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Abstract

The performance of a theorem prover crucially depends on the speed of the basic
retrieval operations, such as finding terms that are unifiable with (instances of, or
more general than) some query term. Among the known indexing methods for term
retrieval in deduction systems, Path–Indexing exhibits a good performance in general.
However, as Path–Indexing is not a perfect filter, the candidates found by this method
have still to be subjected to a unification algorithm in order to detect occur–check
failures and indirect clashes. As perfect filters, discrimination trees and abstraction
trees thus outperform Path–Indexing in some cases. We present an improved version
of Path–Indexing that provides both the query trees and the Path–Index with indirect
clash and occur–check information. Thus compared to the standard method we dismiss
much more terms as possible candidates.
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1 Introduction

The performance of a theorem prover can be increased by speeding up the retrieval and maintenance
of data referred to by the deduction system [LO80]. In this context we use a tool which provides
fast access to a set of terms, a so-called index. We distinguish between the following tasks: Find
terms in the index which are unifiable with some query term, find terms which are instances of the
query term, and find terms which are more general. Because of these abilities, indexing is exploited
in order to support different tasks in automated reasoning. In order to find resolution partners
for a given literal, for example, a theorem prover has to find unifiable literals. Subsumption of
clauses can be detected by the retrieval of generalizations or instances of literals of clauses. Even
the retrieval of rewrite rules, demodulators, and paramodulants can be accelerated by indexing if
the indexing mechanism also supports retrieval in the subterms of the indexed term set.

The importance of the usage of indexing has been shown by the OTTER theorem prover
[McC90]. Due to the consequent usage of Path–Indexing [Sti89, McC92] and Discrimination Tree
Indexing [McC92, Chr93, BCR93], this prover became one of the most powerful and fastest deduc-
tion systems. Additionally, further techniques such as Abstraction Tree Indexing [Ohl90a, Ohl90b],
Coordinate Indexing [Sti89], and Codeword Indexing [HN81, WP84] have been introduced in the
literature.

Standard Path–Indexing. The retrieval process is determined by the query term, i.e. the term
we search partners for, and the set of entries of the index. In the simplest case these entries are
terms also. Path–Indexing is based on two different data structures. Each query results in the
construction of a new query tree which describes complex restrictions on the entries of the index.
Query trees depend on the query term. Entries which fulfill these restrictions are candidates for
terms unifiable with the query term. In order to find entries with special path properties we use
Path–Lists. Path–Lists depend on the terms which were inserted into the index. Strictly spoken,
our index consists of a set of Path–Lists and a retrieval mechanism using query trees. However,
we sometimes refer to a set of Path–Lists as an index.

In order to find terms which are unifiable with the query term g(a), for example, we create a
query tree which contains the following information: Terms unifiable with g(a) are either variables
or they have g as a top symbol and the argument of g is either a variable or the constant a.
Obviously, query trees may contain three different types of nodes: LEAF-nodes, AND-nodes, and
OR-nodes. For each of the properties “term is a variable”, “top symbol is g and argument is a
variable”, and “term is g(a)” we maintain a Path–List which is a list of pointers to entries of the
index. Eventually, we evaluate the query tree by computing unions (at OR-nodes) and intersections
(at AND-nodes) of the Path–Lists referred to in the LEAF-nodes.

Note that Path–Indexing does not identify variables during the search. As we store properties
of the form “term is a variable” only, it does not detect, for instance, that the term f(x, x) is not
unifiable with f(y, f(y, z)), because it treats this unification problem as if it had to unify the terms
f(x1, x2) and f(y1, f(y2, z))). As a consequence we have to apply an ordinary unification algorithm
to the entries found and the query term in order to detect occur–check failures and indirect clashes
in the case of non–linear terms.

However, Path–Indexing provides some features which other indexing techniques do not have at
all or are at least very expensive: A Path–Index may be scanned by several query trees in parallel,
which allows parallel or recursive processes to work on the same index. Using query trees we get
the results one by one and do not need to evaluate the whole tree. Finally, it is possible to insert
entries to and delete entries from a Path–Index even when the retrieval is still in progress.

Extended Path–Indexing. Extending Path–Indexing with term constraints, however, can dras-
tically reduce the number of candidates found in a retrieval and as a consequence accelerate re-
trieval, because fewer unifications have to be performed. The detection of occur–check failures
and indirect clashes in a unification problem does not always require the exact knowledge of the
structure and the variables of the terms to be unified. Let us again consider the unification of
f(x, x) and f(y, f(y, z)). Obviously, the two terms cannot be unified, because the two arguments

1



of f(x, x) are identical while the two arguments of f(y, f(y, z)) cannot be unified because of an
occur–check failure (y occurs in f(y, z)).

We extend Path–Indexing by creating new lists for terms which have identical subterms at
specific positions and for terms which have non–unifiable subterms at these positions. Depending
on the properties of the query term, we can reduce the number of entries found by omitting
those entries which have non–unifiable subterms at a position where the query term has identical
subterms and vice versa.

The advantage of this approach is, that the decision in which set to put a term, depends only
on the term itself and needs to be done just once for each entry of our Path–Index, no matter how
many retrievals will follow.

2 Preliminaries

We use the standard notions for first order logic. Let V and F be two disjoint sets of symbols.
V denotes the set of variable symbols. The set of n-ary function symbols is Fn and F = ∪Fi.
Furthermore, T is the set of terms with V ⊆ T and f(t1, . . . , tn) ∈ T if f ∈ Fn and ti ∈ T .
Function symbols with arity 0 are called constants. For two terms s and t which are identical we
write s = t. In our examples we use the symbols x, y, and z as variables and the symbols f , g,
and h as function symbols. Constants are denoted by a, b, and c.

A substitution σ is a mapping from variables to terms represented by the set of pairs {x1 7→
t1, . . . , xn 7→ tn} with σ(xi) = ti for 1 ≤ i ≤ n. A unifier for two terms s and t is a substitution
σ such that σ(s) = σ(t). If such a unifier exists s and t are called unifiable. Terms may be non–
unifiable for different reasons. Clashes occur when two non-variable symbols cannot be unified.
In contrast to indirect clashes and occur–check failures, a direct clash can be detected without
considering partial substitutions. For example, the terms f(a, y) and f(x, b) are unifiable and the
unifier is {x 7→ a, y 7→ b}. Furthermore, we get a direct clash when unifying f(a, x) and f(b, y), an
indirect clash when unifying f(x, x) and f(a, b), and an occur–check failure when unifying f(x, x)
and f(y, g(y)).

A position in a term is a finite sequence of natural numbers and the subterm of a term t at
position p is denoted by t/p. We define the set of all positions O(t) of a term t with the help
of a special position ε which denotes the empty position and the function ◦ which represents the
concatenation of natural numbers.

Definition 2.1 Let t = f(t1, . . . , tn) be a term. The set of positions of term t is recursively defined
by O(t) = {ε} ∪ {i◦p | p ∈ O(ti), t /∈ F0, t /∈ V }.

Definition 2.2 Let p be a position. The set of terms that contain the position p is defined by
Tp = {t | t ∈ T, p ∈ O(t)}.

For example, O(h(a, g(b), x)) = {ε, ε◦1, ε◦2, ε◦2◦1, ε◦3}. Constants and variables have the position
{ε} only.

A vector of pairs (pi, si) with pi being a natural number and si being a function symbol or the
special symbol ∗ is called path. Paths are denoted by [p1, s1, . . . , pn, sn]. Paths are an extension to
positions. That means, that we simply add a symbol to each of the natural numbers of a position.
For example, we can extend the position ε◦1 to the path [ε, f, 1, a]. This path represents a set
of terms having f as the top symbol and the first argument being equal to a. In Path–Indexing
paths do not contain variables. All variables in paths are replaced by the same special symbol ∗.
For reasons of simplicity we often do not write the first position p1, as it happens to be the empty
position ε for every path. We also renounce commas if the result is unambiguous. The following
definition of sets of terms with special path properties uses the function top which returns the top
symbol of a term.

Definition 2.3 Let p = p1◦ . . . ◦pn be a position, [p1, s1, . . . , pn, sn] a path, and t a term. The set
of terms that contain the path p is recursively defined: We have t ∈ T[p1,s1,...,pn,sn] iff all of the
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Figure 1: Complete and simplified query tree for the query term f(a, g(b))

three conditions hold.

(1) t ∈ T[p1,s1,...,pn−1,sn−1]

(2) t ∈ Tp1◦...◦pn

(3)

sn =

{

∗ if t/p ∈ V
top(t/p) otherwise

.

The terms h(g(a), b, a), h(x, b, c), h(f(a, c), b, x), for example, are all members of the set T[h2b].
The term h(a, g(b), x) is a member of the sets T[h], T[h1a], T[h2g], T[h2g1b], and T[h3∗].

3 Standard Path–Indexing

Although we will introduce Path–Indexing for the retrieval of terms which are unifiable with some
query term, this indexing technique is also able to support the search for instances and more
general terms. In this paper, however, we are not going to focus on these features.

Path–Indexing is based on two different data structures. Each query results in the construction
of a new query tree and in order to find entries with special path properties we use Path–Lists.

Query Trees. Query trees describe complex restrictions on the entries of the index. They
depend on the query term and are built for non-variable1 query terms only. A term unifiable with
t = f(t1, . . . , tn) either is a variable or it is a complex term s = f(s1, . . . , sn) and the arguments
ti and si are pairwise unifiable. We recursively apply this idea to the arguments of t and get a
complex tree whose leaves are marked with paths. Consider, for example, the first (complete)
query tree in Fig. 1 which represents the restrictions that terms unifiable with the non-variable
query term f(a, g(b)) have to fulfill.

Obviously, our complete query tree contains superfluous nodes. For example, it is not necessary
to check the path [f], because all paths contained in the other subtrees of the corresponding AND-
node start with the function symbol f . Additionally, we do not need AND- or OR-nodes if there
is only a single subtree below. Therefore, the complete query tree can be simplified. Note that a
simplified query tree does not depend on the data in the index. However, we might still be able to
reduce the size of the tree if we take the current entries of the index into consideration. Assume
that there were no entries with paths [∗], [f2g1b], and [f2g1∗]. The minimal query tree one can
get under this assumption is depicted in Fig. 2.

Path–Lists. The index itself consists of a list of secondary indexes, so–called Path–Lists. A
Path–List is a list of pointers to terms that share a special path property. To find a specific
Path–List, we use a hashing mechanism. Figure 2 shows an example of an index. Path–Lists are
sorted, which is necessary in order to compute AND-nodes in the query tree efficiently. In our
implementation we used the addresses of the terms as the sorting criterion.

1A variable x is unifiable with every term t if x /∈ V (t) and therefore finding unifiable entries does not result in a
restriction on the terms of the index, because variables are not identified in Path–Indexing and therefore all entries
of the index have to be found.
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Figure 2: Minimal query tree for f(a, g(b)) and Path–Index

Retrieval. Retrieval brings together query trees and Path–Lists. Each leaf of the query tree
maintains a cursor on the appropriate Path–List which is initialized by a pointer to the first
element of the list. The query tree is evaluated by a recursive algorithm. Application of the
algorithm to the root node of the query tree yields either an entry of the index or NULL, i.e. there
are no more entries left.

Each time a leaf is evaluated, the pointer to the current entry is returned and the cursor is
moved one position further. An OR-node returns the minimum of the results of the recursive calls
on its subtrees. The computations in AND-nodes are most complex. We have to find the smallest
address of a term that has all the properties described by the subtrees of the AND-node [Gra92],
i.e. the address has to be found in all subtrees of the AND-node.

We evaluate the query tree of Fig. 2: We start the evaluation of the query tree at the AND-
node, which yields two calls. One for the OR-node and one for [f2∗]. The OR-node causes the
evaluation of [f1a] and [f1∗]. The LEAF-nodes are evaluated, their cursors are moved, and the
terms 2 and 1 are returned. The OR-node computes the minimum and returns 1 to the AND-
node. The evaluation of the LEAF-node [f2∗] also results in 1 and therefore f(x, x) is the result of
all subtrees of the AND-node and the first result of our retrieval. The next evaluation of the query
tree is less simple, because the OR-node returns 3 as a result (the minimum of 3 and 7) while the
evaluation of [f2∗] results in 4. Now the AND-node again calls the OR-node, because it returned
the smaller value which finally answers 4 also. Therefore f(x, y) is our next result. In the same
way we find f(a, y) and f(a, x).

4 Non–Unifiability

The notion of non–unifiability is most important when extending Path–Indexing in order to make
it a better filter. In this context we have to answer the question of how we can derive two sets of
information from two different terms such that the union of the information sets results in a test
for non–unifiability of the terms. As we talk about indexing terms it is of fundamental importance
that the information set for each term which is inserted into the index can be computed at insertion
time. During retrieval, we compute the information set for the query term once and compare it
with the information sets of the terms in the index. In order to define non–unifiability, we need
some new notions.

Definition 4.1 Let p and q be positions. The set of terms that contain the two different positions
p and q is defined by Tp,q := { t | t ∈ Tp, t ∈ Tq, p 6= q}.

We have three disjoint subsets of Tp,q.

Definition 4.2 The set of terms that contain identical subterms at two different positions p and q
is defined by T =

p,q := { t | t ∈ Tp,q, t/p = t/q}. The set of terms that contain non–unifiable subterms

at two different positions is defined by T 6=
p,q := { t | t ∈ Tp,q, ¬∃σ . σ(t/p) = σ(t/q)}. The set of

remaining terms is T ∗
p,q := Tp,q \ (T =

p,q ∪ T 6=
p,q).

Lemma 4.1 T =
p,q, T

6=
p,q, and T ∗

p,q are disjoint and T =
p,q ∪ T 6=

p,q ∪ T ∗
p,q = Tp,q.
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Table 1: Some examples of NU

s t NU(s, t) s t NU(s, t)

f(a, b) g(y) TRUE f(x, g(x)) f(g(y), y) TRUE

f(x, x) f(g(y), y) TRUE f(x, g(x)) f(y, g(y)) FALSE

f(x, x) f(g(y), g(y)) FALSE f(x, f(x, y)) f(f(u, v), f(v, u)) TRUE

f(x, x) f(f(y, y), f(a, b)) TRUE h(a, x, x) h(y, y, b) FALSE
2

f(x, x) f(a, b) TRUE f(x, b) f(g(x), b) FALSE
3

Additionally, we define three disjoint subsets of T 6=
p,q.

Definition 4.3 The set of terms with non–unifiable variable–term pairs at positions p and q is
defined by T 6=v

p,q := { t | t ∈ T 6=
p,q, t/p ∈ V }. The set of terms with non–unifiable, non–variable

subterms at positions p and q is defined by T 6=t
p,q := { t | t ∈ T 6=

p,q, t/p /∈ V, t/q /∈ V }.

Lemma 4.2 T 6=v
p,q , T 6=v

q,p , and T 6=t
p,q are disjoint and T 6=v

p,q ∪ T 6=v
q,p ∪ T 6=t

p,q = T 6=
p,q.

The set T =
p,q consists of two disjoint subsets.

Definition 4.4 The set of terms with equal variables at positions p and q is defined by T =v
p,q :=

{ t | t ∈ T =
p,q, t/p ∈ V }. The set of terms with equal non–variable subterms at positions p and q is

defined by T =t
p,q := { t | t ∈ T =

p,q, t/p /∈ V }.

Lemma 4.3 T =v
p,q and T =t

p,q are disjoint and T =v
p,q ∪ T =t

p,q = T =
p,q.

Only for the sets T 6=v
p,q and T 6=v

q,p the order of the subscripts p and q is important. For all other
notations the order of the subscripts does not matter.

Two terms are non–unifiable if they have two different top symbols or if there are two positions
which occur in both terms such that for one term the subterms at these positions are identical and
the subterms of the other term at these positions are non–unifiable. In order not only to detect
indirect clashes we also consider situations in which the two subterms consist of a variable and a
term which contains this variable.

Consider the term t = f(f(g(a), g(a)), f(g(x), x)), for example. We have t ∈ T =t

1◦1,1◦2, because

g(a) occurs at the positions 1◦1 and 1◦2 in t. Additionally, t ∈ T 6=v

2◦2,2◦1, because x occurs in g(x),

and finally, t ∈ T 6=t

1,2 , because f(g(a), g(a)) and f(g(x), x) cannot be unified.

Definition 4.5 Let s and t be two non-variable terms. The predicate of non–unifiability is defined
by

NU(s, t) iff top(s) 6= top(t) ∨ ∃k, l ∈ O(s) ∩ O(t) ((s ∈ T =
k,l ∧ t ∈ T 6=

k,l) ∨

(s ∈ T 6=
k,l ∧ t ∈ T =

k,l) ∨ (s ∈ T 6=v

k,l ∧ t ∈ T 6=v

l,k )).

Note that the predicate serves as a filter only; NU is sufficient for non–unifiability, but not
necessary, i.e. NU does not detect all failures. However, NU(s, t) will never be TRUE if the terms
s and t are unifiable. Additionally, NU is defined for non-variable terms only. In Table 1 we see
some examples.

Obviously, the concept of non–unifiability cannot generally be used in Path–Indexing, because
there are far too many combinations of positions to provide a Path–List for each one. We will now
restrict the definition of NU in order to get a concept applicable to Path–Indexing.

2NU fails, because the indirect clash can only be detected using the information x = y, which can be derived
when unifying the terms only.

3Here the result of NU is not correct, because the sets of variables of s and t are not disjoint. However, this does
not cause real problems, because clauses are renamed each time an inference is applied.
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Table 2: Connections of the term sets

Query Term Where to Search Where NOT to Search

t ∈ T =
p,q s ∈ T ∗

p,q ∪ T =v
p,q ∪ T =t

p,q s /∈ T 6=v
p,q ∪ T 6=v

q,p ∪ T 6=t
p,q

t ∈ T 6=v
p,q s ∈ T ∗

p,q ∪ T 6=v
p,q ∪ T 6=t

p,q s /∈ T =v
p,q ∪ T =t

p,q ∪ T 6=v
q,p

t ∈ T 6=t
p,q s ∈ T ∗

p,q ∪ T 6=
p,q s /∈ T =v

p,q ∪ T =t
p,q

t ∈ T ∗
p,q s ∈ Tp,q s /∈ ∅

5 Extended Path–Indexing

Standard Path–Indexing uses query trees as complex descriptions of restrictions on terms. We
will now extend both the query trees and the index itself by not only checking direct clashes
as in ordinary Path–Indexing but also considering non–unifiability. More precisely, we add non–
unifiability restrictions to the query trees which consider indirect clashes and occur–check failures.
The index, however, remains a filter only, although there will be more lists in the index. We still
will have to apply an ordinary unification algorithm in order to test unifiability and to extract the
unifying substitutions.

5.1 Adapting Non–Unifiability

We have learned from Standard Path–Indexing that the unification partners for terms with special
properties can only be found in special sets. Table 2 sums up the connections between the sets
when non–unifiability is taken into account. The column “Where to Search” can directly be derived
from the definition of NU. From the Lemmata 4.1, 4.2 and 4.3 we get the third column of the
table.

The reason for considering the sets in which a partner for the query term t cannot occur is
simple: Query trees represent restrictions on the term sets. On the one hand, we will extend the
query trees with additional restrictions resulting from non–unifiability which, on the other hand,
will be tested with the help of the disjoint sets T =v

p,q , T =t
p,q , T 6=v

p,q , T 6=v
q,p , and T 6=t

p,q . We avoid the

usage of T 6=
p,q, because T 6=

p,q contains the subsets T 6=v
p,q and T 6=v

q,p which have to be created for the

case t ∈ T 6=v
p,q anyway. Using T =v

p,q and T =t
p,q instead of T =

p,q results in better constraints in the query
tree.

We have also stated that it is impossible to provide a Path–List for each possible combination
of positions in a term. In order to restrict the number of combinations we introduce the notion of
distance of positions.

Definition 5.1 Let p = p1◦ . . . ◦pn and q = q1◦ . . . ◦qm be two different positions. Let k =
max{i | ∀j. 1 ≤ j ≤ i ≤ min{n, m} : pj = qj} be the length of the longest common prefix of p
and q. The distance of p and q is defined by

dist(p, q) :=

{

∞ if k = min{n, m}
max{n, m} − k otherwise

.

For example, dist(1◦2◦1, 1◦1◦2◦2) = 3 and dist(1◦2◦1, 1◦2◦2) = 1. Additionally, we have
dist(1◦2, 1) = ∞, because 1 is a prefix of 1◦2. Identical positions also have distance ∞.

Definition 5.2 Let p and q be two different positions. The set of terms that contain two positions
with a maximum distance of n > 0 is defined by
Tp,q,n := { t | t ∈ Tp,q, dist(p, q) ≤ n}.
The maximum distance of p and q is also called NU–depth.

In case the NU–depth n > 0 is constant, we may drop the subscript and write Tp,q instead of
Tp,q,n. In the following we regard the definitions of Section 4 as if they had been made using Tp,q,n

for a constant NU–depth. Note, that if we had restricted the NU–depth to 1, for instance, the
non–unifiability of f(x, f(x, y)) and f(f(u, v), f(v, u)) would not have been detected.
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5.2 Extending the Data Structures

Extended Query Trees. We apply our new definition of non–unifiability to query trees. Ac-
tually, there is no big difference between standard and extended query trees, except for some
constraints which are added to specific nodes. As an example we present the extended query tree
for terms si which are unifiable with the term t = f(x, g(x)) in Fig. 3. The NU–depth is set to

1. The three constraints si /∈ T =v

1,2 , si /∈ T =t

1,2 and si /∈ T 6=v

2,1 are due to the fact that t ∈ T 6=v

1,2 (see
Table 2). Constrained nodes affect the evaluation of the query tree in a very simple and efficient
way: When addresses of terms are bubbled up from the leaves to the root of the tree, only those
addresses pass a constrained node which do not occur in the sets described by the constraint. Note
that a constraint may consist of more than one set.

We now focus on the positions of the constraints in the query tree. The retrieved set of terms
would not change even if we attached all constraints to the root node of the query tree. However,
each constraint has its distinct position in the tree in order to reduce evaluation costs. In Fig. 3
the constraint si /∈ T 6=v

2,1 is attached to the leaf [f2∗], because T 6=v

2,1 contains terms with variables
at position 2 only. In parallel T =t

1,2 which consists of non–variable terms at position 2 only is not
searched for variables resulting from leaf [f2∗], when the constraint is attached to the leaf [f2g]. As
extended query trees can also be simplified and minimized, we can omit some constraints in case
the appropriate node in the query tree is deleted.

Let us take a closer look at where in the query tree the constraints have to be added. Consider
Fig. 4, a fragment of the query tree which corresponds to the query term t ∈ Tp,q at position p.
Depending on the properties of t, we have to add sets to constraints at specific positions of the
extended query tree. The table in Fig. 4 shows the insertion rules.

Note that the set T 6=v
q,p is added to the constraint of node 3q of the query tree fragment which

represents the query term at position q. Additionally, we will result in less recursive calls when
evaluating the extended query tree if we do not add the set T 6=t

p,q to node 2 but to node 1 of subtree1.
In Fig. 5 the extended query tree for terms which are unifiable with the query term f(g(x), g(h(x)))
is depicted. The NU–depth is set to 2.

Just like in Standard Path–Indexing the query tree is simplified and minimized before the
retrieval is started. Again we may delete those LEAF-nodes which correspond to empty Path–
Lists. Additionally, we may delete all empty sets in constraints. In case an AND-node or an
OR-node is deleted, because it has just one subtree, the constraint is inherited to the root of
the subtree. In this way we get a minimal extended query tree which is based on the extended
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Figure 6: Minimal extended query tree for f(g(z), g(h(z))) and extended Path–Index

Path–Index of Fig. 6. See Section 6 for further details.

Extended Path–Lists. Path–Lists are created when terms are inserted into the index. In order
to provide the Path–Lists for the tests of the constraints, one has to detect for every possible
combination of positions p and q of a term s with dist(p, q) ≤ NU-search depth, whether s is in
one of the sets T =v

p,q , T =t
p,q , T 6=v

p,q , T 6=v
q,p , or T 6=t

p,q . In parallel to ordinary Path–Lists the extended
Path–Lists are represented as sorted lists. In this context it is important that these lists are sorted
according to the same sorting criterion as the ordinary Path–Lists. Note that the insertion of
a term does not need to result in an entry in an extended Path–List, see f(x, b) or f(x, y) for
example.

Extended Retrieval. The retrieval algorithm which allows for extended query trees is just a
slight modification of the ordinary retrieval algorithm. The only difference is the fact that the
entry which has been found in a node of an extended query tree is tested against the constraints,
i.e. we search for the entry in the appropriate extended Path–Lists. Obviously, the search takes
advantage of the ordering of the lists and may start at the position in the list where the last
comparison stopped. In case we find the entry in one of the lists, we start a new retrieval on the
current node of the tree, which will yield another entry. Otherwise the entry is moved towards the
root of the extended query tree.

In the example depicted in Fig. 6 we would find the terms f(x, x), f(x, y), f(g(y), y), and
f(g(y), x) if we used Standard Path–Indexing. However, Extended Path–Indexing exploits the
constraints and the found terms are f(x, y) and f(g(y), x) only, because f(x, x) is rejected at the
OR-node by constraint T =v

1,2 and f(g(y), y) is rejected at the LEAF-node [f1g] by constraint T =v

1◦1,2.
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Table 3: Constraints for constant subterms

Extended Query Tree
for tquery/p = c ∈ F0

if tquery ∈ T 6=t
p,q

�� ��OR

�� HH
[. . . c] [. . . ∗]\T =v

p,q

6 Algorithms and Data Structures

6.1 Simplification and Minimalization of Extended Query Trees

In order to explain the insertion rules of constraints in consideration of simplification and mini-
malization of query trees we focus on the different types of subterms which can occur in a query
term. In contrast to the complete insertion rules of Fig. 4 many constraints in an extended query
tree can be omitted:

1. Constraints of empty leaf nodes can be left out. For this reason we just have to give insertion
rules for non-empty leaf nodes, respectively for non-empty Path–Lists.

2. We do not have to consider all of the five different types of constraints for every kind of
subterm in the query term, e.g. terms with a constant subterm at position p cannot be
element of T =v

p,q because this constraint contains terms with variables at position p only.

3. There are constraints which do not reject Path–Index terms because they do not contain any
terms which will be retrieved by the associated query tree nodes.

Note that we explicitly refer to query term in 2. because a property of the query term prevents
constraint insertion in difference to 3. where a property of Path–Index terms is responsible for
omitting constraints. We introduce three lemmata which can be applied on 2. and 3.

Lemma 6.1 (Constant subterms)
Let t be a term, p a position, and t/p ∈ F0. Then ∀q ∈ O(t) : t /∈ T =v

p,q ∪ T 6=v
p,q ∪ T 6=v

q,p .

Lemma 6.2 (Variable subterms)
Let t be a term, p a position, and t/p ∈ V . Then ∀q ∈ O(t) : t /∈ T =t

p,q ∪ T 6=t
p,q ∪ T 6=v

q,p .

Lemma 6.3 (Function subterms)
Let t be a term, p a position, and t/p ∈ F\F0. Then ∀q ∈ O(t) : t /∈ T =v

p,q ∪ T 6=v
p,q .

In the following tquery is a term for which an extended query tree is created. Furthermore, p
denotes a position in the query term tquery .

Constraints for constant subterms. Table 3 shows the complete extended query tree for
constant subterms. The constraint T =v

p,q has to be added to node [. . . ∗] only if tquery ∈ T 6=t
p,q . T =t

p,q

can be omitted because of the following Lemma:

Lemma 6.4 (Query Trees detect direct clashes of constant subterms)
For query terms with constant subterms at position p the constraints T 6=v

p,q , T 6=v
q,p , T =t

p,q , and T 6=t
p,q do

not provide restrictions on retrieved terms.
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Obviously, T 6=v
p,q and T 6=v

q,p are empty for constant subterms because variables cannot occur in

constants. The constraints T =t
p,q and T 6=t

p,q do not provide more information on constant subterms
as query trees do. A query tree only returns a term with the same constant symbol as in the query
term, in other words it detects direct clashes. Therefore a query tree returns terms which are not
element of T =t

p,q or T 6=t
p,q .

Now we focus on the remaining cases for tquery . If tquery ∈ T =t
p,q all constraints T 6=t

p,q , T 6=v
p,q , and

T 6=v
q,p can be omitted because the condition for equal constants is completely solved by the query

tree as stated in Lemma 6.4. The remaining cases do not have to be considered because tquery

cannot be element of T =v
p,q , T 6=v

p,q , or T 6=v
q,p by Lemma 6.1 with tquery/p ∈ F0. The resulting extended

query tree is equal to the standard query tree for constant subterms.

Table 4: Constraints for function subterms

Extended Query Trees for tquery/p = f ∈ F\F0

if tquery ∈ T =t
p,q if tquery ∈ T 6=t

p,q if tquery ∈ T 6=v
q,p

�� ��OR

�� HH
subtree\T 6=t

p,q [. . . ∗]\T 6=v
p,q

�� ��OR

�� HH
subtree\T =t

p,q [. . . ∗]\T =v
p,q

�� ��OR

�� HH
subtree\T =t

p,q [. . . ∗]\T =v
p,q , T 6=v

p,q

add T 6=v
q,p to node at position q

Constraints for function subterms The extended query trees for function subterms are shown
in Table 4. All constraints concerning the insertion rules of Fig. 4 have to be added. Note that
the constraint T 6=v

q,p cannot be added to the query tree directly if tquery is element of T =t
p,q . The

constraint is saved in a stack until the query tree fragment which represents the query term at
position q is created. The query tree fragment for position q is created later because of the
way the combinations of p and q are generated. See Algorithm 6.1 for details on generating p, q
combinations.

The extended query tree for the arguments of the function subterm is called subtree. If the
root of subtree is an AND–node all constraints which have to be added to subtree are inherited to
one of the AND–node’s sons.

Note that we do not consider tquery ∈ T =v
p,q or tquery ∈ T 6=v

p,q because tquery cannot be element
of these constraints by Lemma 6.3 with tquery/p ∈ F\F0.

Constraints for variable subterms Variables of a query term are not considered for the
standard query tree creation, i.e. standard query trees do not contain any nodes with information
on query term variables. Even though constraints on variables in the query term can reduce the
amount of found entries. These constraints are added to the root of subtree. The subtree represents
the non-variable arguments of the function subterm in which the current variable occurs. If the
root of subtree is an AND–node the constraints are inherited as mentioned above.

The constraints within brackets are added only if the Path–Index contains terms with vari-
ables at position p. Otherwise the retrieved terms are not element of this kind of constraints by
Lemma 6.3 or Lemma 6.1 applied on these terms. Furthermore, the constraint T 6=v

q,p is saved in
order to insert it later in the query tree fragment for q.

Note that tquery cannot be element of T =t
p,q , T 6=t

p,q , or T 6=v
q,p by Lemma 6.2 with tquery/p ∈ V .

Therefore we consider the constraints T =v
p,q and T 6=v

p,q only.
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Table 5: Constraints for variable subterms

Extended Query Trees for tquery/p = x ∈ V

if tquery ∈ T =v
p,q if tquery ∈ T 6=v

p,q

�� ��OR

�� HH
subtree\T 6=t

p,q , (T 6=v
p,q ) [. . . ∗]

�� ��OR

�� HH
subtree\T =t

p,q , (T =v
p,q ) [. . . ∗]

Add T 6=v
q,p to query tree fragment at position q

Extended Query Tree Construction. The construction of an extended query tree is, relative
to its node structure, exactly the same as the construction of a standard query tree. For further
details see [Gra92]. The data structure for leaf-nodes and OR-nodes in extended query trees is
extended with a pointer to a list of constraints because all constraints are added to leaf-nodes
and OR-nodes only. The constraints for AND-nodes are inherited to one of the direct sons which
cannot be AND-nodes. Note that all subtrees of a query tree fragment and the fragment itself
have been minimized and simplified before constraints are added.

In order to create an extended query tree the query term is scanned in depth first order. The
found positions are called p. Additionally, all combinations p, q of positions in the query term
have to be enumerated to determine the constraints. In order to avoid symmetric combinations all
positions q are enumerated to the “right” of p only. We introduce the required order on positions
in the following definition.

Definition 6.1 (Comparison of Positions)
Let p = p1◦ . . . ◦pn and q = q1◦ . . . ◦qm be two different positions with n, m > 0. We define p is left
to q, written p < q, as follows:

p < q iff ∃i.1 ≤ i ≤ min(n, m) : pi < qi ∧ ∀j.1 ≤ j < i : pj = qj

Additionally, if p < q say q is to the right of p.

For example, 1◦1 < 1◦2 or 1◦1 < 2, but not 1◦2◦1 < 1◦2.
Another restriction on position combinations is the NU–depth. Algorithm 6.1 computes the

positions to the “right” of a given position p considering the NU–depth:

Algorithm 6.1 (Position Combinations)
Let t ∈ T be a term and p = p1◦ . . . ◦pn a position with p ∈ O(t). Position p is fixed.

1. Step up term t starting at position p until the root of t or the NU–depth is reached.
For each step do:

2. Visit the remaining arguments which are to the “right” of the current subterm.
For each argument do:

3. Traverse the argument in depth first order considering the NU–depth and index depth.
Every found position is located to the “right” of position p and has a distance to position p
which is smaller or equal than the NU–depth.

Algorithm 6.1 tries to find more arguments to the right of each argument on the path of position
p. Position p is stepped in reverse direction up to the root, respectively until the NU–depth is
reached. Every found argument is immediately searched in depth first order under restriction of
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the NU–depth, i.e. the algorithm is allowed to descend in every found subterm NU-1 times. Note
that the algorithm can be used either on terms which will be inserted in a constraint index or on
terms for which extended query trees will be created.

The constraint sets which have to be integrated in an extended query tree are determined as
described in the last three paragraphs. Most of the constraints can directly be integrated during
the search of the term and the creation of the extended query tree. The constraint T 6=v

q,p has to be
connected to a node which is associated to position q. Our search strategy guaranties that every
“right” position q is reached after position p was attended. Therefore constraints which have to be
integrated later are pushed onto a stack. Every time a new position p is created this stack has to
be searched for appropriate constraints by applying the order of Definition 6.1. All constraints in
the stack having positions to the “left” of the current position p will be deleted. This can happen
because of minimalization, i.e. several query tree nodes are left out because of the lack of index
entries. Therefore several constraints from the stack are not needed anymore.

6.2 Extended Path–Index

Data Structure. The Extended Path–Index is established as a record of several hash tables.
For indexing on path properties of terms we use the same hash table as in Standard Path–Indexing.
The hashing has been described in [Gra92]. The constraint sets are saved in similar tables except
for the hash key which is built up by the two positions of a constraint. One hash table is used for
one kind of a constraint set. Every hash table can be allocated in a different size.

Maintenance of the Extended Index. In order to insert or delete terms, we basically use
the same procedures as in Standard Path–Indexing. Additionally, every possible combination of
positions p and q of a term has to be enumerated by Algorithm 6.1 to obtain all constraints on
this term. As an extention to Path–Indexing respectively to Extended Path–Indexing we provide
two different methods for term deletion. Accordingly, terms can be deleted physically or by just
marking its entries as deleted. The latter method provides deletion of terms from the index even
though query trees exist. The marked terms will not be considered anymore. In order to remove
the marked terms entirely from the index a garbage collection procedure is used.

6.3 Retrieval in Extended Query Trees

The retrieval algorithm for extended query trees has to be changed for leaf-nodes and OR-nodes
only. AND-nodes do not contain any constraints. The found entries are tested against the con-
straints which are stored in a linear list. Completely searched constraints will be deleted during
retrieval.

6.4 Improving Extended Path–Indexing Data Structures

In this section we introduce some improvements on Extended Path–Indexing which both accelerate
retrieval and reduce memory requirements.

Replace the hashing mechanism by a search tree. A major shortcoming of Extended Path–
Indexing is its memory requirement. An examination of the calls for memory allocation showed
that a very large part of the memory is used for storing paths. As the index depth is limited, paths
are implemented as arrays of constant length. However, most of the paths do not reach this length
and a lot of memory is allocated but never used. Additionally, many paths share a prefix, but
this property is not exploited. Finally, using a hashing mechanism to find the appropriate Path–
Lists for a specific path has to scan this path several times. We compute the value of the hash
function and have to compare the path with the paths stored in the same collision class. Solving
the collisions forces us to store the paths in the hash table. One way to avoid these comparisons
and to get rid of storing redundant parts of the paths is to use a tree as depicted in Figure 7.
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Figure 7: A new way of accessing Path– and Constraint–Lists

Use Paths instead of Positions for Constraints. Although we presented Extented Path–
Indexing using positions in order to describe term constraints, one could also exploit the more
detailed information of paths in this context. We could speak of T 6=v

[f1],[f2g1] instead of T 6=v

1,2◦1, for

instance. Using this technique will lead to more but shorter lists for the constraints. On one hand,
the retrieval is accelerated, because less entries have to be scanned. On the other hand, it is more
time consuming to hash paths instead of positions. Note that the last symbol in the paths is not
needed in order to specify a constraint.

Store Constraints together with ordinary paths. Using paths instead of positions to specify
constraints can also be exploited in order to ease access to the extended Path–Lists. We integrate
the extended Path–Lists into the search tree for paths in the following way: Standard Path–Lists
are attached to nodes which contain symbols only. The nodes in Fig. 7 which contain the number of
the argument (written in boxes) can be used to lead to further information. Such a box represents
all but the last symbol of a path p. At this node we can attach information concerning path p:
For each of the constraint sets T =v

p,q , T =t
p,q , T 6=v

p,q , and T 6=t
p,q we maintain a tree which leads to the

corresponding sets for a specific path q. The main advantages are very small memory requirements
and the fact that the first path of a constraint has to be scanned just once. For all constraints
which have to be taken into consideration for this path we have to focus on the second path only.
Additionally, when traversing the tree in order to find Standard Path–Lists we pass these nodes
anyway. No additional search has to be done for the first path.

7 Experiments

Term Sets. For our experiments we used the term sets which were introduced in [McC92]. The
term sets were taken from typical OTTER applications. The sets are paired. There is a set of
positive literals and a set of negative literals in each pair. Unifiable terms are searched in order to
find resolution partners and to detect unit conflicts. The sets EC–pos and EC–neg consist of 500
terms each and are derived from a theorem in equivalential calculus. Two representative mem-
bers of EC–pos and EC–neg are P (e(e(x, e(y, e(z, e(e(u, e(v, z)), e(v, u))))), e(y, x))) and ¬P (e(e(x,
e(e(y, e(z, x)), e(z, y))), e(e(u, e(e(v, e(w, u)), e(w, v))), e(e(v6, e(e(v7, e(v8, v6)), e(v8, v7))),
e(e(v9, e(e(e(b, a), e(e(e(a, e(b, c)), c), v9)), v10)), v10))))). The sets CL–pos and CL–neg have
1000 members and are derived from a theorem in combinatory logic. Two representative members
of CL–pos and CL–neg are g(x, g(g(g(g(g(B, B), y), z), u), v)) = g(g(g(B, x), g(y, z)), g(u, v)) and
g(f(g(g(N, x), y)), g(g(g(N, x), y), f(g(g( N, x), y)))) 6= g(g(g(x, f(g(g(N, x), y))), y), f(g(g(N, x), y))).
Finally, the sets BOOL–pos and BOOL–neg are derived from a theorem in the relational formula-
tion of Boolean algebra and consist of 6000 terms each. Two representative members of BOOL–pos
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Table 6: Memory Requirement [KBytes]

Standard Extended
Indexed Set Path– Path–Indexing

Indexing 1 2 3 4

EC–pos 115 184 281 345 371
EC–neg 639 951 1759 2754 3822
CL–pos 437 570 887 1341 1885
CL–neg 1400 1908 3395 6223 10974
BOOL–pos 576 821 1550 1985 1985
BOOL–neg 1125 1498 2710 4047 5151

Table 7: Filter Properties [Terms Found]

No Standard Extended Perfect
Indexed Set Query Set Filter Path– Path–Indexing Filter

Indexing 1 2 3 4

EC–pos EC–neg 250000 249104 88791 52208 50434 50421 0
EC–neg EC–pos 250000 249104 88791 52208 50434 50421 0
CL–pos CL–neg 1000000 154399 118319 13684 3206 385 0
CL–neg CL–pos 1000000 154399 118319 13684 3206 385 0
BOOL–pos BOOL–neg 36000000 40773 20322 408 0 0 0
BOOL–neg BOOL–pos 36000000 40773 20322 408 0 0 0

and BOOL–neg are Sum(x, p(x, y), p(x, s(x, y))) and ¬Sum(p(c2, n(x)), p(c2, x), c4).

Memory Requirements. In Table 6 we compare the memory requirements of Standard Path–
Indexing and extended Path–Indexing. Extended Path–Indexing occupies the more memory the
larger the NU–depth is. The NU–depth should be selected carefully, as the memory requirements
may drastically increase. In most cases a NU–depth of 1 or 2 is sufficient, as our retrieval times in
Table 8 will show.

Filter Properties. Table 7 gives a survey on how many terms pass the indexing filter. The
column “No Filter” shows how many term pairs would have to be unified without using a filter.
In our examples we created an index for the “Indexed Set” and started a query for each term of
the “Query Set”. Obviously, Standard Path–Indexing is a bad filter for the term sets EC–pos and
EC–neg. The filter properties for CL–pos and CL–neg are average. Standard Path–Indexing is a
very good filter for the term sets BOOL–pos and BOOL–neg. A “Perfect Filter” would not find
any unifiable term pairs and therefore our examples are rather extreme. For all indexing problems
Extended Path–Indexing significantly improves the filter properties. The larger the NU–depth the
better the filter.

Retrieval Times. The experiments were run on a Sun SPARCstation SLC computer with 16
MBytes of RAM. The size of the hash table was limited to 500, the index depth (introduced in
[McC92]) was limited to 15. We give a survey on the retrieval times in Table 8. The times include
the construction of the query trees as well as the time spent for test unifications.

In the EC and CL examples Extended Path–Indexing is faster than Standard Path–Indexing.
Taking the memory requirements into consideration a NU–depth of 1 or 2 should be preferred.
However, as Standard Path–Indexing is already a very good filter for the BOOL examples, the
performance cannot be improved because of the overhead produced by Extended Path–Indexing
(the terms are rather small and therefore the test unifications are easy).
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Table 8: Retrieval Times [Seconds]

No Standard Extended
Indexed Set Query Set Filter Path– Path–Indexing

Indexing 1 2 3 4

EC–pos EC–neg 41.5 67.8 41.6 36.0 38.2 42.1

EC–neg EC–pos 44.7 57.5 34.6 29.0 28.6 28.9

CL–pos CL–neg 107.5 43.5 38.8 11.9 13.7 20.7

CL–neg CL–pos 111.2 46.1 41.4 17.2 19.7 24.3

BOOL–pos BOOL–neg 301.5 22.8 26.3 35.0 39.1 40.2

BOOL–neg BOOL–pos 299.8 5.9 6.6 7.6 8.5 8.9

Although they have no application in theorem proving unifications of the form X–pos X–pos
and X-neg X–neg have also been tested. They produced similar results.

Implementation. Standard and Extended Path–Indexing are implemented in C and are avail-
able via anonymous ftp. They are as well as implementations of discrimination and abstraction
trees part of “A Collection of Indexing Data Structures (ACID)” developed at MPI. In the future
we will try to further improve ACID which is a library for efficient data structures and algorithms
for theorem provers. Our implementations do not depend on term data structures and can very
easily be embedded into other C software. Our Path–Indexing software allows parallel access to
the same index and is able to delete and insert entries into the index when retrieval is interrupted.
For more information send e-mail to acid@mpi-sb.mpg.de.

8 Conclusion

We presented an extention of Standard Path–Indexing which is able to drastically reduce retrieval
time in the cases in which Standard Path–Indexing itself is not a good filter. However, the ad-
vantages of Standard Path–Indexing are preserved. In Extended Path–Indexing indirect clashes
and occur–check failures are detected with the help of extended Path–Lists at the time the ex-
tended query tree is evaluated. Therefore less test unifications have to be performed. The memory
requirements can be reduced by an appropriate choice of the NU–depth.
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