
On the Self in Selfie (Invited Talk)
Christoph M. Kirsch

Department of Computer Sciences
University of Salzburg

Austria
ck@cs.uni-salzburg.at

Abstract
Selfie is a self-contained 64-bit, 10-KLOC implementation of
(1) a self-compiling compiler written in a tiny subset of C
called C* targeting a tiny subset of 64-bit RISC-V called RISC-
U, (2) a self-executing RISC-U emulator, (3) a self-hosting
hypervisor that virtualizes the emulated RISC-U machine,
and (4) a prototypical symbolic execution engine that exe-
cutes RISC-U symbolically. Selfie can compile, execute, and
virtualize itself any number of times in a single invocation
of the system given adequate resources. There is also a sim-
ple linker, disassembler, debugger, and profiler. C* supports
only two data types, uint64_t and uint64_t*, and RISC-U
features just 14 instructions, in particular for unsigned arith-
metic only, which significantly simplifies reasoning about
correctness. Selfie has originally been developed just for
educational purposes but has by now become a research
platform as well. We discuss how selfie leverages the syn-
ergy of integrating compiler, target machine, and hypervisor
in one self-referential package while orthogonalizing boot-
strapping, virtual and heap memory management, emulated
and virtualized concurrency, and even replay debugging and
symbolic execution.

CCS Concepts • Applied computing → Education; •
Software and its engineering → Compilers; Interpreters;
Virtual machines;

Keywords Self-Referentiality, Symbolic Execution

ACM Reference Format:
Christoph M. Kirsch. 2018. On the Self in Selfie (Invited Talk). In
Proceedings of the 10th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL ’18), November
4, 2018, Boston, MA, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3281287.3281288

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VMIL ’18, November 4, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6071-5/18/11. . . $15.00
https://doi.org/10.1145/3281287.3281288

1 Introduction
Selfie [2] is self-referential in three distinct ways. Selfie1 com-
piles its own source code2 into RISC-V code that compiles
that source code again into the exact same RISC-V code. In
fact, selfie can compile itself and then execute the generated
code to compile itself again all in a single invocation of the
system. Code generated by the selfie compiler not only runs
on the selfie emulator but also on the spike emulator and the
pk kernel which are part of the official RISC-V toolchain3.
While self-compilation is standard, doing that with a system
implemented in a single, self-contained file that does not in-
clude anything from other sources is not. Selfie only requires
five C builtin procedures, discussed below, that appear to be
close to the minimal external functionality needed. Since the
selfie emulator is implemented in the same file as the selfie
compiler and selfie compiles itself, the emulator is able to
execute itself. This feature may at first appear to be rather
academic but is in fact the logical prerequisite to system vir-
tualization. The selfie emulator running on itself can be seen
as an operating system kernel providing full virtualization
of the machine on which it runs, just not through context
switching and native execution of user code but through
interpretation of that code. The question is if, upon execut-
ing user code, instead of interpreting that code, we can have
the emulator ask the emulator on which it runs to execute
that code on its behalf. The answer is yes! The result is a
hypervisor that shares most of its implementation with the
emulator and can even host all of selfie including itself. We
discuss self-execution in more detail first, followed by self-
compilation, followed by self-hosting. Symbolic execution
with selfie is ongoing work discussed last.

2 Self-Execution
The selfie emulator implements a 64-bit RISC-V machine
with 14 instructions (called the RISC-U instruction set) and
4GB of main memory. The implementation of main memory
is done through on-demand paging onto physical memory
whose size can be configured at boot time. The emulator
can therefore run on itself as long as it touches strictly less
memory than the physical memory available to the emulator
on which it runs. However, the choice of implementation is

1http://selfie.cs.uni-salzburg.at
2https://github.com/cksystemsteaching/selfie
3https://riscv.org

1

https://doi.org/10.1145/3281287.3281288
https://doi.org/10.1145/3281287.3281288
https://doi.org/10.1145/3281287.3281288
http://selfie.cs.uni-salzburg.at
https://github.com/cksystemsteaching/selfie
https://riscv.org

VMIL ’18, November 4, 2018, Boston, MA, USA Christoph M. Kirsch

orthogonal to the rest of the discussion here. Segmentation,
for example, would work as well. What matters here is how
the six system calls in selfie are implemented (exit, open,
read, write, brk, switch). The first five are standard system
calls whereas the switch call performs context switching
on behalf of the selfie hypervisor and is only available in
selfie. Thus the hypervisor only runs on the selfie emulator.
There are essentially two implementation scenarios. System
calls are executed either as part of the emulator as if they
were machine instructions or as part of a kernel that runs
on top of the emulator. Interestingly, the implementation
of all but the switch call in selfie works either way. In fact,
the first five system calls are implemented according to the
official RISC-V calling convention so that the selfie emulator
properly mimics the spike emulator and the pk kernel. As
a result, selfie binaries (except for the hypervisor) run on
both platforms. The first four system calls are mapped to
the C builtin procedures with the same name whereas brk
and switch have no dependencies. Heap allocation is done
through malloc which is the only other C builtin procedure
selfie depends on (in particular, there is no free) while the
implementation of malloc in selfie maps to the brk system
call. We have successfully bootstrapped selfie on recent ver-
sions of macOS, Linux, and Windows using gcc and clang
without any platform-specific information.

3 Self-Compilation
The selfie compiler implements in C* a single-pass, recursive-
descent parser for C* (inspired by the Oberon-0 compiler [4])
and targets the RISC-U instruction set supported by the selfie
emulator. C* is a strict subset of C that features just five state-
ments (assignment, while, if, return, procedure call), two data
types (uint64_t, uint64_t*), the unary * operator as the
only means to dereference memory, hence the name C*, three
types of literals (integer, character, string), and five builtin
procedures (exit, open, read, write, malloc). There are
arithmetic and comparison operators for unsigned integers
and pointers but no bitwise or Boolean operators. The com-
piler can compile and link multiple C* files in memory and
then execute the generated code right away on the selfie
emulator or generate RISC-V assembly as well as proper ELF
binaries that can later be loaded back into memory. A selfie-
generated binary contains wrapper code for the five builtin
procedures that interfaces calls to these procedures with the
previously described system calls. There is an interesting
synergy here between the wrapper code and the system call
implementations. They are in fact implemented next to each
other in the source code. Similarly, the encoding of machine
instructions in the backend of the compiler is implemented
next to the decoding of the machine instructions in the fron-
tend of the emulator. The fixed-point of self-compilation can
be demonstrated in a single invocation of the system by hav-
ing selfie compile itself and generate a binary from that, and

then execute that binary to compile itself again and generate
another binary from that equivalent to the first binary [1].

4 Self-Hosting
The selfie hypervisor implements a virtualized version of
the RISC-V machine emulated by the selfie emulator. Its
core design is inspired by microkernels [3] while most of
its implementation is shared with the emulator, in partic-
ular, on-demand paging, exception handling, and the boot
loader. The only difference in the implementation is not
to interpret user code but to switch machine contexts so
that the underlying emulator interprets the user code in-
stead. In fact, selfie can even alternate between emulation
through interpretation and virtualization through context
switching at runtime. Moreover, the hypervisor can host all
of selfie including itself any number of times given adequate
resources. For this to work selfie needs to remember the
parent-child relationship of hypervisors so that exceptions
created in a machine context can properly be delegated to
the hypervisor that created the context. For simplicity and
more efficient paging, the selfie emulator caches machine
contexts created by self-hosting hypervisors. An interesting
yet simple exercise is to enhance the emulator such that it
can create multiple machine contexts loaded with different
binaries and then multiplexes their execution for concur-
rency. This corresponds to an operating system kernel that
implements concurrent processes through interpretation of
user code. With selfie the step towards a more realistic kernel
that switches contexts instead is then immediate and works
out of the box since the hypervisor does logically exactly the
same as the emulator.

5 Conclusions
Selfie enables teaching the design and implementation of
programming languages and runtime systems using a sin-
gle, self-contained system that makes the underlying, fun-
damental but rather involved self-referentiality transparent.
The simplicity and self-containment of selfie has recently
inspired us to go beyond teaching and explore symbolic ex-
ecution of RISC-U code from within the system. We have
already enhanced the emulator with replay of code execution
upon encountering runtime errors and are nowworking on a
minimal symbolic execution engine in the spirit of the selfie.

Acknowledgments
This work has been supported by the National Research Net-
work RiSE on Rigorous Systems Engineering (Austrian Sci-
ence Fund (FWF) Grant S11411-N23) and a Google Research
Grant. Selfie is joint work with many people. Ideas, code,
and documentation have been contributed by A. Abyaneh,
M. Aigner, S. Arming, C. Barthel, S. Bauer, T. Hütter, A. Kollert,
M. Lippautz, C. Mayer, P. Mayer, C. Mösl, S. Oblasser, C. Pon-
celet, S. Seidl, A. Sokolova, and M. Widmoser.

2

On the Self in Selfie (Invited Talk) VMIL ’18, November 4, 2018, Boston, MA, USA

References
[1] A.S. Abyaneh and C.M. Kirsch. 2018. You can program what you want

but you cannot compute what you want. In Edward A. Lee Festschrift
(LNCS), Vol. 10760. Springer.

[2] C.M. Kirsch. 2017. Selfie and the Basics. In Proc. ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!). ACM.

[3] J. Liedtke. 1996. Toward Real Microkernels. Commun. ACM 39, 9 (Sept.
1996), 70–77. https://doi.org/10.1145/234215.234473

[4] Niklaus Wirth. 1996. Compiler Construction. Addison Wesley.

3

https://doi.org/10.1145/234215.234473

	Abstract
	1 Introduction
	2 Self-Execution
	3 Self-Compilation
	4 Self-Hosting
	5 Conclusions
	Acknowledgments
	References

