
Get What You Pay For: Providing Performance Isolation in
Virtualized Execution Environments∗

Hannes Payer† Harald Röck† Christoph M. Kirsch

firstname.lastname@cs.uni-salzburg.at
Department of Computer Sciences

University of Salzburg, Austria

1. BACKGROUND
Virtualization allows multiple systems encapsulated in so-

called domains to share completely isolated from each other
a single physical machine. Several companies are already
taking advantage of virtualization technology in order to sell
a certain amount of CPU speed and I/O capacity in terms
of latency and throughput on demand to their customers.
Providers of such a service face the challenge of isolating
the performance of domains from each other. Independent
of the load generated by the domains running on the system
each domain has to get what its customer is paying for, not
more and not less.

Our study is based on the open-source virtual machine
monitor Xen [1]. In the system architecture of Xen, the hy-
pervisor is the lowest layer. On top of the hypervisor run
several domains, which encapsulate complete operating sys-
tem instances. The main tasks of the hypervisor are domain
scheduling, I/O handling, and managing memory. Some of
the domains running on the hypervisor are special domains
which belong to the trusted code base, e.g. a driver domain
where device drivers run. The driver domain is similar to a
network router; domains performing I/O send their requests
from their so-called frontend driver through an event chan-
nel to the backend driver, located in the driver domain. The
backend driver multiplexes all requests onto the actual I/O
device.

Several studies in the past dealt with the performance iso-
lation problem in Xen. In [4] the authors evaluated the ef-
fects of different schedulers in Xen on the I/O performance
of domains running several applications with different I/O
requirements. I/O operations are typically not considered by
the scheduler. However, indirectly the CPU scheduler influ-
ences the I/O performance of the applications running within
a domain. The authors presented several system modifica-
tion which, in many cases, provide better I/O isolation than
the baseline system. Xen patched with these modifications
is our baseline system.

∗Supported by the EU ArtistDesign Network of Excellence
on Embedded Systems Design and the Austrian Science Fund
No. P18913-N15.
†Authors are students.

Figure 1: Virtualization architecture

A domain that performs I/O generates CPU load in the
driver domain. This can have an effect on I/O performance
of other domains, since all domains rely on the driver do-
main to perform I/O. In [3] the authors proposed a mecha-
nism which accounts for load generated in the driver domain
by other domains. They showed that for several workloads
it is possible to isolate domains from each other in terms of
network throughput, but they did not consider latency.

In the following we discuss our proposal which effects
different components on different layers in the Xen system
architecture as depicted in Figure 1. Our goal is to provide
for each domain the performance it requires: CPU speed,
I/O throughput, and I/O latency. Moreover, we propose to
use CPU isolation techniques that offer strict temporal iso-
lation for applications running within a domain resulting in
reduced observable system jitter. The outcome of our study
should also be applicable to other virtual machine monitors
that are based on a similar system architecture like Xen.

2. PROPOSED SOLUTION
Providing performance isolation in virtualized execution

environments requires extensions across the entire system,
including the hypervisor (CPU scheduling), guest kernels
(CPU isolation) and driver domains (I/O scheduling).

2.1 CPU Scheduling
In the Xen hypervisor the unit of scheduling is called a

virtual CPU (vCPU), which is an abstraction of a physical
CPU. The current scheduler in Xen, called credit scheduler,
is tuned for high throughput and good fairness among all ac-

1

tive vCPUs in the system. Unfortunately, it does not provide
low latency or guaranteed CPU shares.

Therefore, we propose a hybrid EDF-credit scheduler that
can schedule a vCPU using either the standard credit sched-
uler (credit-vCPU) or alternatively a CPU-local EDF-based
scheduler (EDF-vCPU). The hybrid EDF-credit scheduler
provides low latency and allows to specify a guaranteed CPU
share for EDF-vCPUs while still achieving high through-
put for credit-vCPUs [2]. We have implemented the hybrid
EDF-credit scheduler in the Xen hypervisor, using a run-
queue for each physical CPU. It applies work stealing and
dynamic migration of vCPUs in order to balance the work-
load across all available physical CPU cores. Furthermore,
we extended the Xen tools to modify the scheduling param-
eters of a vCPU and to switch the vCPU from a credit-vCPU
to an EDF-vCPU and back. Additionally, we implemented
a true global EDF scheduler with a single run queue to eval-
uate the trade-off between global EDF scheduling accuracy
and scheduling overhead.

For a virtualized OS running in a domain, a vCPU appears
as a regular physical CPU core on which applications are
scheduled by the OS scheduler. Therefore, adapting the hy-
pervisor scheduler is not sufficient to provide the requested
performance for an end-user application since the OS ker-
nel introduces additional scheduling jitter. Hence, we plan
to apply CPU isolation extensions (CPUISOL) to the Linux
kernel in order to reduce the jitter and scheduling latencies
introduced by the Linux kernel scheduler. CPUISOL iso-
lates a CPU from the Linux scheduler, interrupts, and work-
queues, while regular user-applications can still run on the
isolated CPU. If the isolated CPU is an EDF-vCPU, we call
it an RT-vCPU since the application running on it is tempo-
rally isolated from all other applications running inside the
domain (intra-domain isolation) as well as from all other do-
mains (inter-domain isolation). Such full temporal isolation
weakens to just inter-domain temporal isolation for domains
that only use EDF-vCPUs but not the CPU isolation feature.

2.2 I/O Scheduling
Domains not only require temporally deterministic exe-

cution of their program code but also temporally determin-
istic handling of their I/O requests. In order to support given
latency and throughput requirements of an I/O request, the
driver domain applies I/O scheduling among all domains
currently connected to a device.

In the driver domain we experimented with a hierarchical
token bucket (HTB) traffic shaping algorithm, which reg-
ulates the packet flow from guest domains to the network
device and evaluated its performance. Depending on the
HTB parameters and the network backend driver configura-
tion (delayed copy and always copy mode) one can trade-off
network traffic throughput and driver domain CPU utiliza-
tion versus network latency jitter. Figure 2 and Figure 3
depict the results of our first experiments. We see the per-
formance of the always copy versus the delayed copy mode

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

p
in

g
 l
a

te
n

c
y
 i
n

 m
s

a
c
h

ie
v
e

d
 t

h
ro

u
g

h
p

u
t

in
 M

B
it
/s

bandwidth limit in KBit/s

ping latency
achieved throughput

Figure 2: Latency and throughput in always copy mode

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

p
in

g
 l
a

te
n

c
y
 i
n

 m
s

a
c
h

ie
v
e

d
 t

h
ro

u
g

h
p

u
t

in
 M

B
it
/s

bandwidth limit in KBit/s

ping latency
achieved throughput

Figure 3: Latency and throughput in delayed copy mode

configuration under different HTB configurations. The lat-
ter one allows higher throughput but has high latency out-
liers due to its delaying policy. We aim for a solution that
provides both high throughput and low latency.

Moreover, we experienced performance degradations on
multi-processor platforms when interrupts of the network
driver and of the network event channels (frontend and back-
end driver) were scheduled on the same core. An IRQ bal-
ancer which is aware of the domains bandwidth specifica-
tions could distribute the interrupts intelligently over the avail-
able CPUs which would optimize overall system performance
and guarantee performance.

3. REFERENCES
[1] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND,

S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT,
I., AND WARFIELD, A. Xen and the art of
virtualization. In Proc. SOSP (2003).

[2] CRACIUNAS, S., KIRSCH, C., PAYER, H., RÖCK, H.,
AND SOKOLOVA, A. Programmable temporal isolation
through variable-bandwidth servers. In Proc. SIES
(2009).

[3] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND
VAHDAT, A. Enforcing performance isolation across
virtual machines in Xen. In Proc. Middleware (2006).

[4] ONGARO, D., COX, A., AND RIXNER, S. Scheduling
I/O in virtual machine monitors. In Proc. VEE (2008).

2

