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Abstract

We show that uni
cation in certain extensions of shallow equational theo�
ries is decidable� Our extensions generalize the known classes of shallow or
standard equational theories� In order to prove decidability of uni
cation in
the extensions� a class of Horn clause sets called sorted shallow equational
theories is introduced� This class is a natural extension of tree automata
with equality constraints between brother subterms as well as shallow sort
theories� We show that saturation under sorted superposition is e�ective on
sorted shallow equational theories� So called semi�linear equational theories
can be e�ectively transformed into equivalent sorted shallow equational the�
ories and generalize the classes of shallow and standard equational theories�
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� Introduction

Algorithms to solve uni
cation and word problems in an equational theory
play a crucial role in many areas of computer science like automated deduc�
tion� logic and functional programming� and symbolic constraint solving�
Many algorithms are dedicated to particular theories and often semantic
conditions are assumed� In addition� a lot of progress has been made to�
wards syntactic characterizations of classes of equational theories or rewrite
systems in which these problems are decidable� This is the case of uni
ca�
tion in ground theories �Kozen ����� or of the word problem with respect
to left�linear right�ground rewrite systems �Oyamaguchi ������ The class of
shallow theories� axiomatized by equations in which variables occur at most
at depth one� has been shown by Comon� Haberstrau � Jouannaud ������
to have a decidable uni
cation problem� They exploit a transformation of
the system into an equivalent cycle�syntactic presentation �Kirchner ������
By a termination analyses under basic superposition Nieuwenhuis ������
generalized the result to so�called standard theories�
Furthermore� tree automata and tree grammars have also been used for

uni
cation purposes� Limet � R�ety ������ use Tree Tuple Synchronized
Grammars to generate solutions to uni
cation problems by a simulation of
narrowing� In �Kaji� Toru � Kasami ����� it is shown that the closure with
respect to some kind of term rewriting system of the �recognizable set� of
ground instances of a linear term is recognizable� Similar techniques based
on the completion of tree automata are presented by Comon ������ and
Jacquemard ������ for linear shallow TRS and a generalization called linear
growing TRS� The decidability of the word problem as well as restricted
cases of uni
ability in the concerned theories can be derived from these
results�
In this paper we show the decidability of uni
cation in so�called semi�

linear equational theories which strictly extend shallow theories� Informally�
a semi�linear system contains equations in which non�linear variables only
appear in the same subterms� For example� the equation f�f�x� x�� y� �
g�f�x� x�� is semi�linear whereas f�g�x�� h�x�� h�g�y��� � h�g�x�� is not�
Our techniques are in�uenced by tree automata� sorted uni
cation and
saturation�based methods�
Sorted shallow equational theories naturally generalize tree automata

with equality constraints �Bogaert � Tison ����� as well as shallow sort
theories �Weidenbach ������ Throughout the paper� we consider the fol�
lowing example of Nieuwenhuis ������� The equational theory is given by
the equations f�g�x�� y� � h�y� and f�x� x� � g�x�� Nieuwenhuis� de
ni�
tion of standard theories does not include this case� The closure of the
theory under basic superposition� the calculus he suggests� leads to an in�

nite set of equations g�hn�g�x��� � hn���g�x��� The in
nite expansion
can be avoided by abstracting the linear �semi�linear� term g�x� into a
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sort declaration S�g�x��� The theory is then transformed into a sorted
shallow equational theory consisting of the Horn clauses k � S�g�x���
S�x� k � f�x� y� � h�y�� k � f�x� x� � g�x�� Our notation for clauses
is of the form Sort Constraint kAntecedent� Succedent where the sort con�
straint atoms are particular� monadic antecedent atoms for which speci
c
inference rules are provided by our sorted superposition calculus�
The paper is organized as follows� Section 
 starts with a discussion on

tree automata with brother constraints� We prove that they are not su�cient
for our purpose� Then sorted shallow equational theories are studied� It
is shown that saturation under sorted superposition terminates and that
uni
ability modulo the saturated theory is decidable� A procedure which
transforms a sorted semi�linear equational theory into an equivalent sorted
shallow one is given in Section �� This implies the decidability of uni
ability
modulo a set of �sorted� semi�linear equations� This result strictly embeds
previous ones concerning shallow theories by Comon et al� ������� We show
in Section � that with similar techniques� we can treat a generalization of
standard theories as proposed by Nieuwenhuis ������� In the same section�
we also show that our decidability results are close to the border between
decidability�undecidability and discuss some related work on E�uni
cation�

� Preliminaries

We adhere to the usual de
nitions for variables� terms� substitutions� equa�
tions� atoms� �positive and negative� literals� multisets� and clauses� see
Dershowitz � Jouannaud ������ for what concerns equational theories� We
give just the most important de
nitions for our purpose�
The algebra of terms over a 
nite set of function symbols F and a set

X of variables is denoted T �F �X � and T �F� is its subalgebra of ground
terms� An equation is an unoriented pair of terms of T �F �X � denoted s � t�
For sake of simplicity� we may apply to equations or other atoms the same
following notations as for terms� The function vars maps terms� atoms�
literals� clauses and sets of such objects to the set of variables occurring
in these objects� A position p in a term �equation� atom� is a word over
the natural numbers� For a term �equation� atom� t we de
ne tjp of t at
position p by tj� � t and tji�p � tijp where t � f�t�� � � � � tn� and � � i � n�
We write t�s�p to denote that tjp � s and t�p�s�� is the term obtained from t
by replacing its subterm at position p by s��
A term is called complex if it is neither a constant nor a variable� A term

t is called shallow if t is a variable or is of the form f�x�� � � � � xn� where the xi
are not necessarily distinct� An equation s � t is called shallow if both s and
t are shallow� Note that shallow variables in s � t can be arbitrarily shared
by s and t� A term t is called linear if every variable occurs at most once in
t� A term t is called semi�linear if it is a variable or of the form f�t�� � � � � tn�
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such that every ti is semi�linear and whenever vars�ti��vars�tj� �� � we have
ti � tj for all i� j� An equation s � t is semi�linear if �i� s and t are variables
or �ii� s � f�s�� � � � � sn� and �a� if t is a variable and t � vars�si� then si � t
for all i or �b� if t � g�t�� � � � � tm� and vars�si� � vars�tj� �� � then si � tj
for all i� j� For instance� the term f�g�x�� g�x�� h�y� y�� and the equations
h�g�x�� g�x�� y� � f�y� g�x�� y� and f�g�x�� g�x�� y� � y are semi�linear� but
f�g�x�� g�x�� h�x� y��� h�g�x�� x�� and h�g�x�� g�x�� � x are not�
Atoms formed from unary predicates are called monadic� For the pur�

pose of this paper� a clause is written in the form � k� � �JP K where
the sort constraint � is a multiset of monadic atoms representing the sort
restrictions� the term constraint P is a conjunction of syntactic equations
of the form s � t and the multisets � and � denote the antecedent and
succedent atoms of the clause� respectively� If P is empty we simply omit
the term constraint� Semantically� a clause � k� � �JP K is interpreted as
�� k�� � �� where � is the syntactic most general uni
er of P � denoted
by mgu�P �� As usual� all variables are assumed to be universally quanti
ed
and the clause is interpreted as an implication where the conjunction of all
sort constraint and antecedent atoms implies the disjunction of all succedent
atoms� If there exists no mgu � for P � the clause is a tautology and can
therefore always be removed in our context� We say that the constraint P
is in solved form� if P is of the form x� � t� � � � � � xn � tn where xi �� xj
for all i� j and xi �� vars�tk� for all i � k � n� Using the rules of syntactic
uni
cation �see� e�g�� Jouannaud � Kirchner ������� any constraint can be
transformed in polynomial time into solved form or � indicating that the
term constraint has no solution and therefore the clause can be removed�
The following operations on the constraint do also not change the semantics
of a clause � k� � �Jx � t � P K� We can propagate the equation x � t
into �� �� �� and P by instantiating arbitrary occurrences of x with t� If
x �� vars�t� 	 vars�P � 	 vars��	 �	�� then x � t can be removed from P
and we call the equation x � t redundant� For the purpose of this paper� we
assume that constraints are always in solved form� redundant equations are
always removed from term constraints and clauses with an unsolvable term
constraint are always deleted�
A partition C�� � � � � Cn of a clause C is called a variable component

partition� if for every pair of literals L � Ci� K � Cj �i �� j� we have
vars�L� � vars�K� � � and no Ci can be further partitioned such that this
condition is still satis
ed� Every Ci is then called a variable component of
the clause C�
For any initial clause set we assume that the arguments of all sort con�

straint atoms are variables and that all term constraints are empty� This is
a necessary prerequisite for our calculus to be complete� since term po�
sitions in sort constraint atoms are always subject to the basic restric�
tion �Weidenbach ������ Furthermore� for the theories which we consider
here it is always the case that either the antecedent or the succedent of a






clause is empty�
We call a sort constraint � solved in a clause � k� � �JP K with

� � mgu�P � if vars���� 
 vars��� 	 ��� and all terms occurring in ��
are variables� A clause T��x��� � � � � Tn�xn� k � S�t� is called a declaration

if T��x��� � � � � Tn�xn� is solved� In case t is a variable� a declaration is called
a subsort declaration� A declaration T��x��� � � � � Tn�xn� k � S�t� is shallow
�linear� semi�linear� if t is shallow �linear� semi�linear�� A sort theory is
a 
nite set of declarations� It is called shallow �linear� semi�linear� if all
declarations are shallow �linear� semi�linear�� A sorted equation �sorted dis�

equation� is a clause � k � l � r �a clause � k l � r �� where � is solved�
A sorted equational theory is a 
nite set of sorted equations and declara�
tions� It is called shallow �semi�linear� if all equations and all declarations
are shallow �semi�linear��
A substitution is a mapping from X to T �F �X �� As usual� we do not

distinguish between a substitution and its homomorphic extension in the free
algebra T �F �X �� Given an equational theory E� i�e�� a 
nite set of equations�
we write s��

E
t i� there exists an equation l � r � E and a substitution �

such that sjp � l� and t � s�p�r��� The symmetric closure of � is denoted
by ����

E
and the re�exive� symmetric and transitive closure by �����

E
� Two

terms s and t are called uni�able modulo an equational theory E i� there
exists a substitution � such that s������

E
t�� Note that this is equivalent to

stating that the clause set consisting of the equational theory E and the
clause k s � t� is unsatis
able�
We say that a clause � k�� �JP K subsumes a clause � k � !JQK� if

there exists a substitution � such that �� 
 ��� �� 
  �� �� 
 !� and
P� 
 Q�� where we consider the term constraint to be a set of equations
and we assume that matching with respect to the commutativity of � and �
maps only variables to variables� Accordingly� a clause C is a condensation
of some clause D� if C is a factor of D and C subsumes D� Our notion of
subsumption and condensation is weaker than usual� but it is obviously com�
patible with the redundancy concept of basic paramodulation �Bachmair�
Ganzinger� Lynch � Snyder ����� Nieuwenhuis � Rubio ������ the calculus
we will use to develop the decidability results in Section 
�
 and Section ��
For a set of Horn clauses A and a clause C� A j� C denotes the usual

semantic entailment relation where all variables of A and C are assumed to
be universally quanti
ed�

� Shallow Sorted Equational Theories

In this section we show that there exist non�linear shallow equational theories
whose uni
cation problem can be decided by saturation�based methods� but
not by tree automata �with constraints� techniques�
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��� Tree automata and linear shallow theories

We adopt here a de
nition of tree automata by means of Horn clauses�
This de
nition� though non�standard� is equivalent to the usual ones�
e�g�� �Bogaert � Tison ������ A systematic correspondence between var�
ious types of Horn clause sets and known classes of tree automata with
constraints has been studied by Weidenbach �������

De�nition ���
A tree automaton A is a 
nite set of linear shallow declarations of the form
S��x��� � � � � Sn�xn� k � S�f�x�� � � � � xn���

Following tree automata terminology� the unary predicates are called states

and the Horn clauses of A are transition rules or just transitions�
Note that in De
nition 
�� not all linear shallow declarations are valid

tree automata transitions�
However� Weidenbach ������ indicates that a set containing declarations

like S��x�� k � S�f�g�a�� x��� or subsort declarations like S��x�� S��x� k �
S�x� can be transformed into an equivalent set of declarations like in De
�
nition 
���
A term t � T �F� is recognized by A in some state S if A j� S�t�� If

we 
x in A a subset S of �nal states �
nal predicates�� then t � T �F� is
recognized by A �with respect to S� if t is recognized by A in some 
nal
state� A set L 
 T �F� is a recognizable language if L is the set of ground
terms which are recognized by a tree automaton A �with respect to some
set of 
nal states��
The class of recognizable languages is closed under Boolean operations�

Every recognizable language is recognized by some deterministic tree au�
tomaton A such that a ground term cannot be recognized by A in more
than one state� Every recognizable language is recognized by some com�

pletely speci�ed tree automaton A� such that every ground term is recog�
nized by A at least in one state� It is decidable in polynomial time whether
a given term t � T �F� is recognized by a tree automaton A� It is decidable
in linear time whether the language recognized by some tree automaton A
is empty or not�
Tree automata and grammars have been used by Kaji et al� ������ and

Limet � R�ety ������ to solve word and uni
ability problems� In the 
rst
paper as well as in the papers by Comon ������ and Jacquemard ������ the
recognizability of the closure of some recognizable set L with respect to term
rewriting systems of restricted classes is investigated� In the following we
denote the closure of a set of terms L 
 T �F� with respect to an equational
system E by ������

E
��L� �� fs � T �F� j 
t � L t�����

E
sg� For a given system

E we can reduce the word problem s�����
E
t to the membership problem for

s � ������
E
��ftg� if the closure set and L is recognizable� For a goal s � t

where s and t are both linear and vars�s�� vars�t� � �� uni
ability modulo
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E is equivalent to fs� j � groundg � ������
E
��ft� j � groundg� �� �� Since the

set of ground instances of s and t are both recognizable� uni
ability in this
case can be reduced to an emptiness decision problem for tree automata�
We call an equational system E a system with ground terms� if arbitrary

ground terms are allowed to occur in E� For many equational systems� like
sorted shallow systems� the extension to ground terms does not increase
expressivity� since any ground term can be generated by a 
nite number of
linear shallow declarations�

Theorem ��� ��Comon ����		
Let E be a linear shallow equational system with ground terms and L be a
recognizable language� Then ������

E
��L� is a recognizable language�

The principle of the construction for linear shallow equational systems is
the following� We start with a tree automaton A� which recognizes L
and contains one state Sli for each direct ground subterm li in equations
f�l�� � � � � ln� � r in E such that li �and only li� is recognized by A� in Sli �
In some sense these subterms are abstracted by A�� Then A� is completed
with respect to inference rules like the following�

k � f�l�� � � � � ln� � g�r�� � � � � rm�
S��x��� � � � � Sn�xn� k �S�f�x�� � � � � xn��
T��x��� � � � � Tm�xm� k �S�g�x�� � � � � xm��

Inf

where f�l�� � � � � ln� � g�r�� � � � � rm� � E is a linear shallow equation with
ground terms� if lj is a ground term then it is recognized by Sj and the Ti
are constructed in the following way� If ri is a ground term� then Ti � Sri and
if ri is a variable that is equal to some variable lj � then Ti � Sj� If we apply
paramodulation to the premises of the above inference rule we obtain the
clause S��l��� � � � � Sn�ln� k � S�g�r�� � � � � rn��� With the above conditions�
this clause is equivalent to T��y��� � � � � Tm�ym� k � S�g�y�� � � � � ym��� This
relates the automata theoretic approach and its generalization presented in
Section 
�
� Unfortunately� the above recognizability result of Theorem 
��
cannot be extended to non�linear systems�

Lemma ���
There exists a recognizable set L and a �non�linear� shallow equational sys�
tem E such that ������

E
��L� is not recognizable�

Proof� Assume f is a binary function symbol� s is unary and a is a con�
stant� and let L � fag� E � ff�x� x� � ag� Assume now that ������

E
��L�

is recognized by a tree automaton A� wrt� the distinguished set of 
nal
states S� We assume without loss of generality that A is determinis�
tic� Since A has only 
nitely many states� there exist two distinct terms�

�
s
n�a� �� s�� � � s

� �z �

n

�a��
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sn��a� and sn��a� which are recognized by A in the same state S� Since
f�sn��a�� sn��a�� � ������

E
��L�� and since A is deterministic� it contains a

clause of the form S�x��� S�x�� k � Sf�f�x�� x��� where Sf � S is a

nal state� and thus A j� Sf�f�s

n��a�� sn��a���� But this also implies
A j� Sf�f�s

n��a�� sn��a��� and this is a contradiction because this term
f�sn��a�� sn��a�� is not in ������

E
��L�� ut

��� Brothers automata and the non�linearities

Bogaert � Tison ������ introduce tree automata with constraints which
de
ne a strict superclass of recognizable languages to deal with non�linear
rewrite systems�

De�nition ��

A tree automaton with equality constraints between brother subterms is
a 
nite set of shallow declarations of the form S��x��� � � � � Sn�xn� k �
S�f�x�� � � � � xn�� where the xi are not necessarily distinct�

We call Rec� this class of recognizers as well as the class of recognized
languages" the notion of recognized terms and languages is the same for
tree automata with equality constraints between brother subterms as for
�standard� tree automata�
The class Rec�� �Bogaert � Tison ����� is strictly larger than Rec� be�

cause �syntactic� disequations between variables xi �� xj are also allowed
in the antecedent of clauses� The nice closure properties of tree automata
still apply here� namely closure under Boolean operations� under determin�
ism and complete speci
cation� The emptiness problem is also decidable
for Rec �� though EXPTIME�complete �the problem of deciding emptiness
of the intersection of some rational tree languages �see �Fr	uhwirth� Shapiro�
Vardi � Yardeni ����� Seidl ����� for a proof of EXPTIME�completeness�
may indeed be reduced to emptiness for Rec ���� However� disequalities are
not necessary for our purpose �see the conclusion for a discussion about this
extension�� but we can show that neither Rec� nor Rec �� su�ce to generalize
Theorem 
�� to the case of non�linear shallow systems�

Lemma ���
There exists some recognizable set L and �non�linear� shallow equational
system E such that the set ������

E
��L� is not in Rec���

Proof� Let f � g be two binary function symbols� a be some constant
and consider the system E �� ff�x� x� � g�x� x�g and language L ��
fg�s�� s�� j s�� s� � T �F�g� Assume that L� �� ������

E
��L� is recognized by

some A � Rec�� with respect to the distinguished set of 
nal states S� We
may assume without loss of generality that A is deterministic and completely
speci
ed� Let n be the number of states of A�
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We de
ne a sequence of well�balanced ground terms of T �F� by t� ��
f�a� a� and for all i � �� ti�� �� f�ti� ti�� For all i � �� the cardinality of the
equivalence class of ti modulo �����E is ��

i��� Let i� � dlog�log�n# ���e�
For each i � i�� we have two distinct ground terms ui and vi� both

equivalent to ti modulo ����
�
E
and both recognized by A in the same state

called Si� Moreover� by construction� f�ui� vi� � L�� Thus� this term is
recognized by A in some 
nal state noted Ti � S� By determinism of A� this
means that there exists a clause Ci � Si�x��� Si�x�� k � Ti�f�x�� x��� � A

��
such that A j� Ci� with � � fx� �� ui� x� �� vig� Note that for all i � i��
the variables x� and x� in clause Ci are distinct because ui �� vi�
There exist two distinct integers j � k � i� such that Sj � Sk� Thus�

A j� Cj� where � � fx� �� uj � x� �� ukg� because the variables x� �� x�
in Cj and thus f�uj� uk� is recognized by A in the 
nal state Tj � This is a
contradiction because this term is not in L�� ut

We can conclude from Lemma 
�� that the syntactic equality constraints of
the automata in Rec� are too rough for our purpose� The sorted shallow
equational theories studied in the following section are a strict generaliza�
tion of Rec�� An important achievement of this approach is that semantic
equality tests are possible�

��� Saturation

The following inference rules form schemata for sound and refutationally
complete calculi for Horn clause sets consisting of declarations and sorted
�dis�equations� They are mainly an adaption of basic superposition with se�
lection �Bachmair et al� ����� Nieuwenhuis � Rubio ����� to the particular
form of the Horn clauses considered here� where the sort constraints are al�
ways subject to the basic restriction and are solved by a particular selection
strategy �Weidenbach ������ This strategy is expressed by the rule Sort
Constraint Resolution� see below� As usual� we assume a reduction ordering
� that is total on ground terms� We call the calculus consisting of the in�
ference rules Basic Sort Constraint Resolution� Basic Superposition Right�
Basic Superposition Left and Basic Equality Resolution plus the reduction
rules subsumption and condensation �see Section �� the basic sorted super�

position calculus� The calculus consisting of the inference rules Basic Sort
Constraint Resolution� Basic Paramodulation Right� Basic Paramodulation
Left and Basic Equality Resolution plus the reduction rules subsumption and
condensation the basic sorted paramodulation calculus� If term constraints
are always eagerly propagated� i�e�� we perform uni
cation and apply the
uni
er to the literals� the resulting calculi are called the sorted superposition

calculus and the sorted paramodulation calculus� respectively� Note that the

�Clauses de�ning rules of Rec�� automata also contain syntactic disequations between
variables� but these disequations do not matter here�
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basic restriction does not interfere with subsumption or condensation� be�
cause we restricted the matchers in this context to only have variables in
their codomain�

De�nition ��� �Basic Sort Constraint Resolution	
The inference

T��t��� � � � � Tn�tn�� k��� JP K
�� k �T��s�� JQ�K

���
�n k �Tn�sn� JQnKS

i�i� k��� JP � �
V

i�Qi � ti � si��K
Inf

where no atom in � is selected� � � mgu�P ��
�i� t�� � � � � � tn� is a non�variable term

or
�ii� ti� with ti� �� vars��� 	����
no further atom S�ti�� occurs in  �� and all �i are solved� is called a Basic
Sort Constraint Resolution inference�

De�nition ��� �Basic Superposition
Paramodulation Right	
The inference

 k � s � t JP K
� k �A�s����p JQK

 �� k �A���p�t� JP �Q � s� � sK
Inf

where t �� s� if A is an equation l � r with ljp � s� then r �� l� s� is not
a variable� and the sort constraints  and � are solved� is called a Basic

Superposition Right inference� If we drop the requirement r �� l the inference
is called a Basic Paramodulation Right inference�

De�nition ��� �Basic Superposition
Paramodulation Left	
The inference

 k � s � t JP K
� k l�s��p � r� JQK

 �� k l�p�t� � r� JP �Q � s� � sK
Inf

where t �� s� r �� l� s� is not a variable� and the sort constraints  and �
are solved or l � r is selected� is called a Superposition Left inference� If
we drop the requirement r �� l the inference is called a Paramodulation Left

inference�

In case of a Basic Paramodulation Left inference the conclusion of the
inference can be further re
ned to

 �� k l�p�x� � r � JP �Q � s� � s � x � tK
for some new variable x �Bachmair et al� ����� Nieuwenhuis ������
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De�nition ��� �Basic Equality Resolution	
The inference

� k s � t� JP K
� k � JP � s � tK

Inf

where � is solved or s � t is selected is called a Equality Resolution inference�

The next Lemma 
��� shows that sorted shallow equational theories can
be 
nitely saturated by sorted superposition� The process of exhaustively
applying the inference rules of sorted superposition to the theory terminates
in the sense that no new clauses are generated that are not redundant with
respect to subsumption or condensation� Syntactically� this is always the
case for some calculus� if the depth of terms in generated clauses as well as
the cardinality of variable components of the clauses can be bound� Any
set of clauses with respect to some 
nite number of predicate and function
symbols where the depth of clauses as well as the cardinality of variable
components of these clauses is bound by some constant and no clause in the
set can be subsumed or condensed is 
nite� This characterization goes back
to Joyner Jr� �������

Lemma ����
Sorted shallow equational theories can be 
nitely saturated by sorted super�
position�

Proof� We shall show that the saturation process results in clauses of the
form

T��t�� � � � � Tn�t�� S��x��� � � � � Sm�xm� k � A
where n�m are possibly zero� A is either a monadic atom T �s� or an equation
l � r and t� s� l and r are always shallow terms� If the saturation process
produces only clauses of this form� then it will terminate� because the depth
of all these clauses as well as the length of variable chains between their
literals are bound�� The length of variable chains is bound� because all
predicates are monadic and there are at most three di�erent non�variable
shallow terms in any clause�
It remains to prove that all clauses generated by the saturation process

have the above form� Obviously� shallow declaration clauses and sorted shal�
low equations are of the above form� where t as well as the xi are variables
occurring in A� For symmetry reasons it is su�cient to consider three cases
of possible inferences� �i� The term t is a non�variable shallow term and we
perform a sort constraint resolution inference� �ii� The term t is a variable
that does not occur in A and we perform a sort constraint resolution infer�
ence� �iii� The sort constraint T��t�� � � � � Tn�t�� S��x��� � � � � Sm�xm� is solved
and we perform a superposition right inference� We separately consider

�See the discussion above this lemma�
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these cases�
�i� The other clauses involved in the inference are all of the form
Q��y��� � � � � Qki�yki� k � Ti�si� where the yj occur in si and si is a shal�
low term� The uni
er � only maps a variable to a non�variable shallow term
if the variable is some si� Hence� the result of the inference is a clause of
the desired form�
�ii� Again all other clauses involved in the inference are of the form
Q��y��� � � � � Qki�yki� k � Ti�si� where the yj occur in si and si is a shallow
term� The uni
er � possibly maps the variable t to a non�variable shallow
term� but since t does not occur in A the result of the inference is again a
clause of the desired form�
�iii� Since we do not superpose into variables and for any equation of the
form f�x�� � � � � xn� � y either y � xi for some i and hence f�x�� � � � � xn� � xi
or y does not occur in f�x�� � � � � xn�� a case analysis over the di�erent com�
binations of the form of A and the involved sorted equation shows that the
result is always of the desired form� Note that in the case of a Superposition
Right inference� the involved clauses have a solved sort constraint� ut

For example� we apply the saturation process to the sorted shallow equa�
tional theory presented in Section ��

��� S�x� k � f�x� y� � h�y�
��� k � f�x� x� � g�x�
�
� k �S�g�x��

where we assume f�x� y� � g�x� � h�x�� Then the saturation process gen�
erates the additional clauses ��� and ��� by Superposition Right inferences�

��� S�x� k � g�x� � h�x�
��� S�x� k �S�h�x��

The clauses ���$��� are saturated by sorted superposition�

Corollary ����
Sorted shallow equational theories can be 
nitely saturated by sorted
paramodulation�

Proof� The only di�erence between sorted superposition and sorted
paramodulation is that the sorted paramodulation calculus paramodulates
into both sides of equations� disregarding ordering restrictions� However� we
only paramodulate with right hand sides of equations that are not smaller
than the respective left hand side� Therefore� the proof of Lemma 
���� in
particular case �iii�� carries over to sorted paramodulation� ut

With respect to our example above� sorted paramodulation would pro�
duce the additional clause
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��� S�x� k � f�x� x� � h�x�
via a Paramodulation Right inference between the clauses ��� and ���� But
clause ��� is subsumed by clause ���� hence the above clauses ���$��� are
also saturated by sorted paramodulation�
Since our notion of subsumption and condensation is compatible with

the basic restriction� the above results on 
nite saturation hold also for the
basic variants of the sorted superposition�paramodulation calculus�

Corollary ����
Sorted shallow equational theories can be 
nitely saturated by basic sorted
superposition and basic sorted paramodulation�

In particular� Corollary 
��� allows for a very nice decidability proof of
uni
cation in sorted equational theories� since with respect to a clause set
that is 
nitely saturated by basic sorted paramodulation� there are only

nitely many applications of basic paramodulation left for some given equa�
tion� Therefore� we replaced the proof suggested in our conference pa�
per �Jacquemard� Meyer � Weidenbach ����� by the one below�

Lemma ����
Uni
ability with respect to 
nitely saturated shallow sorted equational the�
ories is decidable�

Proof� Two arbitrary terms t� s are uni
able i� we can derive the empty
clause from the saturated theory and the goal clause k t � s �� Since
the sorted shallow equational theory is saturated� no inferences inside the
theory need to be considered� Furthermore� the goal is purely negative� so
we can delete all clauses with an unsolved sort constraint from the satu�
rated theory� Let us in particular assume that our theory is saturated by
�basic� sorted paramodulation� Then by selecting the disequation t � s
only �basic� paramodulation left or equality resolution inferences can be
performed until the disequation is resolved� Now for a theory saturated
under �basic� sorted paramodulation� every position in the disequation has
only to be considered once for a paramodulation left inference �see the re�
mark below De
nition 
���� Hence� the application of Paramodulation Left
and Equality Resolution terminates on the goal clause� resulting in a clause
S��t��� � � � � Sn�tn� k � JP K� Now exhaustive application of Sort Constraint
Resolution terminates on this clause� because the lexicographic combination
of the number of di�erent variables in the clause and the multiset of all term
depths decreases with any Sort Constraint Resolution application� ut

We evaluate two example queries with respect to the above saturated
sorted shallow equational theory� First� we want to unify f�x� y� and h�y�
starting with the goal clause

k f�x� y� � h�y� �
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We apply Superposition Left with ��� giving S�x� k z � h�y� � Jz � h�y�K�
Next we apply Sort Constraint Resolution with �
� yielding kh�y� � h�y��
Jz � h�y�K and 
nally an application of Equality Resolution yields the empty
clause� Therefore� f�x� y� and h�y� are uni
able in the considered shallow
equational theory�
Second� consider the uni
cation problem of f�a� x� and h�x� where a

is some constant� The problem has no solution justi
ed by the saturated
clause set consisting of the clauses ���$��� and the clauses below where we
propagated all term constraints�

k f�a� x� � h�x� �
S�a� k �

k g�a� � h�a� �

We already mentioned the close relationship between sorted uni
cation�
tree automata and the sort theories considered here in Section 
��� This
relationship can be exploited to derive results with respect to the number
of uni
ers of an equational problem�

Corollary ���
 �Weidenbach �����		
Let L be a 
nitely saturated shallow sorted equational theory and let
C � S��t��� � � � � Sn�tn� k � be some clause� Then we can derive a clause
T��y��� � � � � Tk�yk� k � from C and L by Sort Constraint Resolution i� the
sorted uni
cation problem x� � t�� � � � � xn � tn� sort�xi� � Si� has a well�
sorted mgu with respect to the sort theory contained in L where all xi are
new�

Corollary ���� �Weidenbach �����		
Uni
cation in shallow sort theories is NP�complete� 
nitary and the number
of well�sorted mgus is simply exponential in the size of the sort theory and
uni
cation problem�

Now from the above two corollaries and Lemma 
��
 we obtain that there
are at most simply exponentially many well�sorted mgus for a uni
cation
problem with respect to a 
nitely saturated shallow sorted equational theory�

Corollary ����
The number of well�sorted mgus with respect to a 
nitely saturated shallow
sorted equational theory is simply exponential� Deciding the uni
cation
problem is NP�hard�

The following example shows� that the number of syntactic mgus is al�
ready in
nite for linear� shallow theories� Consider the saturated theory�

k �S�a�
S�x� k �S�g�x��

k �T �a�
T �x� k �T �g�x��

�




where we can derive in
nitely many syntactic mgus of the form fx �� gi�a�g
from the clause S�x�� T �x� k ��

� Semi�Linear Sorted Equational Theories

In this section we prove that uni
cation in semi�linear equational theories
is decidable� too� We do so by transforming a semi�linear equational theory
into a sorted shallow equational theory� preserving satis
ability� Then we
apply Lemma 
��� and Lemma 
��
 to obtain the decidability result� The
following rule transforms sorted semi�linear equational theories into sorted
shallow equational theories�

De�nition 
��
The transformation

 � S��x��� � � � � Sm�xm� k �A�t�p�
S��x��� � � � � Sm�xm� k �T �t�

T �x�� k �A�p�� � � � � pn�x�

Red

provided t is a non�variable subterm� xi � vars�t� for all i� vars� � �
vars�t� � �� jpij � � for all i� the positions p�� � � � � pn refer to all posi�
tions q of t in A with jqj � �� T is a new monadic predicate and x is new to
the replaced clause� is called �attening�

Lemma 
��
Exhaustive application of �attening to a �sorted� semi�linear equational the�
ory terminates� results in a sorted shallow equational theory and preserves
satis
ability�

Proof� Termination follows from the fact that the transformation replaces
a clause by two clauses with strictly fewer function symbols� No transfor�
mation is applicable to a clause that is a shallow declaration or a sorted
shallow equation� since all terms at depth two of such atoms are always
variables �if they exist�� On the other hand� if the direct subterm of an
atom is not shallow� it has a subterm at depth two which is not a variable
and therefore the transformation applies as long as the transformation pre�
serves semi�linearity �see below�� Hence� the transformation terminates in a
sorted shallow equational theory�
By an induction argument it is su�cient to show that a single

step of the transformation preserves satis
ability and results in a sorted
semi�linear equational theory� The crucial property is that vars�t� �
vars�A�p�� � � � � pn�x�� � �� We show this by contradiction� Assume that
after an application of the transformation there is a variable y occurring in
t and A�p�� � � � � pn�x�� By construction this can only be the case if y has
an occurrence in A that is not inside an occurrence of t in A� So y occurs
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in some term s �� t with Ajq � s� jqj � �� contradicting that the original
clause was semi�linear� For the same reason� the result of an application
of the transformation is again a sorted semi�linear equational theory and
xj �� vars�A�p�� � � � � pn�x�� for all j� ut

Theorem 
��
Uni
ability in semi�linear equational theories is decidable�

Proof� By Lemma ��� we can e�ectively translate semi�linear equational
theories into sorted shallow equational theories preserving satis
ability� By
Lemma 
��� these theories can be e�ectively saturated by sorted superposi�
tion and by Lemma 
��
 uni
ability is decidable with respect to saturated
sorted shallow equational theories� ut

Application of the transformation to the example presented in the in�
troduction yields the sorted shallow equational theory considered in the
previous section�

��� Applications

Any equational theory E can be transformed into a semi�linear equational
theory E� by replacing non�linear variable occurrences with fresh variables�
Then E� is an upper approximation for E in the sense that �����

E

 �������

E�
�

i�e�� non�uni
ability in E� implies non�uni
ability in E� Furthermore� by
Theorem ��
� non�uni
ability in E� is decidable� Ganzinger� Meyer �
Weidenbach ������ showed that in this case non�uni
ability in E� can be
used to e�ectively direct the search of a theorem prover in 
nding proofs
with respect to E� One of our future goals is to improve the perfor�
mance of SPASS �Weidenbach ����� Weidenbach� Meyer� Cohrs� Engel �
Keen ����� using this technology� Note that �attening applied to an arbi�
trary equational theory where we keep some Si�xi� in the transformed clause
if xi � vars�A�p�� � � � � pn�x�� is already a transformation that generates an
appropriate approximation�

� Extensions

A possible extension is to apply our method to compute the �eventual� so�
lution of a uni
cation problem in a semi�linear theory� Weidenbach ������
showed that sort constraint resolution simulates sorted uni
cation� Uni
ca�
tion in shallow sort theories is known to be NP�complete and of uni
cation
type 
nitary� This implies that uni
cation in sorted shallow equational theo�
ries is NP�hard and also of uni
cation type 
nitary� if we consider well�sorted
uni
ers� The results of Theorem ��
 in Section � obviously extend to sorted
semi�linear equational theories�
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Generalization of standard theories� The standard equations
in �Nieuwenhuis ����� include one form which is not embedded by the semi�
linear case� the form f�� � � � g�x�� � � �� � x where g is a unary function symbol�
assuming additional restrictions on the positions of linear terms and non�
linear shallow variables in other equations� Obviously� the subterm g�x�
cannot be transformed into a sort declaration� However� we can show that
E�uni
cation in those theories can still be decided by basic sorted paramod�
ulation� The following discussion mainly follows the previous argumentation
on sorted shallow and semi�linear systems� Additionally� we slightly general�
ize the form of invariants of the saturation process� Moreover� our de
nition
of shallow terms has to be adapted such that not only variables but also
constants as arguments of shallow terms are allowed� In the sequel we will
use this generalized de
nition of shallow terms�
In order to show that the generalized fragment is still closed under ba�

sic sorted paramodulation we have to treat certain equations which contain
variable disjoint sides carefully� e�g� the equation f�x� y� � g�z�� Equa�
tions of this form cannot be oriented by any admissible ordering and thus
have to be applied in both directions� Saturation may not terminate when
such equations are superposed on subterms of the form g�x� in an equa�
tion f�� � � � g�x�� � � �� � x� Arbitrary deep term structures can be generated
by subsequent paramodulation steps� However� it is possible to transform
such equations dynamically during the saturation process� For example� the
equation f�x� y� � g�z� can be transformed into equations f�x� y� � a and
g�z� � a where a is a new constant symbol� As a consequence we have to
show that only a 
nite number of new symbols can be generated�
Consider the simplest equation x � y� If this equation is derived we can

just stop saturation since the Herbrand universe collapses in this case� For
more complicated sorted equations with variable disjoint sides� e�g� S�x� k �
x � t and x �� vars�t�� we can only deduce similar information about the
particular sort S� As we have mentioned above a critical situation may come
up when such equations are superposed onto a subterm g�x�� In general�
this may happen using sorted equations of the form S�x�� k � x � t or
S�x�� k � g�x� � t where x �� vars�t�� Importantly� equations of the form
 k � f��x�� � � � � xn� � f��y�� � � � � ym� where fx�� � � � � xng�fy�� � � � � ymg � �
and n�m � � do not have to be considered� Paramodulation by those
equations onto a subterm g�x� is not possible�
Consider the transformation of a sorted equation S�x� k � x � f�y� y�

into two equations S�x� k � x � a and S�x� k � f�y� y� � a� Such
a transformation step is called splitting� The splitting of similar unsorted
equations has already been used in �Nieuwenhuis ������ If the constant sym�
bol a is a new symbol splitting clearly preserves �un��satis
ability� However�
�un��satis
ability is also preserved if the constant a is being reused if a has
been introduced before for the same solved sort constraint S�x��
Splitting terminates for clause sets which contain only 
nitely many
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sorts� There are two important observations� For 
nitely many sorts there
are an exponential number of intersections of sorts� Thus variables can have
only 
nitely many di�erent sorts� Shallow equations in which both sides
have root symbols with arity greater than one are not split� For if one side
contains a newly introduced constant symbol as an argument splitting would
generate new constant symbols which depend on previously introduced sym�
bols� For example� splitting of a sorted equation S�x� k � f�x� a� � h�y� z�
generates a sorted equation S�x� k � f�x� a� � b where a is a constant
symbols previously introduced by splitting and b is a new constant symbol�
In this way splitting does not terminate in general�
Despite of the syntactic �avor of splitting we can also motivate it seman�

tically� For the equation S�x� k � x � f�z� z� to become true the sort S
contains at most one element� Splitting introduces an explicit name for this
element� if it exists�

De�nition ���
Let N be a set of clauses� A splitting step is de
ned as the transformation
of a clause in N by the rule Split� or Split� �

 k �x � t
 k �x � a
 k � t � a

Split�

where the sort constraint  is solved� t is a shallow term� the top symbol
of t is not a unary function symbol� x �� vars�t�� and if there is a clause
 k � x � b in N then let a �� b or� otherwise� let a be a fresh constant
symbol�

 k � g�x� � t
 k � g�x� � a
 k � t � a

Split�

where the sort constraint  is solved� t is a shallow term� g is a unary
function symbol� x �� vars�t�� and if there is a clause  k � g�x� � b in N
then let a �� b or� otherwise� let a be a fresh constant symbol�

Proposition ���
Let N be a set of clauses of the following forms�

��  k � x � a or

��  k � g�x� � a

where the sort constraint  is solved� a is a constant� and g is a unary
function symbol� Then up to di�erent a� variable renaming� and condensing
the set N is 
nite�
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Proof� Let n be the number of di�erent monadic predicate symbols and let
m be the number of unary function symbols� occurring in clauses of N � Then
there are �n di�erent sort constraints on one variable and O��n� di�erent
sort constraints on several variables up to condensing� Consequently� the
set N contains O��n� di�erent clauses up to di�erent a� variable renaming�
and condensing� ut

In the following lemma we show that splitting can only be applied 
nitely
many times� Sorted equations are split only if at least one side is a sorted
variable or a term g�x� where g is unary and x is a sorted variable� More
complex sorted equations f�s�� � � � � sn� � h�t�� � � � � tm� are not split if f
and h are n�ary functions with n � � and the si and tj are variables or
constants� Recursive occurrences of formerly introduced constants would
lead to an in
nite splitting process� A constant introduced by splitting is
a name for the single element in a particular intersection of sorts on one
variable� In this sense constants are reused by splitting whenever the same
intersection of sorts arises several times� Finally� splitting is applied only to
sorted equations in which both sides are shallow� Obviously� there are only

nitely many di�erent sorted shallow terms over a 
nite signature�

Lemma ���
Let N be a set of clauses over a 
nite signature F � Then splitting can
be applied only 
nitely many times in any derivation of the basic ordered
paramodulation calculus with splitting�

Proof� Only the splitting rules Split� and Split� may introduce new constant
symbols� We assume that all sort constraints are minimal in the sense that
no further condensing is possible� Let C be a clause  k � x � t from N
where the conditions of Split� hold for C� Suppose that there is no clause
 k � x � b in N � In this case Split� introduces a new constant symbol
a and transforms C to C � �  k � x � a� Note that in general the sort
constraint  is not in solved form in C � anymore since the equation does
not contain the variables of t� Suppose the sort constraint of C � has been
simpli
ed to  � where  � does not need to be in solved form� The constant a
may be viewed as a label for  �� not for  � Thus in a subsequent application
of Split� to a clause  k � x � t� a new constant has to be introduced�
However� an application of Split� to a clause  � k � x � t� can reuse the
constant a� By Proposition ��� there are only 
nitely many clauses of the
form  k � x � a� Thus Split� introduces only 
nitely many new constant
symbols� Note that there are only 
nitely many di�erent sorted shallow
terms over a 
nite signature up to variable renaming and condensing� Thus
Split� can even be applied only 
nitely many times� The proof for Split� is
similar� ut
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Lemma ��

Let N and N � be two sets of clauses� The set N � is the result of a trans�
formation of N by the rules Split� and Split�� Then N is satis
able if and
only if N � is satis
able�

Proof� Let N be a set of clauses and let C be the clause  k � x � t in N
where the conditions of Split� hold for C� Let C � and D be the conclusions
 k � x � a and  k � t � a� respectively� of an application of Split� to
C� Let N � be the set fN n Cg 	 fC ��Dg�
Suppose I is a model of N � If there is no clause  k � x � b in N

then a is a fresh constant symbol and we may construct I � by adding� for all
ground substitutions � such that  � 
 I� the ground instances x� � a and
t� � a to I� Note that for any ground substitution � with  � 
 I we have
that x� � t� is true in I since C is true in I� Thus I � is a model of N ��
Let C �� be a clause  k � x � b in N � In this case a has been chosen to

be equal to b� Since C �� is true in I the clause C � is also true in I� To show
that D is true in I we distinguish two cases� Suppose that � is a ground
substitution where  � 
 I� Then x� � t� � I and x� � b � I since C and
C �� are true in I� respectively� By the transitivity of � we have that t� � b
and thus D� are true in I� On the other hand� suppose that for a ground
substitution � there is a sort constraint A �  where A� �� I� Then D� is
also true in I� Consequently� I is a model of N ��
The other direction follows immediately since C is a consequence of a

�sound� paramodulation step on a in C � to t using D� The proof for Split�
is similar� ut

Note that we can also show that splitting is monotone in the sense that
the conclusions are always smaller then the premise assuming that con�
stant symbols are smaller in the precedence than any non�constant function
symbol� Suppose the potential splitting candidate S�x�� k � x � t is
transformed using the constant symbol a� Then all instances of the premise
where x is substituted by a constant b and b is smaller than a have to be
added� Similarly� for a splitting candidate S�x�� k � g�x� � t where t is a
variable all instances with t substituted by a constant b have to be enumer�
ated� We may assume that there are only 
nitely many constants b which
are smaller than a� Under these assumptions splitting remains e�ective and
is an admissible simpli
cation rule� c�f� �Bachmair et al� ������

Lemma ���
The combination of the basic ordered paramodulation calculus with splitting
is sound and refutationally complete assuming a 
nite signature F �

Proof� By Lemma ��� splitting preserves �un��satis
ability� We may addi�
tionally assume that splitting is an admissible simpli
cation rule in the sense
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of Bachmair et al� ������� see the discussion above� Due to Lemma ��
 split�
ting can be applied only 
nitely many times and thus fairness is not a�ected�
Consequently� the lemma follows from the soundness and refutational com�
pleteness of basic ordered paramodulation� ut

We call an equation f�t�� � � � � tn� � x semi�shallow if for all i with � �
i � n the term ti is either a variable or the term g�x� where g is a unary
function symbol� Thus several occurrences of g�x� are possible� If there
is any g�x� among the ti then all other tj which are variables are distinct
from x� A sorted equational theory is called semi�shallow if all declarations
are shallow and all equations are either shallow or semi�shallow where each
semi�shallow equation f�t�� � � � � tn� � x contains at most one ti of the form
g�x�� An equation is called collapsing if at least one side of the equation is
a variable� Otherwise� the equation is called non�collapsing�
We assume that equality constraints are propagated eagerly into the

clause part unless a semi�shallow equation is generated� For example�
a clause S�x� k � x � yJx � g�y�K is transformed into S�g�y�� k �
g�y� � yJ�K whereas a clause S�x� k � f�x� � yJx � g�y�K is transformed
into S�g�y�� k � f�x� � yJx � g�y�K� The constraint propagation corre�
sponds to a weakening of the equational constraint which is always possible�
c�f� �Nieuwenhuis � Rubio ������
Note that in the following lemma we do not explicitly include constants

as arguments of shallow terms in the de
nition of the invariant� although
constants may also occur in this way during saturation� However� as long as
constants are the smallest symbols in the precedence� constants can only be
replaced by constants using paramodulation� Therefore� we skip this case
to simplify technical matters�

Lemma ���
Sorted semi�shallow equational theories over a 
nite signature F can be

nitely saturated by basic sorted paramodulation and splitting�

Proof� The closure process is parameterized by a simpli
cation ordering
� on terms assuming that the precedence �p is compatible with arities�
i�e� whenever the arity of a function symbol f is greater than the arity of
a function symbol g then f �p g� Note that therefore constants are the
smallest symbols in the precedence� Additionally� we assume that splitting
is done with the highest priority� i�e� a sorted equation is always split if
possible before any other rule is applied to this equation�
We show that saturation under basic sorted paramodulation with split�

ting is closed for sets of clauses of the following forms�

�� S��s�� � � � � Sn�s�� T��t�� � � � � Tm�t�� k � AJ�K where n� m are possi�
bly zero�  is solved� A is either a monadic atom P �t�� or an equation
l � r� and s� t� t�� l� and r are always shallow terms�

��



��  k � f�x�� � � � � g�x�� � � � � xn� � xJ�K where n is possibly zero�  is
solved� g is a unary function symbol� and g�x� occurs only once�


� T��t�� � � � � Tn�t�� k � f�x�� � � � � xm� � xJxi� � g�x�� � � � � xik � g�x�K
where n and m are possibly zero and k � ��  is solved� g is a unary
function symbol� x �� fx�� � � � � xmg� and t is a shallow term�

Each clause of the original theory belongs to Category � or Category � and
has a solved sort constraint� The predicates in these clauses are all predicates
of the original theory�
Assuming a 
nite signature there is only a bounded �with respect to

the theory� number of clauses which belong to each of the three categories
because the depth of all these clauses as well as the length of variable chains
between its literals is bounded� Hence� there are only 
nitely many di�erent
clauses of this form with respect to subsumption and condensing� see Sec�
tion �� If the saturation process produces only clauses of this form� it will
terminate�
If a rule in Category �� �� or 
 has unsolved sort constraints then we

can perform a basic sort constraint resolution inference� The result is a
clause of the same category� Otherwise� there are several ways to apply
basic paramodulation right on clauses with solved sort constraints�

�� The basic paramodulation right of a clause C� in Category � on a
clause C� in Category � results in a clause C� of the same category
shown in the proof of Lemma 
���� Note that this result still holds
for the extended de
nition of shallow terms since constants are the
smallest symbols in the precedence�

�� The basic paramodulation right of a clause C� in Category � on a
clause C� in Category � results in a clause C� of�

�a� Category 
 if C� contains a non�collapsing equation and is applied
at topmost position�

�b� Category � ifC� is a non�collapsing sorted equation � k � g�x� �
h�x�J�K and is applied on non�topmost position� Note that an
equation of the form f�s�� � � � � x� � � � � sk� � g�x� where k � �
cannot be applied because it is always oriented from left to right
due to the assumption that the precedence �p is compatible with
the arity of function symbols�

�c� Category � if C� is a sorted equation � k � g�x� � tJ�K or
� k � x � tJ�K where x �� vars�t� and is applied at non�topmost
position� Splitting ensures that t is always a constant� Note that
the equation in C� may contain constants as arguments� However�
we do not consider this case explicitly here to simplify technical
matters� Informally� constants can only be paramodulated to
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other constants since constant symbols are assumed to be the
smallest symbols in the precedence� Thus constants are similar
to variables in this case�

�d� Category � if C� contains a collapsing equation� regardless of
topmost or non�topmost application�


� The basic paramodulation right of a clause C� in Category � on a
clause C� in Category � results in a clause C� of�

�a� Category 
 if C� contains a non�collapsing equation� If the equal�
ity constraint can be propagated without getting a semi�shallow
equation then C� belongs to Category ��

�b� Category � if C� contains a collapsing equation or a sort declara�
tion�

�� The basic paramodulation right of a clause C� in Category � or 

on a clause C� in Category � or 
 results in a clause C� of Cate�
gory �� Note that if both C� and C� belong to Category � then two
di�erent non�variable terms may occur in the sort constraint of the re�
sulting clause C� of Category �� For example� if C� � S��y� k �
f�g�x�� y� � xJ�K and C� � S��z� k � f�z� h�u�� � uJ�K then
C� � S��h�u��� S��g�x�� k � u � xJ�K� Note that C� will be split
if the sort constraint of C� is solvable� Another example explains
the restriction of semi�shallow theories where only one occurrence
of a term g�x� is allowed in each semi�shallow equation� Suppose
C� � k � f�g�x�� g�x�� � xJ�K and C� � k � g�h�y�� � yJ�K
where C� is obviously semi�shallow but is not allowed in the original
clause set� Then we may derive C� � k � f�y� g�h�y��� � h�y�J�K
which is also not semi�shallow�

�� The basic paramodulation right of a clause C� in Category 
 on a
clause C� in Category � or vice versa results in a clause C� of�

�a� Category 
 if C� contains a non�collapsing equation� If the equal�
ity constraint can be propagated without getting a semi�shallow
equation then C� belongs to Category ��

�b� Category � if C� contains a collapsing equation or a sort declara�
tion�

It is important to see that clauses of Category 
 which contain several oc�
currences of a subterm g�x� appear only during the saturation process� The
occurrences of the g�x� in those clauses are blocked due to basic restrictions�
In other words� a paramodulation step on a subterm g�x� is only possible in
clauses of Category �� Those clauses either belong to the original theory or
are conclusions of case �b� ut
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Lemma ���
Uni
ability with respect to 
nitely saturated sorted semi�shallow equational
theories is decidable�

Proof� The result follows from the proof of Lemma 
��
 which can easily be
extended to sorted semi�shallow equational theories� ut

We call an equation f�t�� � � � � tn� � x semi�standard if f�t�� � � � � tn� is
semi�linear and moreover� there is one unary symbol g such that for all ti
with x � vars�ti� we have that ti � g�x�� An equational theory E is called
semi�standard if E only contains semi�linear equations or semi�standard
equations of the form f�t�� � � � � tn� � x where only one ti can be of the form
g�x��
Note that similar to the semi�linear case a semi�standard equational the�

ory can be transformed into a sorted semi�shallow equational theory while
satis
ability is preserved� The transformation procedure of a semi�linear the�
ory into a sorted shallow system due to Lemma ��� can easily be extended
to work also for semi�standard theories�
It is su�cient for this purpose to leave the occurrences of subterms of

the form g�x� untouched during the transformation� The transformation
is performed by using the following rules for the transformation of �sorted�
equations and declarations� Since there are no equality constraints in clauses
of the original theory we use the standard clause notation�

De�nition ���
The following transformation is called semi��attening �

 � S��x��� � � � � Sm�xm� k �A�t�p�
S��x��� � � � � Sm�xm� k �T �t�

T �x�� k �A�p�� � � � � pn�x�

Red

provided t is a non�variable subterm� xi � vars�t� for all i� vars� � �
vars�t� � �� jpij � � for all i� the positions p�� � � � � pn refer to all posi�
tions q of t in A with jqj � �� T is a new monadic predicate� x is new to the
replaced clause� and if A is a semi�standard equation s � y then y does not
occur in t�

Lemma ���
Exhaustive application of the transformation presented in De
nition ��� to
a semi�standard equational theory terminates� it results in a sorted semi�
shallow equational theory and it preserves satis
ability�

Proof� The transformation procedure is almost the same as the one of
De
nition ��� where an occurrence of g�x� in a semi�standard equation
f�� � � � g�x�� � � �� � x is left untouched� Consequently� the transformation
terminates and preserves satis
ability� c�f� Lemma ���� ut
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Theorem ����
Uni
ability in semi�standard equational theories is decidable�

Proof� By Lemma ��� we can translate E into a sorted semi�shallow equa�
tional theory while satis
ability is preserved� Now by Lemma ��� such a the�
ory can be e�ectively saturated by basic sorted paramodulation and split�
ting� Due to Lemma ��� uni
ability is decidable with respect to 
nitely
saturated sorted semi�shallow equational theories� ut

� Limitations and Related Work

��� Limitations

We present a generalization of semi�linear equational systems which cannot
be treated with the methods of Sections 
�
 and ��
The combination of associativity for one function symbol and a linear �%�

shallow sort theory already yields an undecidable uni
cation problem� This
can be seen by a reduction of the emptiness of the intersection of context
free languages to this problem�
Also� if the syntactic conditions in the de
nition of semi�linear systems

are weakened� then uni
ability becomes undecidable� A notion of pseudo�
linear sort theories is introduced in �Weidenbach ����� as a generalization of
semi�linear sort theories in which uni
cation is still decidable� However� our
saturation method does not permit to solve uni
cation in the corresponding
pseudo�linear equational theories� These theories generalize sorted semi�
linear equational theories in a way that multiple occurrences of a variable
in an equation are allowed� provided they are all at the same depth� For
instance� every semi�linear theory is pseudo�linear� f�h�x�� g�x�� � g�g�x��
and m�h�x�� g�x�� y� � y are pseudo�linear equations which are not semi�
linear and f�h�x�� g�x�� � g�x� is not pseudo�linear�

Proposition ���
The word problem for pseudo�linear equational theories is undecidable� Even
for theories in which all symbols are unary �string equational systems�� and
equations are ground or have one of the forms a�b�x�� � c�d�x�� or a�x� � t
and t is ground�

This kind of theory is close to the simplest case of pseudo�linear non�shallow
equational system� The Proposition ��� characterizes a gap between semi�
linear and pseudo�linear systems with respect to the transformation pre�
sented in Section ��

Proof� �proposition ���� We reduce the Turing machine blank accepting
problem� Let M be a Turing machine with input alphabet f�� �� Bg
�B is the blanc symbol�� with states set Q and with transition function

��



� � f�� �� Bg � Q � f�� �� Bg �Q� fLeft�Rightg� Note that we do not use
marker symbols� The B will actually replace the markers� We make the
following non�restrictive assumptions concerningM�

�� M is deterministic �i�e� � is indeed functional�"

�� The tape ofM has always the form of a word of B�f�� �g�B� during
computations �B� represents an in
nite sequence of blanc symbols�"


� M starts its computations in the state qin � Q"

�� M always stops its successful computations by cleaning �replacing by
B� all the non�B symbols of the tape and then goes to the unique 
nal
state qf "

�� Moreover� we assume that no move is possible ifM is in state qf "

To ensure that M does not violate the condition �� we can add to M the
ability to make few moves close to the position of the head �while letting the
symbols on tape untouched� in order to check a replacement of an B by a �
or an � or vice�versa is conform to condition �� Lets consider the following
alphabets�

AM � f�� �� �� Bg � f�q j q � Qg � f�q j q � Qg � fBq j q � Qg

A � AM � fT� T �g

All symbols of A have arity � except � which is a constant� For sake of sim�
plicity� we note a�a� � � � an��� �or a�a� � � � an�x�� x � X � for a��a��� � � an�����
�resp� a��a��� � � an�x����� As usual� we make no distinction between a word
a�a� � � � an � �A n f�g�� and the ground term a��a��� � � an����� � T �A�� In
particular� we may use regular expressions �star notation� to design subsets
of T �A��
The con
gurations ofM will be represented by words of B�A�MB�� The

aim of symbols of the form �q� �q or Bq is to represent both the state and
the position of the head of M in a con
guration� More precisely� assume
that M is in state q and has B�a� � � � anB

� on the tape and its head
is at position i � n� Then we represent this con
guration by a word of
B�a�a� � � � ai��aqai�� � � � anB

�� where a � ai�
In a 
rst step in the reduction of the blank accepting problem forM� we

construct a term rewriting system �TRS� R instead of an equational system�
In the next step the rewrite rules of R will be unoriented�
A �pseudo�linear� sub�system of R called RM is associated to the tran�

sition rules of M� It is de
ned on AM in the following manner� for each
�a� q� � f�� �� Bg �Q�

� If ��a� q� � �b� q��Left�� then
RM � a�aq�x�� a�q�b�x� for every a

� � f�� �� Bg

��



� If ��a� q� � �b� q��Right�� then
RM � aqa

��x�� ba�q��x� for every a
� � f�� �� Bg�

Lemma ���
M accepts a blank tape B� i� fv � B�BqfB

� j 
u � B�BqinB
�� u����

RM
vg ��

�

The words of B�BqfB
� are generated from T ��� by the ground TRS R��

R� �

�
T ��� � BT ��� T ��� � BqinT

����
T ���� � BT ���� T ���� � C���

�

The third shallow TRS R� reduces a ground term of B
�BqfB

�C to Bqf ���

R� � fBqf �x�� Bqf ��� BBqf �x�� Bqf ���g

Let R � R� 	RM 	R��

Lemma ���
The Turing machineM accepts a blank tape i� T ������

R
Bqf ����

Proof� By construction of R� and R� and by Lemma ���� the existence of
a rewriting sequence of the form T �������

R�
u����
RM

v����
R�

Bqf ��� �with u� v �
T �A�� is equivalent of the blank accepting forM�
Also� any rewriting T ������

R
Bqf ��� can be transformed into a sequence

of the above form by permutations� Indeed� R has no critical pairs by
hypothesis onM �Hypothesis �� and by construction of RM� ut

We let E � fl � r j l� r � Rg� Since R has no critical pairs and Bqf ���
is an R�normal�form� we have�

Lemma ��

The Turing machineM accepts a blank tape i� T ��������

E
Bqf ����

ut

Note that this reduction also proves that ������
E
��L� is not necessarily recog�

nizable when L is recognizable and E is a pseudo�linear equational system�
A reduction of the blank accepting problem to a uni
ability problem

for a pseudo�linear string equational system in which all equations have the
form a�b�x�� � c�d�x�� �no ground equations� is also possible� Note that the
word problem in such a system is decidable� since equations of the above
type are length�preserving�
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��� Related Work

Oyamaguchi ������ shows that the word problem for right�ground TRS is
undecidable whereas the word problem in left�linear and right�ground TRS
is decidable in polynomial time� In the undecidability proof for right�ground
systems rewrite rules which simulate a transition of one con
guration to the
next contain non�linear variable occurrences at di�erent depth� Note that
non�linear variable occurrences at di�erent depth are excluded from semi�
linear systems�
Fassbender � Maneth ������ investigate decidability of E�uni
cation in

theories induced by TRS called top�down tree transducers� Syntactic restric�
tions based on separated function and constructor alphabets are assumed�
E�uni
cation in top�down tree transducers with only one function symbol
in the alphabet is shown to be decidable� Due to the constructor�based re�
strictions the results are di�cult to compare to semi�linear theories� Otto�
Narendran � Dougherty ������ show that E�uni
cation is decidable in equa�
tional theories axiomatized by monadic� con�uent string�rewriting systems�
Kaji et al� ������ show the recognizability of the right�closure of a certain

class of right�linear� con�uent TRS applied to a linear term� The variables
occurring both in the left and right hand side of a rule l� r are assumed to
be linear in l and� moreover� l and the subterms of r are related by additional
restrictions which can be e�ectively computed� The techniques presented
in Subsection 
�� provide a decision method for some restricted uni
abil�
ity problems modulo the above systems� Actually� the problem addressed
in �Kaji et al� ����� is more general because they deal with &constrained
substitutions' which range in some recursively de
ned �recognizable� set of
terms�
Comon et al� ������ investigate the properties of non�linear shallow the�

ories which are an instance of semi�linear equational theories� Shallow pre�
sentations can be transformed into equivalent cycle�syntactic presentations
for which decidability of uni
cation has been shown� The 
rst�order theory
of the quotient algebra T �F ���E

is also shown to be decidable where F is

nite and E is shallow� However� the proof techniques are entirely di�erent
to our approach�
Nieuwenhuis ������ generalizes the result of Comon et al� ������ to

so�called standard theories� Standard theories extend non�linear shallow
theories in a way that non�ground terms containing linear �non�signi
cant�
variables are allowed in certain restricted positions in both sides of the equa�
tions� An equation f�s�� � � � � sn� � g�t�� � � � � tm� may contain linear terms
si� respectively ti� where all other equations with top symbol f � respectively
g� must have linear terms in position i� Non�linear variable occurrences are
limited to shallow positions �� The saturation�based methods are closely re�
lated to our work� The decidability results are also obtained by termination

�Another extension included in standard theories is discussed in Section ��
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analyses of saturation under basic superposition�
Limet � R�ety ������ show the decidability of E�uni
cation in theories

represented by a particular class of con�uent� constructor�based TRS� The
set of possibly in
nite solutions is represented by Tree Tuple Synchronized
Grammars� A TRS is transformed into such a grammar which then simulates
narrowing� The additional restrictions on the TRS are purely syntactic�
However� semi�linear systems are di�cult to compare to the constructor�
based systems in this approach�

� Conclusions and Future Work

We have shown that uni
ability modulo a sorted shallow equational theory
is decidable by means of saturation methods under sorted superposition�
With the help of a transformation procedure this result extends to �sorted�
semi�linear equational theories� Our result strictly extends previous work
concerning shallow theories by Comon et al� ������� It can be obviously
extended into sorted equational theories and also into a generalization of
Nieuwenhuis ������� However� we currently do not have any complexity
results concerning the decision procedure or the number of generated mgus�
The presented theory is already included in the 
rst�order theorem prover
SPASS �Weidenbach ����� Weidenbach et al� ����� that can be used for
experiments with respect to the presented results�
Let us conclude with another possible improvement of this work� Sorted

shallow equational theories generalize Rec� tree automata� To subsume the
whole class Rec �� �Bogaert � Tison ������ it is necessary to add syntactic
disequations to clauses while preserving decidability results concerning mem�
bership and emptiness problems� This may have interesting applications in
call�by�need normalization strategies for TRS� Durand � Middeldorp ������
use tree automata techniques both to apply a call�by�need strategy based on
the detection of needed redexes and to characterize the class of rewrite sys�
tems for which it is e�ective� The key idea is� given a rewrite system R� to
recognize the closure ����

S
��NFS� by S of the set of ground S�normal�forms�

where S is a certain approximation of R� If we approximate R into a non�
linear shallow system S� the above set could be a recognized sorted shallow
equational theory with syntactic disequalities� generalizing Rec �� automata�
Thus� with the appropriate extension of the theory of needed�redexes� more
general call�by�need normalization strategies for some classes of non�linear
rewrite systems could be obtained�
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