of size 100KB on an I/O device in 1 second, then again it computes, now for 2
seconds. If our timeline has unit equal to 1 second, then we can represent P in
our model as a finite sequence

P = α0α1α2α3 = (3, (C, 1, 2))(2, (M, 1, 4))(1, (I, 1, 3))(2, (C, 1, 2)).

Via the resource capacity, the process P requests up to, and in the same
time it promises not to use more than, one second of computation resource each
two seconds, only perform up to one second memory work each four seconds,
and perform every three seconds up to one second of I/O related work. Note
that, although not used in this example, a process could use the same resource
name with different capacity, resulting in two virtual periodic resources, i.e. one
action could use the CPU with capacity (1, 2), and another one with a different
capacity, for example (1, 3).

An example of an infinite process Q is a loop that executes the same actions
as P forever. It is given by the infinite (periodic) sequence of actions Q =
β0β1β2 . . ., for β4i = (3, (C, 1, 2)), β4i+1 = (2, (M, 1, 4)), β4i+2 = (1, (I, 1, 3)) and
β4i+3 = (2, (C, 1, 2)). ♦

4.2 Scheduling

A schedule for a finite set of processes P is a partial function

σ : N ↪→ P

from the time domain to the set of processes, that assigns to each moment in
time a process that is running in the time interval [t, t+1). Here, σ(t) is undefined
if no process runs in [t, t+ 1). Due to the sequential nature of the processes, any
scheduler σ uniquely determines a function σR : N ↪→ P ×R which specifies the
resource a process uses while being scheduled.

A schedule respects the resource capacity if for any process P ∈ P and any
resource R ∈ R, with R = (N,λ, π) we have that for any natural number k ∈ N

|{t ∈ [kπ, (k + 1)π) | σR(t) = (P,R)}| ≤ λ.



Hence, if the schedule respects the resource capacity, then the process P uses
the resource R at most λ units of time per period of time π, as specified by its
capacity.

Given a schedule σ for a set of processes P, for each process P ∈ P and each
action αi = (li, Ri) that appears in P we distinguish four absolute moments in
time:

– Arrival time ai of the action αi is the time instant at which the action arrives.
We assume that ai equals the time instant at which the previous action of
the same process has finished. The first action of a process has zero arrival
time.

– Completion time ci of the action αi is the time at which the action completes
its execution. It is calculated as

ci = min {c ∈ N | li = |{t ∈ [ai, c) | σ(t) = P}|} .

– Termination or finishing time fi of the action αi is the time at which the
action terminates or finishes its execution. We always have fi ≥ ci. The dif-
ference between completion and termination is specified by the termination
strategy of the scheduler. The process P can only invoke its next action if
the previous one has been terminated. In the scheduling algorithm we adopt
the following termination strategy: an action is terminated at the end of the
period within which it has completed.

– Release time ri is the earliest time when this action can be scheduled, ri ≥ ai.
If not specified otherwise, by the release strategy of the scheduler, we take
ri = ai. In the scheduling algorithm we will consider two release strategies,
which we call early and late strategy.

Using these notions, we define response time under the scheduler σ of the
action α denoted by si, as the difference between the finishing time and the
arrival time, i.e. si = fi − ai. Similarly one can define response time for any
finite sequence of actions, in particular for any finite process.

Assume that response bounds bi are given for each action αi of each process
P in a set of processes P. The set P is schedulable with respect to the given
bounds and resource capacity if and only if there exists a schedule σ : N ↪→ P
that respects the resource capacity, for which the actual response times do not
exceed the given response bounds, i.e., si ≤ bi for all involved actions αi.

Example 2. Consider the processes P and Q from Example 1. Given the bounds:

b(α0) = b(β4i) = 7, b(α1) = b(β4i+1) = 11
b(α2) = b(β4i+2) = 5, b(α3) = b(β4i+3) = 5

we have that the set {P,Q} is schedulable with respect to these bounds and the
resource capacity from Example 1. A schedule for P and an initial segment of Q,
β0β1β2β3, that meets the bounds is presented in Figure 3. The interested reader
might want to check that this schedule indeed respects the resource capacity.
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However, if we take b(α0) = 3, then regardless of the other bounds, the process
P i.e. the singleton set {P} is no longer schedulable. The reason is that the
capacity of the resource used by P allows for 1 unit of computation each period
of 2 units, so it is not possible to perform the workload 3 for α0 within 3 units
of time. ♦

4.3 Schedulability Result

Given a finite set P = {Pi | 1 ≤ i ≤ n} of processes with corresponding actions
αi,j = (li,j , Ri,j) for j ≥ 0, such that Pi = αi,0αi,1 . . . we define response bounds

bi,j = πi,j − 1 +
⌈
li,j
λi,j

⌉
· πi,j (2)

where αi,j = (li,j , (Ri,j , λi,j , πi,j)) with li,j , Ri,j , λi,j and πi,j being the load, the
resource name, the limit and the period for the action αi,j .

The next schedulability result justifies the definition of the response bounds
and shows the correctness of our scheduling algorithm.

Proposition 1. Given a set of processes P = {Pi | 1 ≤ i ≤ n}, as above, if∑
i∈I

max
j≥0

λi,j
πi,j
≤ 1, (3)

then the set of processes P is schedulable with respect to the resource capacity
and the response bounds (2).

The proof of Proposition 1 can be found in Appendix A. Here, we briefly
describe the proof idea. To meet the bounds, each action of each process splits
into a sequence of typed tasks, as in Lemma 1 (Appendix A), where the tasks
have either (a) release time equal to the next period instance after the arrival
time of the task, and duration equal to the limit (late strategy), or (b) release
time equal to the arrival time, and adjusted duration so that the task does not
exceed its limit nor utilization in the current period (early strategy). Hence we
consider two release strategies. Moreover, the termination strategy described



above determines the arrival time of the first task of any action, namely it is the
end of the period in which the previous action completed. This set of tasks is
schedulable according to Lemma 1 if the utilization test (3) is satisfied.

Hence, we test whether the sum of the utilization each process achieves when
running its “most expensive” action is less than 1. The test is finite even though
the processes may be infinite because each process uses a finite set of resources.
In addition, the test is computable even if the actual loads of the actions are
unknown, as it is often the case in practice.

ms

24 ms

12 20 24

ai ri fi
ci

10
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ai = ri

8 12 16 20

8 16

ci fi
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Fig. 4. Scheduling an action α = (5s, (2s, 4s))

Example 3. Figure 4 presents the scheduling of an action with load of 5s, arriving
at time 10s, in both strategies. The resource used by the action has a period of
4s and a limit of 2s. In this situation the scheduled response time in the early
release strategy is one period shorter than in the late release strategy. Moreover,
using this graphical representation, it is easy to understand the correctness of
the bounds on the scheduled-response-time functions from Section 2.♦

5 Scheduling Algorithm

In this section we describe the scheduling algorithm. At any relevant time t,
our system state is determined by the state of each process. A process may
be running, blocked or ready. By Running, Ready, and Blocked we denote the
current sets of running, ready, and blocked processes. These sets are ordered:
Blocked is ordered by the release times, Ready is ordered by deadlines, and
Running is either empty (for an idle system) or contains the currently running
process of the system. Thus,

P = Running ∪ Blocked ∪ Ready

and the sets are pairwise disjoint. Additionally each process is represented by
a tuple in which we keep track of the process’ evolution. For the process Pi we
have a tuple

Pi = (i, j, di, ri, li, λi)



where i is the process identifier, j stores the identifier of its current action αi,j ,
di is the current deadline, ri is the next release time, li is the current load, and
λi is the current limit. The scheduler also uses a time value ts which stores the
previous time instant at which it was invoked.

Given n processes P1, . . . , Pn, as defined in the previous section, initially we
have

Running = Ready = ∅, Blocked = {P1, . . . , Pn}.

At specific moments in time, including the initial time instant, we perform the
following steps:

1. Update process state for the process in Running.
2. Move processes from Blocked to Ready.
3. Update the set Running.

We discuss each step in more detail below.

1. If Running = ∅, i.e. the system was idle, we skip this step. Otherwise, let Pi
be the process in Running at time t. We differentiate three reasons for which Pi
is preempted at time t: completion, limit, and supply.

Completion Pi completes the entire work related to its current action αi,j =
(li,j , Ri,j). In this case, j ← j + 1 and the current action becomes αi,j+1 =
(li,j+1, Ri,j+1) with the resource capacity (λi,j+1, πi,j+1). If we have reached
process termination, i.e. there is no next action, we have a zombie process and
remove it from the system.

If Ri,j+1 = Ri,j , Pi is moved to Ready, its deadline di, and release time ri
remain unchanged, and we subtract the work done from λi, λi ← λi − (t − ts).
The current load li becomes li,j+1.

If Ri,j+1 6= Ri,j , we have currently implemented two release strategies han-
dling the process, following the proof of Proposition 1. But first we take care of
the termination strategy. Let m ∈ N be a natural number such that

t ∈ ((m− 1)πi,j ,mπi,j ].

According to our termination strategy, the action αi,j is terminated at time
mπi,j which is the end of the period in which the action has completed. Now let
k ∈ N be a natural number such that

mπi,j ∈ ((k − 1)πi,j+1, kπi,j+1].

The first strategy, called late release strategy, calculates ri, the next release time
of Pi, as the start of the next period of Ri,j+1 and its deadline as the start of
the second next period,

ri ← kπi,j+1, di ← (k + 1)πi,j+1,

and Pi is then moved to Blocked.



The second strategy, called early release strategy, calculates the new resource
limit for Pi, as

λi ←
⌊

(kπi,j+1 − t) ·
λi,j+1

πi,j+1

⌋
.

Given the new limit, we set the deadline to the end of the current period

di ← kπi,j+1

and move Pi to Ready. The early release strategy is an optimization of the late
release strategy as it results in higher utilization of the system depending on the
given workload.

Limit Pi uses all of the resource limit for the resource Ri,j given by λi. In this
case we have li ← li − (t− ts), and

λi ← λi,j , ri ← kπi,j , di ← (k + 1)πi,j ,

with k ∈ N such that t ∈ ((k − 1)πi,j , kπi,j ]. With these new values Pi is moved
to Blocked.

Release If a process is released at time t, i.e. Pm is a process, Pm 6= Pi, with the
release time rm = t, then the priorities have to be established anew. We update
the process load and limit,

li ← li − (t− ts), λi ← λi − (t− ts).

The deadline for Pi is set to the end of the current period, di ← kπi,j , with
k ∈ N such that t ∈ ((k − 1)πi,j , kπi,j ]. Pi is then moved to Ready.

2. In the second step the scheduler chooses the processes from Blocked which
are to be released at the current time t, i.e. {Pi | ri = t}, and moves them to
the set Ready.

3. In the third step if the Ready set is empty, the scheduler leaves the Running
set empty, thus the system becomes idle. Otherwise, the scheduler chooses a
process Pi with the earliest deadline from Ready (in a fair fashion) and moves
it to Running.

We calculate :

– tl : the time at which the new running process Pi completes its entire work
needed for its current action without preemption, i.e. tl = t+ li.

– tλ : the time at which Pi consumes its limit for the current period of the
resource Ri, i.e. tλ = t+ λi.

– tr : the next release time of any process in Blocked. If Blocked is empty,
tr =∞.



The scheduler stores the value of the current time in ts, ts ← t, and the system
lets Pi run until the time t = min(tl, tλ, tr) at which point it gives control back
to the scheduling algorithm.

The complexity of the scheduling algorithm amounts to the complexity of
the plugins that manage the Ready and Blocked sets, the rest of the algorithm
is constant time.

6 Implementation

The scheduler uses a well-defined interface to manage the processes in the sys-
tem. This interface is implemented by three alternative plugins, each with dif-
ferent attributes regarding time complexity and space overhead. Currently our
implementation, available via the Tiptoe homepage [8], supports doubly-linked
lists (Section 6.1), time-slot arrays of FIFO queues (Section 6.2), and a time-slot
matrix of FIFO queues (Section 6.3).

The array and matrix implementation impose a bound on the number of time
instants. For this reason, we introduce a finite coarse-grained timeline with t time
instants and a distance between any two instants equal to a fixed natural number
d. Deadlines and release times are then always in the coarse-grained timeline,
which restricts the number of different periods in the system. The scheduler may
be invoked at any time instant of the original (fine-grained) timeline. However,
the second step of the algorithm (releasing processes) is only executed during
scheduler invocations at time instants of the coarse-grained timeline.

Table 2 summarizes the queue operations’ time complexity in terms of the
number of processes (n) and the number of time instants (t). The first operation
is called ordered-insert by which processes are inserted according to a key, and
processes with the same key are kept in FIFO order to maintain fairness. The
select-first operation selects the first element in the respective queue. The release
operation finds all processes with a certain key, reorders them according to a
new key, and merges the result into another given queue. Note that t is actually
a constant, so the matrix implementation achieves constant time for all three
operations.

list array matrix

ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))

release O(n2) O(log(t) + n · log(t)) Θ(t)

Table 2. Time complexity of the queue operations

6.1 Process List

The list plugin uses ordered doubly-linked lists for Ready, which is sorted by
deadline, and Blocked, which is sorted by release time. Therefore, inserting a



single element has linear complexity with respect to the number of processes
in the queue, while selecting the first element in the queue is done in constant
time. Releasing the first k processes in Blocked by moving them to Ready, which
contains m processes, takes k · m steps. The upper bound of k and m is n,
and therefore the complexity is O(n2). Advantages of this data structure are
low memory usage (only two pointers per process) and no limitation on the
resolution of the timeline.

6.2 Time-Slot Array

The array plugin uses an array of pointers to represent the timeline. Each element
in the array points to a FIFO queue of processes. A pointer at position ti in
Blocked, for instance, points to a FIFO queue of processes that are to be released
at time ti. In Ready a pointer at position ti is a reference to a FIFO queue of
processes with a deadline ti. Note that whenever we speak of time instants in
the array or matrix plugins, we mean time instants modulo the size of the array
or matrix, respectively.

In a naive implementation, inserting a process would be achieved in constant
time by using the key (release time or deadline) as index into the array. Finding
the first process of this array would then be linear in the number of time instants
(t). A more balanced version uses an additional bitmap to represent whether
there are any processes at a certain time instant or not. The bitmap is split
into words with an additional header bitmap that indicates which word of the
bitmap has at least one bit set. Furthermore, if the header bitmap has more than
s bits, where s denotes the word size1, it recursively maintains a header again.
The bitmap implementation, therefore, can be seen as a tree with depth logs(t)
where the nodes are words and each node has s children. This way the select-
first operation improves from linear complexity to logs(t), but the ordered-insert
operation degrades from constant time to logs(t) complexity, due to necessary
updates in the bitmap.

During the release operation at time instant ti, all k processes in the FIFO
queue at position ti in the Blocked array are inserted at the correct position in
the Ready array. The complexity of this operation is k · logs(t). Additionally,
the bit which indicates that there are processes at time instant ti in Blocked is
cleared in logs(t) steps. As a result the time complexity of the release operation
is at most n · logs(t) + logs(t), since n is the upper bound of k.

The disadvantage of this plugin is the static limit on the timeline, i.e., the
number of time-slots in an array. This imposes a limitation of how far into the
future a process can be released, and on the maximum deadline of a process.
Therefore, the possible range of resource periods in the system is bounded with
this plugin. Furthermore, the array introduces a constant memory overhead.
Each array with t time-slots, contains t pointers and (s/(s− 1)) · (t− 1) bits for
the bitmap. For example, with t = 1024 this results in 4KB for the pointers and
132 bytes for the bitmap.
1 Our implementation supports 32-bit and 64-bit word size, on corresponding CPU

architectures. The measurements and example calculations were done for s = 32.



6.3 Time-Slot Matrix

In order to achieve constant execution time in the number of processes for all op-
erations on the queues we have designed a matrix of FIFO queues, also referred
to as FIFO matrix. The matrix contains all processes in the system, and the
position in the matrix indicates the processes deadline (column entry) and the
processes release time (row entry). The matrix implicitly contains both Ready
and Blocked, which can be computed by providing the current time. In a naive
implementation, select-first has complexity O(t2), whereas insert-ordered and
release are constant time. To balance this, additional meta-data is introduced
which reduces the complexity of select-first to O(log(t)) and degrades the com-
plexity of the other operations, cf. Table 2.

We introduce a two-dimensional matrix of bits, having value 1 at the positions
at which there are processes in the original matrix. In addition, we use two more
bitmaps, called release bitmap and ready bitmap. The release bitmap indicates
at which row in the matrix of bits at least one bit is set. The ready bitmap
contains the information in which columns released processes can be found.
Note that the release bitmap merely reflects the content of the matrix. The
ready bitmap provides additional information, it indicates where the currently
released processes are located.

A process is put into the FIFO matrix in constant time. However, the corre-
sponding updates of the bit matrix and the release bitmap take logs(t) operations
each. Therefore, inserting a process has a time complexity of 2 · logs(t). Finding
and returning the first process in Released or Blocked has also a complexity of
2 · logs(t). To find the first process in Ready, for example, we find the first set bit
in the ready bitmap in logs(t) operations. If the bit is at position i, then the ith
column in the bit matrix is examined, in order to find the set bit j corresponding
to the first process in Ready, also in at most logs(t) operations. The two indexes,
i and j, are then used to access the process in the FIFO matrix. As a result, the
operation of selecting the first process has a total complexity of 2 · logs(t).

The release operation does not involve moving processes. Releasing processes
is done by updating the ready bitmap. More precisely, the new ready bitmap
for time instant ti is the result of a logical OR between row ti in the bit matrix
and the old ready bitmap. The OR operation is word-wise and therefore linear
in the size of the bitmap, which is linear in the number of time instants.

In addition to the static limitation for the number of time instants, the major
disadvantage of the matrix plugin is the high memory usage. To distinguish t
time instants the FIFO matrix uses t2 pointers. Additionally, the meta-data
consists of (s/(s−1)) · t ·(t−1) bits for the bit matrix and (s/(s−1)) ·(t−1) bits
for each bitmap. In order to fully exploit the available hardware instruction for
searching and modifying bitmaps, the transpose of the bit matrix is also kept in
memory, which adds additional (s/(s− 1)) · t · (t− 1) bits.

As an alternative to the FIFO matrix representation, we also implemented the
FIFO matrix as a B+ tree [2]. Using a B+ tree for the FIFO matrix adds 2·logs(t)
operations to the complexity of the ordered-insert and select-first operations,
because the depth of the tree is 2 · logs(t). The memory usage of the B+ tree



might in the worst case exceed the memory usage of the FIFO matrix. A worst-
case scenario occurs when each position of the FIFO matrix contains at least one
process. However, if the FIFO matrix is sparse, for example because the number
of processes in the system is much smaller than the number of distinguishable
time instants, then the memory overhead reduces drastically. See the next section
for details.

7 Experiments and Results

In this section we present results of different experiments with our prototype
implementation, running on a 2GHz AMD64 machine with 4GB of memory.
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Fig. 5. Scheduler time and space overhead

7.1 Scheduler Overhead

In order to measure scheduler execution times, we schedule 9 different sets of
processes with 10, 25, 50, 75, 100, 150, 250, 500, and 750 processes each, with the



number of distinguishable time instants t in the scheduler fixed to 214 = 16384.
During these experiments the execution time of every single scheduler invocation
is measured using the software oscilloscope tool TuningFork [12]. From a sample
of one million invocations we calculate the maximum (Figure 5(a)), the average
(Figure 5(b)), and the standard deviation (Figure 5(c)) in execution times. The
x-axis of each of the three figures represents the number of processes in the set
and the y-axis the execution time in microseconds. Additionally, Figure 6 depicts
histograms of the scheduler execution times for 750 processes. The B+ tree plugin
performs the same as the matrix plugin up to 140ns, and is therefore not shown.

The execution time measurements conform to the complexity bounds from
Section 6. For a low number of processes (less than 150), all plugins perform
similarly and the scheduler needs at most 20 microseconds. On average (Fig-
ure 5(b)), for a low number of processes (up to 100) the list plugin is the fastest.
Interestingly, on average the array plugin is always faster than the matrix plugin,
even for a high number of processes.

The variability (jitter) of the scheduler execution can be expressed in terms
of its standard deviation, depicted in Figure 5(c). The variability of the list and
array plugins increases similarly to their maximum execution times when more
than 150 processes are scheduled. The matrix plugin, however, has a lower stan-
dard deviation for a high number of processes and a higher standard deviation
for a low number of processes. This is related to the better average execution
time (Figure 5(b)) for higher number of processes, as a result of cache effects.
By instrumenting the scheduler we discovered that bitmap functions, e.g. setting
a bit, are on average up to four times faster with 750 processes than with 10
processes, which suggests CPU cache effects.

The memory usage of all plugins, including the tree plugin, for 750 pro-
cesses with an increasing number of distinguishable time instants is shown in
Figure 5(d). The memory usage of just the B+ tree is 370KB, in comparison to
the 1GB for the matrix plugin. In both cases up to 66MB additional memory
is used for meta-data, which dominates the memory usage of the tree plugin.
The graphs in Figure 5(d) are calculated from theoretical bounds. However, our
experiments confirm the results.

Figures 6(a), 6(b), and 6(c) highlight the different behavior of the presented
plugins when scheduling 750 processes. These figures are histograms of the sched-
uler execution time and are used to highlight the distribution of it. The x-axis
represents the execution time and the y-axis (log-scale) represents the number
of scheduler calls. For example, in Figure 6(a) there are about 50 scheduler calls
that executed for 100 microseconds during the experiment.

The list plugin varies between 0 and 350 microseconds, the array plugin
between 0 and 55 microseconds, and the matrix plugin does not need more than
20 microseconds for any scheduler execution. The execution time histograms,
especially histogram 6(a), are closely related to the histogram of the number of
processes released during the experiment (Figure 6(d)). The x-axis represents
the number of processes and the y-axis (log-scale) represents how many times
a certain number of processes is released. The similarity of Figure 6(a) and
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Figure 6(d) indicates that the release operation dominates the execution of the
scheduler for the experiment with 750 processes.

7.2 Release Strategies

In this section we compare the two implemented release strategies of the sched-
uler in two experiments and show that the early strategy achieves optimal av-
erage response times (always better by one period than the late strategy) for
a single process with increasingly non-harmonic periods (Figure 7(a), top), and
improves average response times for an increasing number of processes with a
random distribution of loads, limits, and periods (Figure 7(b), top). In both
experiments, response times are in ms, and limits and periods are chosen such
that the theoretically possible CPU utilization (Proposition 1) is close to one.
The early strategy achieves at least as high actual CPU utilization as the late
strategy, and thus less CPU idle time (bottom part of both figures). For Fig-
ure 7(a), the single process alternates between two actions that have their periods
(and limits) equal to some natural number n and n + 1, respectively, shown as
pairs (n, n+ 1) on the x-axis. Hence, the actions are increasingly non-harmonic
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and the corresponding periods are relatively prime. The process always invokes
the actions on the lowest possible load to maximize switching between actions
resulting in increasingly lower CPU utilization.

8 Conclusions

We have presented the workload-oriented programming model and, as foun-
dation, an adequate process model with a fast EDF-based scheduler and an
inexpensive sufficient schedulability test. Furthermore, we have designed and
implemented a constant-time scheduling algorithm, analyzed its time and space
complexity, and confirmed the theoretical results with a series of experiments.
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A Schedulability Proof

In order to prove Proposition 1, we first isolate a more essential schedulability
property in the following section.

A.1 Typed EDF

We describe a schedulability test for a particular dynamic EDF scheduling algo-
rithm, and prove its sufficiency.

Let τ = (r, e, d) be an aperiodic task with release time r, execution duration
e, and deadline d. We say that τ has type, or specification, (λ, π) where λ and
π are natural numbers, λ ≤ π, if the following conditions hold:

– d = (n+ 1)π for a natural number n such that r ∈ [nπ, (n+ 1)π), and
– e ≤ (d− r)λπ .



Hence, a task specification is basically a periodic task which we use to impose a
bound on aperiodic tasks. Note that if r = nπ, then the duration e is limited to
λ. On the other hand, a task of type (λ, π) need not be released at an instance
of the period π, but its utilization factor in the interval of time [r, d] remains at
most λ

π .
Let S be a finite set of task types. Let I be a finite index set, and consider

a set of tasks
{τi,j = (ri,j , ei,j , di,j) | i ∈ I, j ≥ 0}

with the properties:

– Each τi,j has a type in S. We will write (λi,j , πi,j) for the type of τi,j .
– The tasks with the same first index are released in a sequence, i.e., ri,j+1 ≥
di,j and ri,0 = 0.

The following result provides us with a sufficient schedulability test for such
specific set of tasks.

Lemma 1. Let {τi,j | i ∈ I, j ≥ 0} be a set of tasks as defined above. If

U =
∑
i∈I

max
j≥0

λi,j
πi,j
≤ 1, (4)

then this set of tasks is schedulable using the EDF strategy at any point of time,
so that each task meets its deadline.

Proof. The proof builds upon the standard proof of sufficiency of the utilization
test for periodic EDF, see e.g. [6]. Assume the opposite, i.e. a deadline gets
missed at time d by a task τ = (r, e, d) ∈ {τi,j | i ∈ I, j ≥ 0}. Let t be the
earliest moment in time such that in the interval [t, d] there is full utilization
and all executed tasks have deadlines that are not larger than d, c.f. Figure 8.
Note that t < d and t is a release time of some task.

idle

overflow

t d

Fig. 8. Deadline miss and utilization



Let C(x, y) denote the computation demand of our set of tasks in an interval
of time [x, y]. We have that C(x, y) is the sum of the durations of all tasks with
release time greater than or equal to x and deadline less than or equal to y.

Since a deadline is missed at d, we have

C(t, d) > d− t

i.e. the demand is larger than the available time in the interval [t, d]. We are
going to show that C(t, d) ≤ (d − t)U , which shows that U > 1 and completes
the proof.

First we note that
C(t, d) =

∑
i∈I

Ci(t, d)

where Ci(t, d) is the computational demand imposed by tasks in {τi,j | j ≥ 0}
for a fixed i ∈ I.

In the finite interval [t, d] only finitely many tasks in {τi,j | j ≥ 0} are
executed, say n tasks. Moreover, by the choice of t, none of these tasks is released
at time earlier than t. Therefore, we can divide [t, d] to subintervals

[t, d] =
n⋃
k=0

[tk, tk+1]

where t = t0 and d = tn+1, and for all k ∈ {1, . . . , n}, tk is a release time of
a task τk = (rk, ek, dk) in {τi,j | j ≥ 0}. Since the tasks in {τi,j | j ≥ 0} are
released and executed in a sequence, we have that dk ≤ tk+1. Let (λk, πk) denote
the type of τk. Moreover, we either have t1 = t0, or no task at all in [t0, t1].

Denote by (λ∗i , π
∗
i ) the “most expensive” task type in terms of utilization for

{τi,j | j ≥ 0}, i.e.
λ∗i
π∗i

= max
j≥0

λi,j
πi,j

.

We have Ci(t0, t1) = 0 and for k > 0,

Ci(tk, tk+1) ≤ (dk − rk)λk

πk

≤ (tk+1 − tk)λk

πk

≤ (tk+1 − tk) · λ
∗
i

π∗i
.

Hence for all k ∈ {0, . . . , n}, it holds that

Ci(tk, tk+1) ≤ (tk+1 − tk) · λ
∗
i

π∗i
.

Therefore,
C(t, d) =

∑
i∈I Ci(t0, tn)

=
∑
i∈I
∑n
k=0 Ci(tk, tk+1)

≤
∑
i∈I
∑n
k=0(tk+1 − tk)λ

∗
i

π∗i

=
∑
i∈I(tn+1 − t0)λ

∗
i

π∗i
= (d− t)U.



which completes the proof.

The schedulability test (4) computes the maximal utilization from the tasks in
{τi,j | j ≥ 0}, given by the “most expensive” type. Since there are finitely many
types, even though the set {τi,j | j ≥ 0} may be infinite, the test is computable.
Clearly, the test is conservative. For finite or “periodic” sets {τi,j | j ≥ 0} one
could come up with a more complex sufficient and necessary utilization test based
on the overlap of the tasks. We leave such an investigation for future work.

A.2 Proof of Proposition 1

Each process Pi for i ∈ I provides a sequence of tasks τi,k by refining each action
to a corresponding sequence of tasks. Consider the action αi,j = (li,j , Ri,j) with
capacity of Ri,j given by (λi,j , πi,j). Let nj be a natural number such that

ai,j ∈ ((nj − 1)πi,j , njπi,j ]

if j > 0, and let n0 = 0. We distinguish two cases, one for each release strategy.

Case 1: Late release strategy Let

kj =
⌈
li,j
λi,j

⌉
.

The action αi,j produces tasks τi,k for k0+· · ·+kj−1 ≤ k ≤ k0+· · ·+kj−1+kj−1
given by:

τi,k = ((nj +m)πi,j , ei,k, (nj +m+ 1)πi,j)

where m = k − (k0 + · · · + kj−1) and ei,k = λi,j if k < k0 + · · · + kj − 1 or if

k = k0 + · · ·+ kj − 1 and λi,j divides li,j , otherwise ei,k = li,j −
⌊
li,j

λi,j

⌋
· λi,j .

Hence, the workload of the action αi,j is split into several tasks that all have
type (λi,j , πi,j). Moreover, the tasks in {τi,k | k ≥ 0} are released in a sequence,
such that (because of to the termination strategy and the resource capacity) the
release time of the next task is always equal or grater than the deadline of a
given task. Therefore Lemma 1 is applicable, and from the utilization test we
get that the set of tasks {τi,k | i ∈ I, k ≥ 0} is schedulable so that all tasks
meet their deadlines. Let σ be a schedule for this set of tasks. It corresponds to
a schedule σ̂ for the set of processes P by: σ̂(t) = Pi if and only if σ(t) = τi,k for
some k ≥ 0.

By construction, σ̂ respects the resource capacity: Consider Pi ∈ P and
R ∈ R with capacity (λ, π). In any interval of time [nπ, (n+ 1)π) there is at
most one task τi,k of type (λ, π) produced by an action with resource R which
is available and running, and its duration is limited by λ.

For the bounds, for each action αi,j , according to the termination strategy
and the late release, we have

fi,j = ri,j +
⌈
li,j
λi,j

⌉
πi,j



where the release times are given by ri,j = njπi,j . The arrival times are ai,j =
fi,j−1 ∈ ((nj − 1)πi,j , njπi,j ]. Therefore

si,j = fi,j − ai,j

=
⌈
li,j
λi,j

⌉
πi,j + ri,j − ai,j

≤
⌈
li,j
λi,j

⌉
πi,j + πi,j − 1

= bi,j

which completes the proof in the case of the late strategy. Hence, if the release
time of each action is delayed to the next period instance, then we safely meet
the response bounds. However, such a delay is not necessary. We may keep the
release time equal to the arrival time and still meet the bounds. Actually in
average we may that way achieve better response times than the bounds provide
and higher utilization.

Case 2: Early release strategy If the action αi,j arrives on a period instance
αi,j = njπi,j then there is nothing we can do better than in the late strategy. If
not, then let

ei,j = min
{
li,j ,

⌊
(njπi,j − ai,j)

λi,j
πi,j

⌋}
and

kj =
⌈
li,j − ei,j
λi,j

⌉
+ 1.

Then αi,j produces kj tasks τi,k for k0 + · · ·+kj−1 ≤ k ≤ k0 + · · ·+kj−1 +kj−1
given by: for k = k0 + · · ·+ kj−1

τi,k = (ai,j , ei,j , njπi,j) ,

and if kj > 1, then for k0 + · · ·+ kj−1 < k < k0 + · · ·+ kj−1 + kj − 1

τi,k = ((nj +m)πi,j , λi,j , (nj +m+ 1)πi,j) ,

where m = k − (k0 + · · ·+ kj−1 + 1). Now if λi,j divides li,j − ei,j , then also for
k = k0 + · · ·+ kj−1 + kj − 1 we have

τi,k = ((nj +m)πi,j , λi,j , (nj +m+ 1)πi,j) ,

with m = k − (k0 + · · · + kj−1 + 1). If, on the other hand, λi,j does not divide
li,j − ei,j , then for k = k0 + · · ·+ kj−1 + kj − 1 we have

τi,k =
(

(nj +m)πi,j , li,j − ei,j −
⌊
li,j − ei,j
λi,j

⌋
· λi,j , (nj +m+ 1)πi,j

)
,

where again m = k − (k0 + · · ·+ kj−1 + 1).



Hence, we let a task of αi,j start as soon as αi,j has arrived, taking care not
to exceed the limit in the current period as well as to keep the utilization below
the specified bound (via the duration of the task ei,j). The rest of the action
is divided in tasks as before. Note that all tasks produced by αi,j are still of
type (λi,j , πi,j). Also in this case the termination strategy makes sure that each
release time is larger than or equal to the deadline of the previous task. Hence,
the set of tasks is schedulable via Lemma 1, and the induced process schedule
respects the resource capacity. For the bounds we now have

fi,j ≤ ri,j +
⌈
li,j
λi,j

⌉
πi,j + πi,j − 1

and ai,j = ri,j . Hence,

si,j = fi,j − ai,j

≤
⌈
li,j
λi,j

⌉
πi,j + πi,j − 1

= bi,j

which completes the proof. ut


