
I/O Resource Management through
System Call Scheduling∗

Silviu S. Craciunas Christoph M. Kirsch Harald Röck

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

ABSTRACT

A principal challenge in operating system design is control-
ling system throughput and responsiveness while maximiz-
ing resource utilization. Unlike previous attempts in ker-
nel resource management, which often involve non-trivial
changes in kernel subsystems, we focus on the kernel’s edge.
System calls are usually the default mechanism for user pro-
cesses to get access to operating system services. System
calls can therefore be used to control throughput and respon-
siveness and thus also affect resource utilization directly. We
propose a simple, non-intrusive kernel-space mechanism for
explicit, per-process system call scheduling already at kernel
entry in order to control the time and rate at which system
calls are executed, and, as a result, the per-process utiliza-
tion of the involved resources. We have developed a high-
performance Linux 2.6 kernel patch with SMP support that
implements system call scheduling for network- and disk-
related I/O calls with policies that resemble traffic shaping in
network routers. Our experiments show that already simple
and easy-to-use policies provide effective I/O-related pro-
cess isolation with low overhead, and reduce thrashing in
certain overload scenarios. While system call scheduling
may still not be able to outperform resource management
systems that use specifically tuned kernel subsystems, our
experiments indicate that it may sufficiently support rele-
vant soft real-time applications yet using a vastly simpler
and more generic approach.

1. INTRODUCTION

Fast mobile computers and wireless networks are key en-
ablers of many fascinating new computer applications such
as VoIP and video streaming. Even classical business appli-
cations such as online trading have evolved into ever more
powerful software tools. These applications have in com-
mon that they usually not only require throughput-oriented
performance but also timely execution. In other words, ap-
plication software is becoming increasingly real-time. Many

∗Supported by a 2007 IBM Faculty Award, the EU ArtistDesign
Network of Excellence on Embedded Systems Design, and the
Austrian Science Fund No. P18913-N15.

operating systems including Linux, however, have been de-
signed with a focus on best-effort concepts and only in retro-
spect enhanced for better real-time performance. Improve-
ments in real-time performance typically require lower ker-
nel latency and some form of prioritization. The problem of
reducing Linux kernel latency has recently received a lot of
attention, which already resulted in many patches that made
it into the official Linux kernel. For example, the RCU patch
reduces latency by providing lockless read access to shared
data structures [16]. Some patches also improve the effi-
ciency of prioritization by implementing, for example, pri-
ority inheritance. However, managing workload for better
real-time performance also requires associating resources as
different as, for example, networks and disks, with the pro-
cesses that generate the load. In previous, more integrated
attempts such as CKRM [14] the issue has been addressed
by patching multiple kernel subsystems at once, which, how-
ever, results in complex and difficult to maintain code.

In this paper, we propose system call scheduling as a sim-
ple and generic concept to control the amount of workload
generated by user processes before the workload even arises
thus providing administrators with a high degree of control
over how resources are used. A system call scheduler de-
termines explicitly, at kernel entry, when the system call will
actually be executed according to a scheduling algorithm and
user-provided limits. If necessary, the system call’s execu-
tion is delayed by putting the invoking process to sleep. The
main difference to traditional kernel resource management
is that we control process behavior and resource utilization
at the kernel’s edge, which results in easy-to-maintain code
and thus avoids complex kernel-wide modifications.

In principle, system call scheduling may be applied to any
system call. As an example application, we have imple-
mented system call scheduling for network and disk calls as
a Linux 2.6 kernel patch [4]. Other calls may also be sched-
uled explicitly, which is, however, future work. As schedul-
ing algorithm for network and disk calls, we use a technique
that we call process shaping, which resembles traffic shap-
ing in network routers but applied to system calls. Process
shaping enforces bandwidth limits on system calls by evenly
spreading out system call execution on the timeline. Our

implementation supports per-process as well as per-thread
limits on any number of network and disk devices. For sys-
tem calls accessing devices with potentially large differences
in gross traffic and net traffic (which actually comes from
the device) such as most disk drives with caches, we have
also implemented so-called resource shaping, which limits
the bandwidth of system calls only when the actual device
(and not the cache) is exercised. Thus a process that log-
ically reads from disk but actually receives data from the
disk cache may run at full speed when using resource shap-
ing. In contrast, process shaping strictly enforces all limits
independently of any cache effects.

Similar to traffic shaping of network data streams, process
shaping considers processes (and optionally threads) com-
pletely independently of each other. Given a process with
bandwidth limits on system calls, process shaping enforces
those limits by merely looking at a system-wide real-time
clock but not by considering any other processes. Never-
theless, when running multiple, independently shaped pro-
cesses whose summed-up limits are less or equal than the
capacity of the involved device, there may be fewer races
for device access resulting in less thrashing than without
any process shaping. In other words, process shaping just
like traffic shaping rests on a probabilistic form of coor-
dination rather than explicit coordination, with two impor-
tant implications: multicore and multiprocessor scalability
of shaping processes that do not collectively use a single
bandwidth limit is only limited (in our implementation and
not just in theory) by the scalability of the underlying ker-
nel architecture, and process shaping may immediately ben-
efit from improvements in kernel latency and I/O subsystem
performance. Process shaping is therefore a technology that
is complementary to more isolated I/O scheduling in kernel
subsystems.

In our experiments, we demonstrate on a dual-core, dual-
processor server machine with two Gigabit Ethernet devices
and a single disk: (1) low overhead of system call schedul-
ing in micro benchmarks, (2) effective control of network
throughput with process shaping enabled in the network calls
of a network-bound web server and a partially disk-bound
web server, (3) limited control of separate read/write disk
throughput and effective control of separate read/read disk
throughput with resource shaping enabled in the disk calls
of two disk-bound processes, and (4) effective, indirect con-
trol of the soft-real-time performance of a video-streaming
server in the presence of either several disk-bound processes
and alternatively a network-bound web server and a partially
disk-bound web server with process and resource shaping
enabled in their network and disk calls, respectively.

The web servers’ workload in (4) is specifically designed
to show that only shaping the per-process combination of
network- and disk-related I/O enables flawless video stream-
ing in a difficult overload scenario. However, we feel that
even on purely network- or disk-bound workloads (for which
one could also use separate network and disk traffic shapers)
process and resource shaping have merit because of their

easy-to-maintain implementation and simple usage. Our ker-
nel patch [4] consists of around 2000 lines of code compared
to, for example, the much larger CKRM system.

The contributions of this paper are: (1) the idea of system
call scheduling, (2) the idea of using traffic shaping tech-
nology in network- and disk-related system call scheduling
(process and resource shaping), (3) a Linux 2.6 kernel patch
as well as a user-space monitoring tool [4], and (4) experi-
ments with our implementation applied to unmodified state-
of-the-art web and streaming servers on a dualcore, dualpro-
cessor server machine.

In Section 2, we describe the kernel-level mechanisms and
implementations of system call scheduling, and process and
resource shaping. Section 3 briefly describes the user inter-
face of the kernel patch and an htop-based monitoring tool.
Related work is discussed in Section 4 and experiments are
presented in Section 5. We present future work in Section 6
and conclude the paper in Section 7.

2. SYSTEM CALL SCHEDULING

In this section, we describe the features of our patch and
its underlying scheduler concept as well as its kernel-level
data structure extensions and scheduler implementation.

2.1 Features

Our patch supports shaping and limiting network and
disk traffic of groups of processes and threads in so-called
classes. Each class is assigned bandwidth limits on network
and disk devices, which are enforced by delaying the exe-
cution of network- and disk-related system calls. When a
process invokes such a system call and the limits of its class
are exceeded, the process is put to sleep for a certain amount
of time depending on the bandwidth limits of its class.

All classes are disjoint, i.e., a process is a member of at
most one class. If a process is not a member of any class, it
is called unmanaged and thus not controlled by our mecha-
nism. Currently, the user-space API of our implementation
does not allow an unmanaged process to join an existing
class. However, by design of the kernel patch, this feature
may be made available in a future version. In order to be-
come managed, a process can only generate a new class of
which it will be the only member. An existing class can then
be extended by a member of the class spawning a new pro-
cess. By default, a new child process of a managed process
joins the class of its parent. If requested by the parent, the
child process may also create and join a new class. In case
a new class is generated during a fork, the new class inher-
its the properties of its parent class. The properties of a class
include bandwidth limits and its currently unused bandwidth
for each network and disk device in the system. Each class
also has a unique identifier, which is not inherited. An ex-
ample of a class with several members is a multi-threaded
web server. All threads of the server are in the same class,
and limits are enforced process-wide. Examples of a class
with different processes are applications that use multiple
processes such as version 1 of the Apache web server. To

enforce bandwidth limits on a web server with multiple pro-
cesses all of its processes should be a member of the same
class.

A class may also be associated with the following two
modes of operation. For disk-related system calls, band-
width limits may be enforced on the actual amount of data
transferred from the disk, i.e., ignoring any data that comes
from the page cache (RESOURCE mode). If this mode is not
used, our mechanism accounts for all read and written data,
regardless of how much data is actually read from the page
cache. The second mode distinguishes read and write opera-
tions (READ-WRITE mode). In this mode, different limits for
read and write operations may be assigned to the resources
of a class and enforced independently.

2.2 Scheduler Concept

We adopted the well-known token bucket algorithm,
which is extensively used in the context of network traffic
shaping [17]. The algorithm controls the amount of data
processed in a given amount of time, and thus deals with is-
sues of enforcing policies, congestion management, quality
of service (QoS), and fairness.

The token bucket algorithm allows traffic to go through
only if there are virtual tokens available. Given the presence
or absence of tokens in a virtual token bucket, where tokens
usually represent units of bytes, the algorithm allows data to
be transferred, or introduces a delay, respectively. Tokens
are generated at a fixed rate and placed in the token bucket,
which has a limited size. If a token arrives when the bucket
is full, the token is discarded.

The effect of the token bucket algorithm is similar to the
widely used leaky bucket algorithm in that it shapes bursty
traffic into a steady stream, except that it also allows for in-
frequent bursts to go through at full speed. We choose the
token bucket algorithm instead of the leaky bucket algorithm
because it is simpler and also more efficient to implement. In
contrast to the leaky bucket algorithm, the token bucket al-
gorithm does not need any timers or work queues, a simple
token counter is sufficient.

Our patch applies the token bucket algorithm to schedule
the execution of network- and disk-related system calls. If
the token bucket corresponding to the involved resource con-
tains the required number of tokens, data is transferred, the
system call is completed, and the number of consumed to-
kens is subtracted from the bucket. If the bucket does not
contain enough tokens, the process is put to sleep for the
needed amount of time, which is calculated based on the
rate at which tokens are generated and the currently avail-
able number of tokens.

2.3 Process Descriptor Extensions

In this section, we describe the new data structures intro-
duced by our patch as well as our modifications to exist-
ing kernel data structures. We have implemented the patch
against the Linux 2.6.20 kernel. The patch currently sup-
ports SMP systems of two architectures, namely i386 and

rate
limit

count

rate
limit
count

rate
limit
count

rate
limit

count

bucket 2

bucket 1

buckets

buckets

buckets

resource 0

resource 1

resource 0

resource 1

bucket 0

bucket 3
process 2

bucket table 1

bucket table 0

process 0

process 1

Figure 1: Processes and bucket tables

x86_64. Both versions are almost equivalent and differ only
in the code modifications of the kernel’s exception handler
for system calls.

A class is represented by a table of token buckets. A pro-
cess is a member of a class if its task_struct contains a
pointer to the bucket table of the class. In addition, we added
a flag to the thread_info structure called SHAPED, which
indicates whether a process is managed or unmanaged.

Similar to a file descriptor table, which is shared among
the threads of a process, all processes of a class use the same
bucket table. For instance, in Figure 1, process 0 and process
1 are in the same class because they share a common bucket
table. Process 2 does not share its bucket table with any other
process and therefore belongs to another class. In our imple-
mentation, it is not necessary to maintain more information
about the relationship between classes and processes than a
reference to a shared bucket table.

For each resource in the system, the bucket table main-
tains a token bucket. In Figure 1, bucket table 0 uses buckets
0 and 1, and bucket table 1 uses buckets 2 and 3. A token
bucket essentially consists of three elements:

• rate: the number of tokens to generate per second.

• limit: the maximum number of tokens (bucket size).

• count: the number of tokens currently available.

In the actual implementation, however, we need some ad-
ditional fields to store a lock, two time stamps, and a ref-
erence counter. The lock is required to synchronize the ac-
cess of multiple processes to the same bucket (lock field).
We use a reader/writer lock, but in principle, may also be
able to use the RCU mechanism [16]. The two time stamps
keep track of when new tokens were last added to the bucket
(last_update field), and when new tokens are expected to
arrive (next_update field). See the next section for details
of how these time stamps are used. To ensure correct deallo-
cation of buckets (and bucket tables) we use reference coun-
ters (refcount field).

2.4 Scheduler Implementation

In this section, we present the implementation details of
our system call scheduling mechanism. We first describe the
hook code at kernel entry for scheduling system calls and
then discuss the entry and exit routines of the scheduling
mechanism, which are invoked before and after the execu-
tion of each relevant system call handler. The entry routine
determines if and how long a process is to be delayed and the
number of tokens that need to be generated. The exit routine
consumes tokens for the actual amount of data transferred.

Our patch introduces two hooks into the kernel’s excep-
tion handler for system calls. The first hook is installed right
before the exception handler invokes the adequate system
call handler. The hook code checks the new SHAPED flag in
the thread_info structure. If the flag is not set, the process
continues regularly. If the flag is set, the process enters a
filter routine, which first saves the system call arguments on
the stack for later examination and state regeneration. Then,
the filter determines whether this system call is marked for
scheduling by looking at the system call number. If the sys-
tem call is not marked, the filter returns immediately. Oth-
erwise, the filter proceeds to the entry routine of the system
call scheduler. When the entry routine returns to the hook
code, the system call arguments are restored from the stack
and the system call handler is invoked.

The second hook is installed right after the invocation of
the system call handler, and works similarly to the first hook.
In contrast to the first hook, however, the second hook stores
the return value of the system call handler on the stack and
calls the exit routine of the system call scheduler.

The entry routine first searches for the resource that the
system call uses (network or disk) by examining the mode
field of the provided file descriptor’s inode using S_ISSOCK.
If S_ISSOCK returns true, the file descriptor is a socket and
the correct network device is found by calling ip_dev_find
using the local address of the socket. If S_ISSOCK returns
false, the file descriptor refers to a regular file on disk. In
both cases, the identifier of the device is cached in a new
field of struct file to speed up the lookup operation for
future requests. Assuming mode fields and local addresses
do not change, no extra locking during the lookup opera-
tion is required (we increment the reference counter of the
struct file in order to prevent its deallocation).

After finding the correct device the associated token
bucket is examined to see if tokens are available. We de-
fine a token to be the equivalent of one page in size, i.e., for
one token a process can read or write one page. Moreover,
to determine whether the process is allowed to continue, we
have to check not only the token count but also if any of the
other processes in the same class are already waiting for to-
kens. For this purpose, the next_update field in the token
bucket structure holds the time instant when the last process
waiting for tokens continues to execute. If next_update is
in the past, no processes are waiting. If it is in the future, at
least one process of this class is already waiting for tokens.

In case no processes are already waiting, the token count
is checked and if positive, the current process returns from
the entry function to the exception handler. Note that the
process continues as long as some tokens are available,
which may result in a negative token count if the process’
I/O operation turns out to consume more tokens than the cur-
rent token count. In order to compensate for a negative to-
ken count, the next process of this class accessing the same
resource is delayed for the time required to generate the neg-
ative number of tokens and the tokens needed for its current
I/O operation. Avoiding negative token counts is possible
but introduces additional overhead and usually prevents the
actual throughput from reaching the bandwidth limits.

In case processes are already waiting for tokens or the to-
ken count is zero or negative, the current process is delayed.
If no processes are already waiting and the token count is
zero or negative, the current process is the first process of
this class that runs out of tokens. From now on all pro-
cesses of this class requesting tokens from this bucket are
delayed until tokens are available again. The first process
sets next_update to the current time plus the time required
to generate enough tokens for its I/O operation to complete.
Later processes in the same class that access the same re-
source before the time instant in next_update, increment
next_update by the time required to generate enough to-
kens for their respective I/O operations to complete (un-
less there are tokens available again). The required time is
calculated using the system call argument that specifies the
amount of data that the system call attempts to transfer di-
vided by the token rate of the bucket. Processes are then de-
layed until the time instant in next_update. In other words,
a FIFO-style waiting queue is implicitly built by using cu-
mulative waiting times but without explicitly using queues.

To avoid excessive sleep times, we enforce an upper limit
on the sleep time by scaling down system calls involving
large amounts of data, whenever possible. Note that at the
time instant when a system call is invoked, we cannot de-
termine the actual amount of data it transfers, only the de-
sired amount, since it is possible that a process transfers
less data than it originally asked for in the system call ar-
guments. Therefore, our cumulative-waiting-times method
may be slightly inaccurate. However, our experiments show
that this effect is negligible.

When a process wakes up, tokens are added to the bucket
according to the given rate and the elapsed time since the
time specified in last_update, which is then set to the cur-
rent time before giving back control to the exception handler.

When the system call handler returns, the second hook in
the exception handler invokes the exit routine, which first
calculates the number of tokens to consume based on the ac-
tual amount of transferred data. It makes sure that at least
one token is consumed, even if the transferred data was less
than one page in size. This guarantees that a process can-
not accumulate transferred data without consuming tokens.
Thereafter, the calculated amount of tokens is subtracted
from the token count of the involved resource.

Figure 2: The user-space monitor htap

3. USER INTERFACE

In order to control and monitor system call scheduling
from user space, we have implemented a new system call to
activate and deactivate shaping of a process. The new sys-
tem call shape accepts as input parameters a process identi-
fier pid, an enable/disable flag on_off, and a mode bitmap,
which can be zero for default behavior, or a combination of
the RESOURCE and READ-WRITE modes of operation. An ad-
ditional flag in the bitmap indicates if child processes are put
into a new class, or else join the parent’s class. Scheduling
parameters and statistics are available to user-space applica-
tions via new entries in the proc file system.

Based on htop [13], we have also implemented a mon-
itor application called htap, which controls our scheduling
mechanism from user space through the proc file system.
Essentially, htap provides additional functionality that, be-
sides the standard process-specific data and statistics, dis-
plays also shaping-related information such as network- and
disk-related throughput as well as disk cache throughput.
Figure 2 shows a screen shot of htap as our mechanism is
managing two different Apache web servers. Both standard
and super users can use htap to monitor the system. A super
user may also use htap to activate shaping of a process, set
modes, and change the token rate and bucket size, and even
the current token count for each process and resource.

4. RELATED WORK

In this section, we relate our general idea of system call
scheduling and, in particular, the idea of process shaping to
previous work. System call scheduling is inspired by the
notion of threading by appointment (TAP) [7]. Instead of
invoking a system call at any time, threading by appointment
requires a thread to make an appointment with a scheduler
for each system call the thread would like to invoke. The
execution of a system call is then delayed until the time of
that appointment. The original TAP implementation suffered
from poor performance [15] but has since then evolved into
the kernel patch [4] described here.

We relate the idea of process shaping to previous work
on three levels of abstraction. Besides using system call
scheduling, any I/O traffic caused by system calls can be
scheduled, in principle at least, (1) directly by an I/O sub-
system on the level of the traffic itself, or (2) indirectly by
a process scheduler on the level of the processes that gen-
erate the traffic, or (3) explicitly by an application-specific
scheduler on the level of the application that generates the
traffic.

The Linux netfilter system (similar to any traffic shaping
network router) is an example of the first category restricted
to network I/O. It has been part of the Linux kernel since
version 2.3, and replaced its predecessors ipchains of Linux
2.2 and ipfwadm of Linux 2.0 [18]. The netfilter system is
very powerful and can be used to implement firewalls, net-
work translation, transparent proxies, and to limit network
traffic.

There also exist I/O schedulers for block devices that fall
into the same category. In [20], a hierarchy of token bucket
filters is used on top of a standard disk I/O scheduler to re-
serve some disk bandwidth for soft-real-time applications.
However, the approach only applies to disk I/O and has only
been evaluated using synthetic workloads.

A more general example of the first category is the "Class-
based Linux Kernel Resource Management" (CKRM) [14].
CKRM is more general than our approach as it also provides
control over other resources, besides I/O resources, such as
CPU time, memory pages, and other virtual resources. How-
ever, our approach performs I/O resource management at
kernel entry through system call scheduling whereas CKRM
directly manages I/O resources in their respective kernel
subsystems. CKRM has not been integrated in the official
Linux kernel because it is considered too intrusive and hard
to maintain. The problem is that CKRM touches several
different subsystems and introduces callback hooks, which
have to be maintained by different developers. In contrast,
our solution introduces only one hook into the general sys-
tem call handler. The kernel subsystems, e.g., disk scheduler
and network layer, are not affected.

In general, the advantage of approaches in the first cat-
egory is that I/O traffic is scheduled at a finer granularity,
e.g., network packets rather than system calls. With sys-
tem call scheduling this level of granularity is not achieved.
Additionally, enforcing bandwidth limits in the respective
subsystems may be done event-based using work queues,
and hence, may reduce the number of context switches and
cache flushes. The disadvantage of approaches in the first
category, however, is code complexity and the missing rela-
tionship among I/O requests across different I/O subsystems,
and thus the lack of a global view of the flow of traffic, e.g.,
from disk to network devices and back.

A traditional CPU scheduler that uses process priorities,
a fixed time quantum, or real-time criteria such as dead-
lines is an example of the second category. Such sched-
ulers can, however, only indirectly control access to shared
resources other than the CPU, e.g., by changing process pri-

orities. Nevertheless, system call scheduling is closest re-
lated to the second category but uses, in addition to a CPU
scheduler, an explicit mechanism, i.e., the system call sched-
uler, to control the access to I/O resources such as disk
and network devices. While the mechanisms of our sys-
tem call scheduler and of traditional I/O schedulers, e.g.,
in the Linux kernel, are similar, their scheduling policies
and thus goals are different. A traditional I/O scheduler is
resource- and performance-oriented, i.e., optimizes individ-
ual resource utilization, whereas the system call scheduler
is application-oriented, i.e., optimizes higher-level criteria
such as system composability. For example, since a web
server application may perform sufficiently fast without per-
manent access to shared resources such as a network device,
the system call scheduler may even have the network de-
vice regularly idle although the web server has requested ac-
cess to the device. The network device may then be used
by other applications in a more controlled fashion. How-
ever, when the system call scheduler decides to grant access
to the network device it should of course be utilized in the
most efficient way. The concept of our system call scheduler
is therefore complementary to the concept of a traditional
resource- and performance-oriented I/O scheduler.

Application software such as the Apache web server,
which implements throttling [2], is an example of the third
category. Another example of the third category is con-
nection scheduling [5], which prioritizes network traffic per
connection but does not implement a mechanism to limit
bandwidth usage. In principle, application software may
also implement whatever policy our mechanism supports.
The difference is that our mechanism makes these features
available to all applications. Moreover, the super user can
enforce the limits on single processes or groups of processes
without any support by the applications.

Resource containers [1] are an approach that uses mech-
anisms from all three categories and are in principle a more
general version of our token buckets. They allow account-
ing process activities for their resource usage on the level
of I/O traffic (first category) but also incorporate CPU cy-
cles making it necessary to assign and implement schedul-
ing algorithms according to given container policies (sec-
ond category). Furthermore, they require cooperation from
the applications since processes have to determine which re-
source containers to use (third category). Our approach does
not require cooperation but, so far, manual configuration of
bandwidth limits. However, resource containers like CKRM
entail intrusive modifications of the CPU scheduler imple-
mentation and the I/O subsystems.

Resource management and QoS support for new rather
than existing operating systems has been a wide area with
extensive research. The Scout project [11] provides QoS
through I/O-driven scheduling by introducing path abstrac-
tions that represent the flow of data from an I/O source to
an I/O sink. This project is centered more on achieving
high and predictable performance of network connections
whereas we focus on system-wide I/O traffic. The Neme-

sis project [8] is based on the idea of multiplexing shared
resources between applications while keeping the policy at
the user level to allow for more control. The Eclipse oper-
ating system [3] introduces a new abstraction called reser-
vation domains, which provide resource QoS in overload
scenarios. Nemesis and Eclipse are similar, both provid-
ing predictable performance via allocation of CPU and disk
I/O to domains. However, Nemesis is based upon a radi-
cally different OS structure, for which reimplementation of
most applications and device drivers is needed. Eclipse and
Nemesis are comparable to our approach in goal but are both
operating systems written from scratch whereas we offer a
non-intrusive patch to an existing and widely used operating
system, which does not require modifications of application
programs and device drivers.

5. EXPERIMENTS

We demonstrate on a dual-core, dual-processor server ma-
chine (Section 5.1) that system call scheduling incurs low
overhead (Section 5.2), process shaping enables effective
control of network throughput (Section 5.3), and resource
shaping enables effective control of disk throughput (Sec-
tion 5.4) and the soft-real-time performance of a video-
streaming server in difficult overload scenarios (Section 5.5).

5.1 Setup

All experiments were run on a server machine with two
2GHz dualcore AMD64 CPUs, 4GB of memory, two Gi-
gabit Ethernet cards, and an 160GB SATA disk, running a
Linux 2.6.20 kernel with our patch applied. Only one of the
two Ethernet cards was used in the experiments.

In order to generate network load, we connected two
client machines via Gigabit Ethernet to the server machine
and emulated web server clients using httperf [12] and auto-
bench [10]. The client hardware was the same as the server
hardware. The client software, however, ran on a standard
Linux 2.6.17 kernel, which was the default stable kernel ver-
sion already installed on these machines. In total, we had
two httperf processes per client machine generate load to
avoid any bottlenecks on the clients.

In the experiments that involved network call shaping,
we ran two unmodified Apache servers version 1.3.34
(Apache1) and 2.0.55 (Apache2). Apache1 uses one process
per connection whereas Apache2 uses one thread per con-
nection within a single, multi-threaded process. Our kernel
patch supports both models.

In the soft real-time experiments, we used the streaming
software VLC [19], which supports various audio and video
formats. VLC implements both a multimedia-streaming
server and a client player. On the server machine, the VLC
server was configured to stream a DVD image stored on the
local disk to a remote laptop, which ran a VLC client to play
the stream. The VLC server needed between 800KB/s and
1MB/s disk throughput to read the DVD image in real time.

shaping disabled shaping enabled
best 214 ticks 107ns 577 ticks 288ns

average 286 ticks 143ns 689 ticks 344ns
worst 4526 ticks 2263ns 5520 ticks 2760ns

Table 1: Overhead of system call scheduling

5.2 Overhead Experiment

Summary: The overhead of system call scheduling in a sin-
gle read call is about 400 clock ticks on the 2GHz server ma-
chine (Table 1). The results were measured with the rdtsc
(read time stamp counter) instruction.
Details: Table 1 depicts the best, average, and worst dura-
tion of a single read call during runs with shaping enabled
and disabled. This benchmark reads 100,000 times the first
page of the same file. The read call goes through the com-
plete scheduling mechanism, i.e., determining the device,
checking for available tokens, and consuming tokens. The
bandwidth limit in this benchmark was set higher than the
maximum bandwidth of the device to ensure that the pro-
cess does not have to wait for tokens. The benchmark shows
that the overhead of the scheduling mechanism is about 150
to 200 nanoseconds on the 2GHz server machine.

5.3 Network Experiment

Summary: We demonstrate effective control of network
throughput with process shaping enabled in the network
calls of a network-bound web server and a partially disk-
bound web server.
Details: In this experiment, Apache1 and Apache2 ran on
the server machine and were hit by two different request pat-
terns. Apache1 served clients that requested twelve different
1GB files. Half of these files were serviced from the cache
and the other half from the disk. At the same time, Apache2
served 1400 requests per second for a single cached 94KB
file. Figure 3 depicts the throughput of the two web servers
running concurrently on the server machine.

 0

 20

 40

 60

 80

 100

 120

off 110 100 90 80 70 65 63 60

T
h
ro

u
g
h
p
u
t
in

 M
B

/s

Bandwidth limit in MB/s

Apache1 Apache2 combined

Figure 3: Network call shaping

 10

 15

 20

 25

 30

 35

 40

 45

off 20 19 18 17 16 15 14 13 12 11

T
h
ro

u
g
h
p
u
t
in

 M
B

/s

Bandwidth limit in MB/s

read write combined

Figure 4: read/write disk call shaping

When shaping is not activated, Apache2 dominates the
network device and starves the Apache1 server. Gradually
reducing the bandwidth limit of Apache2 gives Apache1
a bigger fraction of the network device’s bandwidth. Its
throughput increases inversely to the throughput of the
Apache2 server. The combined throughput, however, stays
at the same level of around 115MB/s while the individ-
ual throughput of both servers converges to around 57MB/s
each, i.e., each server gets about 50% of the available band-
width. Similar to this experiment, bandwidth limits may be
enforced on larger numbers of processes giving each a dif-
ferent percentage of the network device’s bandwidth.

5.4 Disk Experiments

Summary: We demonstrate in two experiments limited con-
trol of separate read/write disk throughput and effective con-
trol of read/read disk throughput with resource shaping en-
abled in the disk calls of two disk-bound processes.
Details: In both experiments, we ran two processes on the
server machine accessing the local disk. In the read/write
experiment, one of the processes wrote to the disk while the
other process read from the disk. In the read/read experiment
both processes read a different file from disk. Both experi-
ments were repeated three times using different files. The
resulting average throughput is depicted in Figures 4 and 5.

When one process writes to the disk and its bandwidth
limit is decreased, the reading process’ throughput increases
only slightly and, as a result, the combined throughput
decreases slowly (Figure 4). If, however, both processes
read from the disk and the first process’ bandwidth limit
is decreased, the combined throughput is maintained since
the second process’ throughput increases accordingly (Fig-
ure 5). These experiments indicate that read/read disk call
scheduling is more effective across a larger range of band-
width limits than read/write disk call scheduling. The loss of
bandwidth in the read/write case may be an artifact of the un-
derlying disk scheduler in Linux, which trades-off through-
put for lower latency and better fairness when read and write
operations run concurrently.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

off 20 19 18 17 16 15 14 13 12 11 10

T
h
ro

u
g
h
p
u
t
in

 M
B

/s

Bandwidth limit in MB/s

read read combined

Figure 5: read/read disk call shaping

5.5 Streaming Experiments

We demonstrate in two experiments effective, indi-
rect control of the soft-real-time performance of a video-
streaming server in the presence of either several disk-bound
processes and alternatively a network-bound web server and
a partially disk-bound web server with process and resource
shaping enabled in their network and disk calls, respectively.
The video-streaming server was a VLC server streaming the
content of a DVD image stored on a local disk over a net-
work connection to a VLC client.

In the first experiment, we ran, in addition to the VLC
server, several cat processes on the server machine to gen-
erate additional disk load with resource shaping enabled in
the disk calls of the cat processes. Note that we control
VLC’s streaming performance indirectly by limiting the I/O
bandwidth of the competing processes. In other words, to re-
serve bandwidth for the VLC server, we set bandwidth limits
on the concurrently running applications that generate load
on the resources shared with the VLC server.

The purpose of the first experiment is to compare VLC’s
streaming performance when using either the anticipatory
disk I/O scheduler [6, 9] or the complete fair queueing
(CFQ) disk I/O scheduler [9]. Operating systems use disk
I/O schedulers to improve the throughput of block devices
by minimizing the number of seeks. In the Linux kernel, ev-
ery block device maintains a queue of requests that represent
pending I/O operations. The request queues are managed by
I/O schedulers that can be changed at runtime. The simplest
I/O scheduler is the deadline scheduler, which assigns each
request an expiration time in addition to merging and sort-
ing the requests by physical location. Requests are serviced
according to their occurrences in the request queue, unless a
request expires in which case the request is serviced as soon
as possible [9]. The anticipatory scheduler, which is based
on the deadline scheduler, introduces a short delay to wait for
additional requests of the process that issued the last request
before servicing the next queued request. The assumption is
that requests from the same process are sequential most of

the time. The benefit of sequential access plus the waiting
time outweigh the seek time of the disk. The CFQ sched-
uler is another disk I/O scheduler in Linux, which uses one
queue per process in which requests are inserted on a per-
process basis. Within such a queue, requests are merged and
sorted. The queues are then serviced in a round-robin man-
ner to guarantee fairness among all processes [9]. Addition-
ally, the latest CFQ scheduler applies similar waiting times
as the anticipatory scheduler. Therefore, CFQ’s performance
is comparable to the anticipatory scheduler’s performance.

In the second experiment, we ran, in addition to the VLC
server, Apache1 and Apache2 on the server machine to gen-
erate additional network and disk load with process and re-
source shaping enabled in their network and disk calls, re-
spectively. The purpose of this experiment is to demon-
strate that process and resource shaping can be used to share
network and disk bandwidth effectively among response-
oriented streaming and throughput-oriented web applica-
tions. The key challenge is to control network and disk traf-
fic simultaneously.

In addition to the usual throughput measurements, we
quantify VLC’s streaming performance using three sub-
jective categories: (1) ’poor quality’ corresponds to poor
streaming performance on the client such as the video
freezing up or no audio transmission for several seconds,
(2) ’good quality’ refers to better but not perfect perfor-
mance such as infrequent error fragments in the picture or
noise in the audio signal, and (3) ’perfect quality’ is achieved
when no errors during video playback are observed.

5.5.1 Disk Call Scheduling

Summary: We compare VLC’s streaming performance
when using the anticipatory and the CFQ disk I/O schedulers
with resource shaping enabled in the disk calls of competing
cat processes. With the anticipatory scheduler the perfor-
mance is slightly better than with CFQ.
Details: In this experiment, we ran, in addition to a VLC
server, twelve cat processes on the server machine reading
different 1GB files concurrently with resource shaping en-
abled in the disk calls of the cat processes. Table 2 summa-
rizes the results.

Anticipatory CFQ
Bandwidth Network Network

limit thrghput VLC thrghput VLC
in MB/s in MB/s quality in MB/s quality

off 45.2 poor 45.5 poor
25 23.3 poor 23.3 poor
24 22.3 poor 22.3 poor
23 21.5 poor 21.5 poor
22 20.4 good 20.3 good
21 19.5 good 19.2 good
20 18.6 perfect 18.6 good

Table 2: Disk call shaping

 0

 20

 40

 60

 80

 100

 120

off
off
off

100
off
off

90
off
off

80
off
off

70
off
off

70
50
off

70
50
25

70
50
24

70
50
23

70
50
22

70
50
21

70
50
20

T
h

ro
u

g
h

p
u

t
in

 M
B

/s

Bandwidth limits in MB/s

Apache2 ntw.
Apache1 ntw.
Apache1 disk

httperf net Apache1 disk combined net

Figure 6: Disk and network call shaping

With shaping disabled, the cat processes achieve a
throughput of 45.2MB/s independently of which I/O sched-
uler is used. The quality of VLC’s streaming performance,
however, is poor and even results in crashes in the client.
With shaping enabled, gradually decreasing the total disk
bandwidth limit of the cat processes from 25MB/s down
to 23MB/s effectively reduces their disk throughput but does
not improve VLC’s streaming performance. Only at 22MB/s
the performance improves subjectively to good quality, still
with some minor imperfections such as noise in the audio
stream or small delays in the video stream. The anticipatory
scheduler improves VLC’s streaming performance to perfect
quality with a total disk bandwidth limit set to 20MB/s. With
the CFQ scheduler, the performance does not reach perfect
quality because of the nature of the CFQ scheduling strategy,
which maintains fairness across all processes at the expense
of the VLC server’s timeliness.

5.5.2 Disk and Network Call Scheduling

Summary: We demonstrate that process and resource shap-
ing can be used to share network and disk bandwidth effec-
tively among a VLC server, a network-bound web server,
and a partially disk-bound web server in a difficult overload
scenario.
Details: In this experiment, we ran, in addition to a VLC
server, Apache1 and Apache2 on the server machine to gen-
erate additional network and disk load with process and re-
source shaping enabled in their network and disk calls, re-
spectively. Four httperf clients of the Apache2 server gen-
erated additional network load by creating a total of 700 con-
nections per second and two requests per connection for a
single cached 94KB file. Additional disk load was gener-
ated through eighteen wget clients of the Apache1 server
creating two-third actual disk load and one-third disk cache
load on the server. The traffic coming from the disk (and
not the cache) in the Apache1 server was controlled using
resource rather than process shaping. The results are shown
in Figure 6 with the exact numbers listed in Table 3.

Bandwidth limits in MB/s Results
httperf wget

Apache2 Apache1 thrghput thrghput VLC
network network disk in MB/s in MB/s quality

off off off 104 2.5 poor
100 off off 92 19 poor
90 off off 83 27 poor
80 off off 74 33 poor
70 off off 63 46 poor
70 50 off 63 45 poor
70 50 25 63 34 poor
70 50 24 63 32 poor
70 50 23 63 31 good
70 50 22 63 30 good
70 50 21 63 28 good
70 50 20 63 27 perfect

Table 3: Disk and network call shaping

Figure 6 shows the httperf net throughput, the Apache1
disk throughput, and the combined httperf and wget net
throughput. The two horizontal lines are subjectively ob-
served disk and network I/O thresholds of 20MB/s and
90MB/s, respectively, at which the VLC server still func-
tions properly. When both the network and the disk through-
put approach the respective thresholds VLC’s streaming per-
formance improves to good quality. Whenever the band-
width limits bring the total disk and network throughput
strictly below these thresholds the quality is perfect. Note
that the total network throughput increases when our shaping
mechanism is activated. In Table 3, the first three columns
list the bandwidth limits of Apache1 and Apache2. The
last three columns show the resulting httperf and wget net
throughput and the quality of VLC’s streaming performance.
The Apache1 disk throughput is not shown in the table.

With shaping disabled, the quality of VLC’s streaming
performance is poor. Furthermore, the wget clients are
starved by the httperf clients to an average throughput of
2.5MB/s resulting in a suboptimal combined net through-
put of 106.5MB/s measured on the clients. With shaping
enabled, gradually decreasing the network bandwidth limit
of the Apache2 server, which serves the httperf clients,
results in a decreasing httperf net throughput and an in-
creasing wget net throughput with a slightly better combined
net throughput of up to 111MB/s. However, VLC’s stream-
ing performance does not improve. Note that the increasing
wget net throughput results in an increasing disk load on
the server caused by Apache1. Setting the network band-
width limit of Apache1 to 50MB/s and gradually decreas-
ing its disk bandwidth limit results in decreasing wget net
throughput and, as a consequence, decreasing disk load on
the server. With a disk bandwidth limit of 23MB/s, VLC’s
streaming performance improves to good quality. Further
reducing the limit to 20MB/s results in perfect quality and a
combined httperf and wget net throughput of 90MB/s.

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 0 30 60 90 120 150 180 210 240 270 300

T
h

ro
u

g
h

p
u

t
in

 M
B

/s

Real time in seconds

Throughput in MB/s
Maximum disk throughput

Perfect quality threshold

Figure 7: Automatic disk call shaping

6. FUTURE WORK

Our current implementation requires manual configura-
tion of key parameters such as the maximum disk and net-
work bandwidth allocated to a given process. We plan to ex-
tend our monitor tool to determine such parameters dynam-
ically and automatically for soft real-time applications such
as video streaming. We have already implemented an exper-
imental auto-shaping extension, which detects and handles
certain overload scenarios. So far, we have only applied such
auto-shaping in disk-bound scenarios, similar to the experi-
ments in 5.5.1, but in principle network-bound scenarios can
also be handled.

Preliminary results with VLC show that the auto-shaping
extension can automatically determine disk bandwidth lim-
its for optimal streaming quality of a disk-bound VLC client
running on the same machine as twelve other cat pro-
cesses generating additional disk load (Figure 7). After 160
seconds into the experiment, the automatically determined
bandwidth limit oscillates slightly below the value where
both the video quality is optimal and the disk throughput of
the cat processes is maximal. In our previous experiments
(Table 2), the optimal shared disk throughput for optimal
streaming was found to be around 20MB/s. In this exper-
iment, the auto-shaping tool finds a disk token rate for the
cat processes that corresponds to roughly the same value
of 20MB/s. Note that, without shaping, the cat processes
would generate disk traffic close to the devices’ maximum
throughput and therefore prohibit running other disk-bound
soft real-time applications such as VLC. The auto-shaping
mechanism is still experimental and requires more work to
make it faster and apply it to other types of soft real-time
applications.

This paper addresses I/O resource management through
system call scheduling. However, processes may not gener-
ate all I/O traffic through system calls. For example, a pro-
cess may also mmap a region of a file into its address space.
When addresses in the mapped region are touched, the re-
quired content of the file is fetched on demand through the

page fault handler. System call scheduling obviously cannot
shape the resulting I/O traffic. However, we feel that in prin-
ciple it may be possible to perform page fault scheduling,
similarly to system call scheduling, by introducing a hook
into the page fault handler. The hook code could delay han-
dling page faults and thus provide a mechanism for some
form of page fault shaping.

7. CONCLUSION

We have presented the idea of system call scheduling for
the purpose of resource and workload management, and the
idea of using traffic-shaping technology in network- and
disk-related system call scheduling (process and resource
shaping, rather than, for example, traffic shaping in I/O sub-
systems). We have implemented a Linux 2.6 kernel patch
with SMP support that enables process and resource shap-
ing in the kernel, and a user-space monitoring tool to con-
trol the shaping parameters. Finally, we have performed a
number of experiments with our implementation applied to
unmodified state-of-the-art web and streaming servers on a
dualcore, dualprocessor server machine. Note that, by prin-
ciple and current design, multicore and multiprocessor scal-
ability of shaping processes and threads that use indepen-
dent bandwidth limits is only limited by the scalability of
the underlying kernel architecture. Our implementation only
requires shaping-related synchronization of processes and
threads that collectively use a single bandwidth limit (using
reader/writer locks).

Our experiments show that process and resource shap-
ing can effectively control, with low overhead, I/O-related,
throughput-oriented process behavior (and, as a conse-
quence, resource utilization) as well as soft real-time per-
formance of disk-bound processes such as video-streaming
servers even in difficult overload scenarios. Network and
disk traffic may, at least separately, be also controlled by ex-
isting extensions of I/O subsystems in the kernel [20]. Nev-
ertheless, we feel that process and resource shaping, and sys-
tem call scheduling in general, has more potential because,
at kernel entry, (1) process behavior such as real-time perfor-
mance and not only I/O traffic (resource utilization) can be
controlled, (2) there is process-related and not only traffic-
related information available, (3) other aspects of process
behavior such as locking and memory management may be
considered in the same system, (4) the implementation is
simpler and easier-to-maintain than other approaches that re-
quire kernel-wide modifications, and (5) usage is, in our ex-
perience, also simpler since it is process- rather than traffic-
oriented.

8. REFERENCES
[1] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C.

Resource containers: A new facility for resource
management in server systems. In Proc. OSDI (1999).

[2] BARRERA, I. bw_mod: Apache2 module for
bandwidth and connection control.
http://modules.apache.org/search?id=786.

[3] BRUNO, J., GABBER, E., ÖZDEN, B., AND

SILBERSCHATZ, A. The Eclipse operating system:
providing quality of service via reservation domains.
In Proc. USENIX (1998).

[4] CRACIUNAS, S., KIRSCH, C., AND RÖCK, H. The
TAP Project. http://tap.cs.uni-salzburg.at/.

[5] CROVELLA, M., FRANGIOSO, R., AND

HARCHOL-BALTER, M. Connection scheduling in
web servers. In Proc. USITS (1999).

[6] IYER, S., AND DRUSCHEL, P. Anticipatory
scheduling: A disk scheduling framework to overcome
deceptive idleness in synchronous I/O. In Proc. SOSP

(2001).
[7] KIRSCH, C. Threading by appointment. In Proc.

Monterey Workshop (2004), CRC Press.
[8] LESLIE, I. M., MCAULEY, D., BLACK, R.,

ROSCOE, T., BARHAM, P. T., EVERS, D.,
FAIRBAIRNS, R., AND HYDEN, E. The design and
implementation of an operating system to support
distributed multimedia applications. IEEE Journal of

Selected Areas in Communications 14, 7 (1996),
1280–1297.

[9] LOVE, R. Linux Kernel Development, 2nd ed. Novell
Press, 2005.

[10] MIDGLEY, J. T. J. autobench - automates the
benchmarking of web servers using httperf.
http://www.xenoclast.org/autobench/.

[11] MONTZ, A. B., MOSBERGER, D., O’MALLEY,
S. W., PETERSON, L. L., PROEBSTING, T. A., AND

HARTMAN, J. H. Scout: A communications-oriented
operating system (abstract). In Proc. OSDI (1994).

[12] MOSBERGER, D., AND JIN, T. httperf - a tool for
measuring web server performance. SIGMETRICS

Perform. Eval. Rev. 26, 3 (1998), 31–37.
[13] MUHAMMAD, H. htop - an interactive process viewer

for Linux. http://htop.sourceforge.net/.
[14] NAGAR, S., FRANKE, H., KASHYAP, V., VAN RIEL,

R., SEETHARAMAN, C., AND ZHENG, H. Improving
Linux resource control using CKRM. In Proc. OLS

(2004).
[15] RÖCK, H. The TAP System: Concurrent

programming with threading by appointment.
Master’s thesis, University of Salzburg, Salzburg,
Austria, 2006.

[16] SARMA, D., AND MCKENNEY, P. E. Making RCU
safe for deep sub-millisecond response real-time
applications. In Proc. USENIX (2004).

[17] TANENBAUM, A. Computer Networks, 3rd ed.
Prentice Hall, 2002.

[18] THE NETFILTER.ORG PROJECT. netfilter: firewalling,
NAT, and packet mangling for Linux.
http://www.netfilter.org.

[19] THE VIDEOLAN PROJECT. VLC - the cross-platform
media player and streaming server.
http://www.videolan.org/vlc/.

[20] WU, J. C., BANACHOWSKI, S., AND BRANDT, S. A.
Hierarchical disk sharing for multimedia systems. In
Proc. NOSSDAV (2005).

