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Abstract

We propose a concurrent programming model called threading-by-appointment (TAP). Unlike
traditional threads, TAP threads can only communicate with system components or other threads
by appointment. For example, a TAP thread cannot simply try to access some shared resource.
Instead, a TAP thread must make an appointment with the shared resource in advance. Only at
the time of the appointment, the thread can actually access the shared resource. The desired start
time and duration of an appointment may either be provided by the thread or computed by the TAP
runtime system. The duration of an appointment must be finite. Instantaneous appointments are
possible but only allow a single atomic operation per appointment. TAP threads cannot deadlock
because the duration of appointments is finite. Race conditions may occur for making appointments
but can be avoided by making appointments independently of the system’s progress. Threading-by-
appointment makes the process of determining the time instants for system interaction explicit and
may therefore help to increase the determinism of concurrent applications as well as the efficient use
of resources. Interesting questions arise such as how to schedule appointments as opposed to how
to multiplex resources such as the CPU, and how to define structured programming elements that
support threading-by-appointment.

1 Introduction

This report gives an overview of some of the existing models for thread-based and event-driven concurrent
programming, mostly in the domain of Internet applications, and informally presents some new ideas on
how to overcome some of the limitations. However, the presented ideas have not been verified in practice
and thus require more work, in particular, experimental studies. Nevertheless, we feel that the presented
ideas point out potentially interesting research directions that are worth mentioning and investigating.

Threading libraries such as POSIX, Linux, or Java threads are widely used in practice but suffer from
a number of problems such as non-deterministic behavior, presence of race conditions, and potential
deadlock. We propose a concurrent programming model called threading-by-appointment (TAP) that
supports deterministic I/O behavior and eliminates deadlock and some forms of race conditions. TAP
threads can only communicate with system components or other threads by appointment. In order
to access a shared resource such as an I/O device or shared memory, a TAP thread must make an
appointment with that resource in advance. Only at the time of the appointment, the thread can access
the resource even if the resource is available earlier. The duration of appointments must be finite, which
eliminates the potential for deadlock. The notion of time for appointments can be anything from real time
to, e.g., some form of CPU time. For example, in the latter case time may advance as soon as all threads
are blocked [9]. A TAP thread blocks when the thread yields the CPU to show up for an appointment.
Instantaneous appointments are also possible but only allow a single atomic operation per appointment.
Multiple instantaneous appointments can be made at the same time instant. Race conditions may occur
for making appointments but can be avoided by making appointments independently of the system’s
progress.

The time of an appointment may either be suggested by the thread or computed by the TAP runtime
system, which maintains so-called TAP calendars for the appointments. Only the request by a thread for
a non-instantaneous appointment may be turned down if the requested time has already been assigned to
some other thread. In this case, the thread and the runtime system have to negotiate an alternative time.
TAP calendars not only enable fair and coordinated access to shared resources and thus potentially reduce
thrashing but also support resource-aware scheduling strategies [11]. TAP calendars can be seen as a
generalization of event queues used in event-driven concurrency models such as SEDA [12]. TAP threads
therefore offer a thread-based programming model that has the potential for utilizing the efficiency of
an event-driven implementation while reducing the chances of thrashing.

We also introduce a simple process model called reactive scheduled processes (RSP) to study operating
system structures that support the implementation of various concurrency models, in particular, event-
driven and thread-based concurrency models. The RSP model, however, has originally been used in the
context of real-time programs [6]. Event-driven and thread-based models have previously been compared
and shown to be essentially duals of each other [7] in terms of how events are handled. With the RSP
model, we focus on a different aspect, i.e., the fact that both models essentially handle and create the
same type of events. We try to provide an alternative perspective on the problem of whether events [8]
or threads [10] are better for a given application. In fact, we argue that a key problem is not only
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Figure 1: The RSP model

how to handle events but also what kind of events to handle and when. TAP on RSP actually reveals
that threading-by-appointment may just as well be introduced as events-by-appointment or, even more
abstract, as processing-by-appointment. However, in order to keep the discussion sufficiently concrete we
have chosen not to do so in this paper. In Section 2, we introduce the RSP model and present work
related to threading-by-appointment in Section 3 using the RSP model as foundation. In Section 4, we
introduce threading-by-appointment and discuss a simple version of so-called cooperative TAP threads.
Section 5 gives an outlook on potential research directions.

2 The RSP Model

The purpose of the RSP model is to understand the flow of control in the scheduling core of an operating
system (i.e., RSP models task management in the sense of [1] but not stack management). RSP abstracts
from any state-related aspects such as memory management and protection. Figure 1 depicts the flow of
control in an RSP system. The reactor observes the environment of the system for occurrences of events
such as system clock ticks or the arrival of new data. Upon the occurrence of an environment event, the
reactor may release blocked processes that have previously expressed an interest in the event through
some system call. The environment of an RSP system is the physical world around the RSP system that
is visible through the system’s timing and I/O devices. We will later extend the reactor to observe the
RSP system itself, i.e., the scheduler and the processes. Most modern operating systems including many
real-time operating systems implicitly do that, which explains why the flow of control in such systems is
so hard to understand. The environment is an important parameter of an RSP system and needs to be
defined carefully.

The reactor may release any number of processes but does not actually run processes. The function
of the reactor is to relate environment events and processes, not processes and resources. This is up
to the scheduler in an RSP system. The scheduler observes the RSP system, i.e., the reactor and the
released processes, and selects released processes to run. More precisely, in analogy to the reactor, the
scheduler observes the RSP system for the occurrences of so-called system events such as system clock
ticks (time-slicing scheduler) or the release or blocking of a process. Upon the occurrence of a system
event, the scheduler may reconsider which processes to run. Note that a system clock tick is the only
type of event that is not only an environment event but also a system event because system clock ticks
are not under the control of the system but only refer to real time (unless the system has some means to
modify the system clock’s speed). If the reactor and the scheduler need to run at the same time instant,
then the reactor has priority over the scheduler.

The scheduler may run any released process or decide to idle but cannot make a process block (or
exit). This is entirely up to the process, which may block by invoking a system call. Importantly, blocking
in the RSP model not only refers to blocking for I/O or some semaphore as in most operating systems
but merely refers to the transfer of control back to the reactor. Blocking (and exiting) is cooperative.
Only a process can block itself but not the reactor or the scheduler. Figure 2 depicts the process states
of the RSP model as a traffic light. Each state transition is under control of a unique system component
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except process preemption, which can be initiated by the reactor or the scheduler. Since process blocking
(and exiting) is cooperative, the RSP model does not support signals. Although this restriction could
easily be removed, we have chosen not to do so because of simplicity and because signaling is orthogonal
to the issues discussed here.

The RSP model helps to understand in which way system components depend on each other and what
kind of information flows between them. For example, changing the reactor may not only change the
overall system behavior but also the requirements on the scheduler. In recent work such as [12] and [11],
we observe that improving a system’s performance (e.g., throughput) essentially requires improving the
quality and quantity of information that flows between reactor, scheduler, and processes. However, these
improvements occur at the cost of increased system complexity in the sense that the dependency be-
tween reactor, scheduler, and processes is increased. Consequently, system behavior is determined by an
increasing number of factors, which further complicates system composition, analysis, and maintenance.

3 Related Work

We further illustrate the RSP system model by discussing how existing concurrent programming models
relate to the RSP model. In traditional preemptive threading models such as POSIX, Linux, or Java
threads, the flow of control can be quite complex. To simplify the discussion we do not consider signals
and other control-based mechanisms that modify the behavior of a thread from outside the thread such
as putting the thread to sleep or terminating the thread. Given some multi-threaded program, suppose
that a thread A that is currently running attempts to acquire a lock on some shared resource. We model
A by an RSP process that blocks at the attempt (even in the uncontended case). Note that blocking is a
logical concept in the RSP model rather than an implementation technique. The time instant when the
RSP process A blocks depends on many factors such as CPU performance and load and, in particular,
on the process implementation, which is not under the control of the reactor or scheduler. As soon as the
process is blocked, the reactor takes over and decides how to proceed. We can only model this behavior
with a reactor that can observe system events in addition to environment events because a process that
blocks constitutes a system event. If the lock is not available, the reactor marks A to wait for the lock
and then relinquishes control by invoking the scheduler. If the lock is available, the reactor marks the
lock as held by A and then releases A before relinquishing control to the scheduler. Now, suppose that
some time later a thread B that actually holds the lock releases the lock. In RSP terminology, B is
another RSP process, which will block when B attempts to release the lock. As soon as the process
blocks, the reactor is invoked. If there is no process waiting to acquire the lock, the reactor marks the
lock as available and releases B. Otherwise, if there is a process waiting to acquire the lock such as A,
the reactor will choose one such process and release it in addition to B. To be fair this has to be done
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Thread-Based Model Event-Driven Model
Reactor thread queue, locks event queue, state machine
Scheduler thread queue, priority-driven -
Process thread callback

Table 1: Traditional instances of the RSP model

in FIFO order, i.e., the first process that was blocked to wait for the lock will be the first process to
be released when the lock becomes available. Surprisingly, many older thread libraries and even kernels
actually release all waiting threads causing the infamous “thundering-herd problem” if there are many
threads waiting for the lock. In this case, the burden is put onto the scheduler to “catch” the herd and
put it back to sleep again except for one of those threads.

Handling I/O requests in the RSP model is done in a similar way as acquiring locks. For example,
a thread that attempts to read from some shared resource such as an I/O device is modeled as an RSP
process that blocks at the attempt before invoking the reactor. If the I/O device is available, the reactor
releases the process and invokes the scheduler. Otherwise, the reactor marks the process as waiting for
the I/O device and invokes the scheduler. Later, when the I/O device becomes available, the reactor
is invoked and releases the process. Interestingly, the original request for I/O is a system event but
is implicitly turned into an environment event if the I/O device was not available at the time when
the thread requested it. In summary, the traditional threading model requires a reactor that observes
environment and system events. In particular, threads can control when the reactor releases processes
by acquiring and releasing locks. As a consequence, there is a cyclic control-flow dependency between
the reactor, the scheduler, and the processes.

Event-driven concurrency models are essentially equivalent to thread-based models in terms of the
RSP model. They only differ in the way they manage events and memory, which is not exposed in the
RSP model. Given some event-driven application, suppose that a callback function A will be invoked
when an environment event r occurs. The event indicates that some data has arrived that needs to
be read and processed by A. We model this relationship by a reactor that maintains an event queue
and a hash table that associates events with callbacks (i.e., event handlers). For example, the event
handler table associates r with A. The callback A is modeled by an RSP process. When r occurs, the
reactor appends r to the event queue. If the system is idle, the reactor removes the first event from the
queue, say, r, releases A because r is associated with A in the event handler table, and finally invokes
the scheduler. Traditional event-driven models are non-preemptive, i.e., there is at most one callback
function executing at the same time. Thus the scheduler trivially chooses and runs A immediately. If
an environment event occurs the reactor preempts A to append the event to the event queue but does
not release any other processes. Therefore, the scheduler can trivially resume the execution of A after
the reactor is finished. When A completes, A blocks and the reactor is invoked. The completion of A
constitutes a system event that the reactor appends to the event queue if there is a callback associated
with the event. Therefore, similar to thread-based models, the reactor needs to observe system events in
order to capture event-driven models. Finally, the reactor removes the next event from the event queue,
if there is any, and releases the associated callback’s process. If the event queue is empty, the system
idles with the reactor observing environment events. Now, suppose that the completion event of A is in
fact associated with some callback function B in the event handler table. As a consequence, the reactor
eventually removes the completion event of A from the event queue and releases B. In this way, chains
of callbacks can be constructed that can perform more complex tasks, which may involve multiple I/O
interactions such as reading an http request and writing back some html page as an answer.

Table 1 summarizes the relationship of the traditional thread-based and event-driven models in terms
of the RSP model. In order to maintain the automatic stack management [1] of the thread-based model
while utilizing the efficiency of an event-driven implementation, thread-based models can be implemented
on top of an event-driven model by adding an appropriate scheduling mechanism. The state thread
library [9] implements such a model using a cooperative scheduler. The Capriccio thread library [11]
goes even further by using a resource-aware scheduler and more advanced stack management. The other
direction is also possible: for example, the responsiveness of an event-driven model can be improved
by utilizing a pool of preemptive threads as alternative to callbacks, e.g., in the SEDA model [12]. In
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Capriccio [11] SEDA [12]
Reactor event queue, boolean or spin locks stage, event queue, state machine
Scheduler thread queue, resource-aware thread pool, resource-aware
Process thread thread

Table 2: Refined instances of the RSP model

xGiotto Model [3] Synchronous Reactive Model [4]
Reactor event filter and queue, virtual machine event queue, state automaton
Scheduler task set, real-time -
Process E code and task synchronous reactive program

Table 3: Real-time instances of the RSP model

addition, SEDA uses multiple stages of event-processing machinery that can be modeled by multiple
RSPs.

Table 2 relates Capriccio and SEDA in terms of the RSP model, suggesting that recent implementa-
tions of thread-based and event-driven models become more and more alike. There are also hybrids of
thread-based and event-driven models that have successfully been implemented, e.g., [2] and [1].

Table 3 relates two real-time programming models in terms of the RSP model. xGiotto [3] is an
event-driven programming language with so-called logical execution times for tasks. In xGiotto, a task
is the basic unit of functionality. A task computes from its input and state some output and a new state.
An xGiotto program defines the task functionality as well as when a task is invoked (i.e., for which kind of
events) and when a task is terminated (i.e., when the output of the task will be available, independently
of the task’s execution time). A typical analysis of an xGiotto program involves a so-called time-safety
check in which, for a given system configuration, all tasks are checked to complete execution before their
output is made available. xGiotto introduces the notion of event scoping, which allows the programmer
to encode an environment assumption on the arrival behavior of events in the actual structure of xGiotto
programs. xGiotto can be seen as a language that offers a restricted form of threading-by-appointment
using real time as the notion of time for appointments. The runtime system of xGiotto implements an
RSP reactor that uses an event filter and queue for event scoping and a virtual machine, which is an
extended version of the Embedded Machine [5], that executes the timing code generated by the xGiotto
compiler. The RSP scheduler in a xGiotto runtime system is a real-time scheduler that handles the
xGiotto tasks released by the virtual machine. An xGiotto task and its compiler-generated timing code,
which is so-called E code executed by the virtual machine, make up a process in the RSP terminology.

The synchronous reactive model [4] uses the notion of zero time for real-time programming. In
this model, computation takes zero time. For any event that occurs, a synchronous reactive program
computes a reaction in zero time. In practice, such a program must be checked to complete any reaction
before another event occurs. The RSP reactor in a runtime system for synchronous reactive programs is
typically a compiler-generated state automaton that uses an event queue and non-preemptively dispatches
code to compute the reactions. The RSP scheduler is therefore trivial. The synchronous reactive model
produces deterministic and highly efficient code. However, similar to the event-driven model in the non-
real-time world, system composition and distribution, and thus code maintenance and reuse are difficult.
Nevertheless, synchronous reactive programming may in fact be interesting to the non-real-time event
community.

4 The TAP Threading Model

Threading-by-appointment (TAP) is a concurrent programming model that supports deterministic I/O
behavior, eliminates deadlock, and reduces the number of possible race conditions. TAP threads can
only communicate with system components or other threads by appointment. In order to access a shared
resource such as an I/O device or shared memory, a TAP thread must make an appointment with that
resource in advance. Only at the time of the appointment, the thread can access the resource even if the
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Figure 3: A cooperative TAP thread

resource is available earlier. The duration of appointments must be finite, which eliminates the potential
for deadlock. The notion of time for appointments can be anything from real time to, e.g., some form
of CPU time. Instantaneous appointments are also possible but only allow a single atomic operation
per appointment. Multiple instantaneous appointments can be made at the same time instant. Race
conditions may occur for making appointments and thus for getting access to shared resources. However,
there may be strategies for making appointments that avoid race conditions.

The time of an appointment may either be suggested by the thread or computed by the TAP runtime
system, which maintains so-called TAP calendars for the appointments. Only the request by a thread for
a non-instantaneous appointment may be turned down if the requested time has already been assigned
to some other thread. In this case, the thread and the runtime system have to negotiate an alternative
time. In the following, we propose, as a starting point, a simple form of TAP threads called cooperative
TAP threads that require the runtime system to determine the times of appointments. The details on
more complex forms of TAP threads are future work.

4.1 Cooperative TAP Threads

We introduce cooperative TAP threads in terms of the RSP model. Figure 3 shows the execution of a
cooperative TAP thread A, which begins with an read operation on some I/O device. We model A by
an RSP process. The instantaneous appointment for the read operation was obtained by A some time
earlier. The read operation is performed by the reactor although the operation is part of the thread
code. After the operation is finished the reactor releases A and invokes the scheduler, which may select
other processes to execute first for the duration of the so-called start slack. Eventually, A is selected by
the scheduler and executes for some time until A commits to a new instantaneous appointment for a
write operation. The time of the appointment is determined by the so-called secretary, which is part of
the reactor. The secretary maintains for each shared resource a so-called calendar of appointments. The
time until A commits to an appointment is called tie. During the tie the scheduler has no information
from the secretary when A will need access to some shared resource again. The time after A commits
until the appointment is called match. During the match the scheduler can exploit the information
about the appointment for A. When A has committed to an appointment, the scheduler will only
resume the execution of A if there are no other appointments scheduled before the appointment for A.
The time until the execution of A is resumed is called the preemption slack. Cooperative TAP threads
can be preempted but only at the commit operation. Before and after the commit, cooperative TAP
threads always execute non-preemptively. Thus cooperative TAP threads are safe to use shared memory
before and after the commit and therefore do not need non-instantaneous appointments. However,
accessing shared memory in this way avoids the appointment mechanism. Eventually, A completes, i.e.,
cooperatively gives up the CPU to the reactor and blocks. The rest of the time until the appointment is
called completion slack. Depending on the notion of time used for appointments it may be possible that
a thread does not complete before its next appointment, e.g., when using real time. For simplicity, we
use a notion of time here that avoids such a situation alltogether. Time advances if all released threads
have committed to an appointment, and all released threads have completed that have committed to
instantaneous appointments at the same time and there are no other appointments scheduled earlier.
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State Threads [9] Cooperative TAP Threads
Reactor event queue, state machine calendar, secretary
Scheduler thread queue, non-preemptive thread set, calendar-driven
Process thread thread

Table 4: State threads and cooperative TAP threads in the RSP model

For example, suppose that there are four released threads, A, B, C, and D. Moreover, A and B both
have instantaneous appointments at time 1 whereas C has an appointment at time 2 and D does not
have an appointment yet but will commit to an appointment at time 3. Before time can advance all
threads must have committed to an appointment, i.e., D runs and commits to an appointment at time 3.
Then, time advances as soon as A and B have completed regardless of C. Consequently, cooperative
TAP threads cannot miss appointments using this notion of time.

The appointments in the TAP model advance in what we call calendar time whereas any other thread
activity such as starting, committing, resuming, and completing threads advances in system time. The
fact that a TAP thread needs to make an appointment for I/O means that the time instant when the
I/O occurs is somewhat decoupled from the time instants when the thread happens to run. Threading-
by-appointment makes the process of coordinating the access of threads to shared resources explicit.
The strategy of the secretary for making appointments determines the system’s I/O behavior as well
as the system’s resource utilization. The more independent this strategy is from the system’s load and
performance, the more deterministic the system’s I/O behavior will be. On the other hand, the more the
secretary considers the system’s load and performance in making appointments, the more efficient the
system may be utilized. Finding and understanding strategies for the secretary is important future work.
For cooperative TAP threads, appointments could be made in a way that sequences of I/O that result
in particularly efficient resource utilization are cached and then repeated. This strategy can be seen as
a generalization of instruction caching to caching of resource access patterns, i.e., calendar caching.

Cooperative TAP threads relate to state threads [9] as shown in Table 4. State threads implement a
cooperative threading model on top of an event-driven architecture. With state threads, time advances
in a similar way than described above. In RSP terminology, everytime all released state threads have
completed, i.e., all RSP processes are blocked, the reactor releases all processes for which I/O is available.
Then, the scheduler takes over and runs the released processes non-preemptively in some order. Each
process performs the I/O, computes something, and eventually blocks on another I/O operation. When
all processes have completed, the reactor is invoked again to release another round of processes for which
I/O is available.

5 Outlook

We have presented a model for concurrent programming called threading-by-appointment and intro-
duced a simple process model called RSP to study and relate the threading-by-appointment model to
existing thread-based and event-driven concurrent programming models. The purpose of the threading-
by-appointment model is to make the process of determining the time instants for system interaction
explicit. There are many interesting open problems that arise in the context of threading-by-appointment.
For example, (1) concepts for more general TAP threads such as preemptive TAP threads have not been
investigated; (2) finding strategies for making appointments is important future work; (3) new struc-
tured programming elements that support threading-by-appointment may help to develop TAP-based
systems; and (4) formal notions of TAP thread composition may have the potential to support a more
compositional style of concurrent programming.

Our next steps with threading-by-appointment is to develop a threading library for cooperative TAP
threads and to port Internet applications such as a web server to the library for benchmarking. Depending
on the results, we plan to generalize cooperative TAP threads to some notion of preemptive TAP threads
that also support non-instantaneous appointments. We will also study structured programming elements
in order to support the development of correct-by-construction TAP threads.
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