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Abstract. Computers are the most fascinating machines ever invented.
Virtually everyone uses them in one form or another every day. However,
most people only have a vague understanding of how computers work, let
alone how to program them. Yet computing has become a commodity
almost like energy, food, or water. The question is if the general pub-
lic, for modern society to work properly, needs to understand computing
better than what people generally know about, say, producing electricity
or clean water. We argue that the intractability and even undecidability
of so many important problems in computer science are the reason that
computing is indeed different. It is the limits of computability, not just
the capabilities of computers, that is the source of unbounded potential
in the automation of everything. The challenge is to teach people not
just programming but also how programming is the neverending process
of overcoming those limits. We have developed a system called selfie that
implements a self-referential compiler, emulator, and hypervisor that can
compile, execute, and virtualize itself. We use selfie to teach undergrad-
uate and graduate students computer science from first principles. In
particular, we show them how self-referentiality in selfie is capability
and limitation of computing at the same time. Here, we discuss ongoing
early work on integrating verification technology into selfie as yet another
way of exploring what computing is.

1 Introduction

How many people know how to read and write and understand at least some
elementary arithmetic? What about elementary set theory, in particular, Can-
tor’s diagonal argument then? And, if some people know and understand that,
do they also know how diagonalization beautifully explains the limits of com-
putability [13] as the source of unbounded potential in computing? Teaching and
understanding Cantor is actually not that hard and should be part of any school
curriculum. Connecting Cantor to computing, however, that is, teaching and
understanding Gödel, Turing, and others, is a lot more difficult. But there ought
to be a way to reach out to larger audiences. The trend towards teaching how to
code already in school is an important step forward. However, we believe that
understanding the limits of computability is at least as important as learning
how to code, if not more important, especially for broader audiences.
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We have developed a software system called selfie1 in a tiny subset of C
called C* that implements a self-compiling compiler, a self-executing emulator
of a tiny MIPS subset called MIPSter targeted by the compiler, and a self-hosting
hypervisor that virtualizes a MIPSter machine [8]. Selfie is written in a single,
self-contained file of around 7k lines of C* code. Selfie compiles itself, executes
the code it generates including the emulator itself, and can even virtualize the
execution of that code.

Through compilation, emulation, and virtualization, selfie provides three dif-
ferent perspectives on how to create the semantics of formalisms such as C*
and MIPSter code using these very formalisms. Selfie, just like Cantor’s diag-
onal argument, employs self-referentiality. Learning about self-referentiality is
difficult for many students but nevertheless seen by us as key to understanding
basic principles of computer science including the limits of computability. Selfie
is a sandbox for teaching undergraduate and graduate students computer sci-
ence from first principles. However, we also use selfie in classes targeting broader
audiences by identifying and exemplifying in selfie basic principles of computer
science everyone should know about [8].

In order to provide another perspective on computing and in particular its
limitations and how to overcome them, we have recently begun a new project in-
tegrating verification technology into selfie. We have already started implement-
ing a state-of-the-art SAT solver in selfie and are working on an SMT solver and
a symbolic execution engine for MIPSter. We report on the effort here which is
still in an early stage but has already lead to some interesting insights.

We first introduce the programming language C* and the MIPSter instruction
set by example and point out that we removed undefined behavior in all signed
integer operations of C* through wrap-around semantics. However, as part of an
ongoing effort, we are also exploring alternatives such as using unsigned integers
only. Establishing a well-defined semantics of C* and MIPSter before trying to
verify anything is in fact the first positive outcome of the effort.

We then provide an overview of selfie and argue that the simplicity and
realism of system and language may lead to something beyond a purely educa-
tional effort. In particular, we show performance data comparing execution time
and code size of programs written in C and ported to C* when compiled with
state-of-the-art C compilers. The programs are mostly microbenchmarks written
for this purpose but also one macrobenchmark which is a state-of-the-art SAT
solver. It turns out that modern C compilers produce code for both versions with
essentially the same performance characteristics. In short, C* is simple but still
fast, motivating us to see it as a promising target for verification from within
the system. We conclude with an outlook on how the project may evolve.

2 Programming

C* is a tiny subset of the programming language C [7]. C* features global variable
declarations with optional initialization as well as procedures with parameters

1 http://selfie.cs.uni-salzburg.at
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and local variables. C* has five statements (assignment, while loop, if-then-else,
procedure call, and return) as well as five built-in functions that are sufficient
to bootstrap selfie (exit, malloc, open, read, write). In particular, there
is no free and no close. C* features standard arithmetic (+, -, *, /, %) and
comparison (==, !=, <, <=, >, >=) operators as well as integer, character, and
string literals. C* includes the unary * operator for dereferencing pointers hence
the name but excludes data types other than int and int* [12], bitwise and
Boolean operators, and many other features.

Listing 1.1. Simplified atoi procedure in selfie

1 int atoi(int* s) {
2 int i;
3 int n;
4 int c;
5
6 // the conversion of the ASCII string in s to its
7 // numerical value n begins with the leftmost digit in s
8 i = 0;
9

10 // and the numerical value 0 for n
11 n = 0;
12
13 // load character (one byte) at index i in s from memory
14 // requires bit shifting since memory access is in words
15 c = loadCharacter(s, i);
16
17 // loop until s is terminated
18 while (c != 0) {
19 // the numerical value of ASCII-encoded decimal digits
20 // is offset by the ASCII code of ’0’ (which is 48)
21 c = c - ’0’;
22
23 // assert: 0 <= c <= 9 and 0 <= n * 10 + c <= INT_MAX
24
25 // use base 10 to compute numerical value
26 n = n * 10 + c;
27
28 // go to the next digit
29 i = i + 1;
30
31 c = loadCharacter(s, i);
32 }
33
34 return n;
35 }
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The C* grammar is LL(1) with six keywords (int, while, if, else, return,
void) and 22 symbols (=, +, -, *, /, %, ==, !=, <, <=, >, >=, ,, (, ), {, }, ;,
integer, character, string, identifier). Whitespace is ignored includ-
ing one-line comments (//).

For an example of C* code, consider Listing 1.1 which shows a simplified
C* implementation of the standard atoi procedure for converting a (decimal)
number represented as an ASCII string into its numerical integer value. An
ASCII string in C is a null-terminated sequence of bytes, one byte per character,
contigously stored in memory. Here, the only non-standard part of the imple-
mentation are the calls to loadCharacter in Lines 15 and 31 to retrieve the
individual characters of the string s. Because of the lack of a byte-size data type
such as char we can only access memory at the granularity of signed integers
(or pointers to signed integers). Signed integers contain four bytes, that is, up
to four characters which are then retrieved individually through bit shifting, see
Listing 1.2 for details, in particular Lines 13 through 15.

Listing 1.2. loadCharacter procedure in selfie

1 int loadCharacter(int* s, int i) {
2 // assert: i >= 0
3 int a;
4
5 // a is the index of the word where the
6 // to-be-loaded i-th character in s is
7 a = i / SIZEOFINT;
8
9 // shift to-be-loaded character to the left

10 // resetting all bits to the left of it then
11 // shift to-be-loaded character all the way
12 // to the right and return
13 return rightShift(leftShift(*(s + a),
14 ((SIZEOFINT - 1) - (i % SIZEOFINT)) * 8),
15 (SIZEOFINT - 1) * 8);
16 }

The C* semantics in selfie is, to the best of our knowledge, standard C se-
mantics except for undefined behavior through arithmetic overflow. In particular,
C* programs compiled and executed by selfie implement standard C semantics
with 32-bit wrap-around semantics for all arithmetic operators on signed in-
tegers and pointers. This is true even if the bootstrapping compiler does not
implement wrap-around semantics (except for multiplication). The system nev-
ertheless prints a console warning for any overflow (and division by zero) that
occurs during runtime. However, because of efficiency concerns, the actual re-
sult of a multiplication operation depends on the semantics implemented by the
bootstrapping compiler.

The MIPSter instruction set generated by selfie is a tiny subset of MIPS32 [5].
It consists of 16 instructions (nop, addu, subu, multu, divu, mfhi, mflo,
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slt, jr, syscall, addiu, lw, sw, beq, jal, j). MIPSter allows straightfor-
ward compilation of C* programs into MIPSter code. Bitwise and sub-word data
transfer instructions are not needed.

Listing 1.3. MIPS assembly for the atoi procedure in selfie

0x168(˜18): lw $t0,-12($fp) // while (c != 0)
0x16C(˜18): addiu $t1,$zero,0
0x170(˜18): beq $t0,$t1,4[0x184]
0x178(˜18): addiu $t0,$zero,1
0x17C(˜18): beq $zero,$zero,2[0x188]
0x184(˜18): addiu $t0,$zero,0
0x188(˜18): beq $zero,$t0,31[0x208]
0x190(˜21): lw $t0,-12($fp) // c = c - ’0’
0x194(˜21): addiu $t1,$zero,48
0x198(˜21): subu $t0,$t0,$t1
0x19C(˜21): sw $t0,-12($fp)
0x1A0(˜26): lw $t0,-8($fp) // n = n * 10 + c
0x1A4(˜26): addiu $t1,$zero,10
0x1A8(˜26): multu $t0,$t1
0x1AC(˜26): mflo $t0
0x1B8(˜26): lw $t1,-12($fp)
0x1BC(˜26): addu $t0,$t0,$t1
0x1C0(˜26): sw $t0,-8($fp)
0x1C4(˜29): lw $t0,-4($fp) // i = i + 1
0x1C8(˜29): addiu $t1,$zero,1
0x1CC(˜29): addu $t0,$t0,$t1
0x1D0(˜29): sw $t0,-4($fp)
0x1D4(˜31): lw $t0,8($fp) // push s onto call stack
0x1D8(˜31): addiu $sp,$sp,-4
0x1DC(˜31): sw $t0,0($sp)
0x1E0(˜31): lw $t0,-4($fp) // push i onto call stack
0x1E4(˜31): addiu $sp,$sp,-4
0x1E8(˜31): sw $t0,0($sp)
0x1EC(˜31): jal 0xE1D[0x3874] // call loadCharacter(s, i)
0x1F4(˜31): addiu $t0,$v0,0 // c = loadCharacter(s, i)
0x1F8(˜31): addiu $v0,$zero,0
0x1FC(˜31): sw $t0,-12($fp)
0x200(˜34): beq $zero,$zero,-39[0x168] // go back to while

Listing 1.3 shows the MIPSter code generated by selfie for the while loop
in the atoi code in Listing 1.1. The first line reads as follows. The instruction
lw $t0,-12($fp) is stored in memory at address 0x168 and has been gen-
erated for source code at approximately Line 18. In fact, the instruction loads
the current value of the local variable c occurring in the loop condition c != 0
into the temporary CPU register $t0. The value is stored in memory on the call
stack, 12 bytes below the address to which the frame pointer $fp refers. The
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next instruction loads the value 0 into another temporary register $t1 to pre-
pare for the comparison with $t0 in the following branch instruction. The code
that follows is inefficient but straightforward to generate keeping the compiler
simple. It loads 1 or 0 into $t0 depending on whether the loop condition eval-
uates to true or false, respectively. Only then the branch instruction at 0x188
either enters the loop body or terminates the loop by branching to the first
instruction past the code implementing the loop body at 0x208.

Listing 1.4. C* code preventing integer overflows in the atoi procedure in selfie

...
while (c != 0) {

c = c - ’0’;

if (c < 0)
// c was not a decimal digit
return -1;

else if (c > 9)
// c was not a decimal digit
return -1;

// use base 10 but avoid integer overflow
if (n < INT_MAX / 10)

n = n * 10 + c;
else if (n == INT_MAX / 10) {

if (c <= INT_MAX % 10)
n = n * 10 + c;

else if (c == (INT_MAX % 10) + 1)
// s must be terminated next, check below
n = INT_MIN;

else
// s contains a decimal number larger than INT_MAX
return -1;

} else
// s contains a decimal number larger than INT_MAX
return -1;

i = i + 1;
c = loadCharacter(s, i);

if (n == INT_MIN)
if (c != 0)

// n is INT_MIN but s is not terminated yet
return -1;

}
...
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The rest of the code is hopefully self-explanatory leaving us more space to
show in Listing 1.4 the actual implementation of atoi in selfie that prevents
the occurrence of any integer overflows during scanning of integer literals. The
code is considerably more complex than the simplified code in Listing 1.1 but
nevertheless an important part of the educational experience with selfie. In fact,
the whole implementation of selfie is designed to avoid integer overflows and
there are indeed none in our experiments which include self-compilation, self-
execution, and self-hosting of selfie. A proof of absence is of course another story
which is ongoing work as discussed next.

3 Computing

Selfie is a self-contained system of a C* compiler, a MIPSter emulator, and a
MIPSter hypervisor implemented in a single 7k-line file of C* code.2 Selfie can
compile, execute, and virtualize itself. In particular, the C* compiler targets
the MIPSter emulator which can execute any MIPSter code including its own
implementation any number of times until time and space run out. The MIPSter
hypervisor virtualizes the machine emulated by the emulator and can therefore
host any MIPSter code execution, again including its own implementation any
number of times. The difference between emulator and hypervisor is that the
emulator interprets MIPSter code while the hypervisor asks the machine on
which it runs to interpret MIPSter code on its behalf in temporal and spatial
isolation through context switching and virtual memory. Thus the hypervisor
requires at least one emulator instance to run on.

Self-compilation, self-execution, and self-hosting with selfie enable three dis-
tinguished features of the system:

1. Selfie not only compiles itself, it can even execute the compiled code in the
same invocation of the system, to compile itself again and enable checking
if the code it then generates is the same as the code it executes (fixed-point
of self-compilation). The backend of the compiler is even implemented next
to the frontend of the emulator. In particular, encoding and decoding of
machine instructions is literally done next to each other in the source code.
Also, system call wrappers are generated by the compiler next to the actual
system call implementations in the emulator.

2. Selfie can execute any MIPSter code including itself [11]. Interestingly, ex-
ecuting an emulator such as mipster on itself is arguably the simplest form
of an operating system kernel (top emulator) running on a given processor
(bottom emulator), just very inefficiently as interpreter of code rather than
through context switching and virtual memory. However, the top emulator
does provide a machine instance perfectly isolated from the machine instance
on which it runs as provided by the bottom emulator. In fact, enhancing the
top emulator to emulate multiple isolated machine instances is easy using a
dedicated interpreter per instance. With selfie this can be done by students

2 https://github.com/cksystemsteaching/selfie/releases/tag/Festschrift17
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in a one-week homework assignment. It is only the speed of code execution
that gets exponentially slower in the number of emulators running on top of
each other, but for that there is virtualization.

3. Selfie can virtualize a MIPSter machine for hosting the execution of any
MIPSter code including itself. In contrast to code interpretation, however,
machine virtualization maintains the speed of code execution modulo the
overhead of context switching and virtual memory. Nevertheless, emulator
and hypervisor in selfie share most of their code and are supposed to provide
functionally indistinguishable machine instances, just through very different
means. Selfie can even alternate between emulation and virtualization of the
same machine instance at runtime.

Selfie has originally been developed exclusively for educational purposes. By
now, we use the system in introductory architecture, compiler, and operating
systems classes. There is also an advanced operating systems class based on
selfie as well as an introductory computer science class for students not majoring
in computer science. In that class selfie helps exemplifying basic principles of
computer science. A textbook in early draft form is available online.3

3.1 Software Verification in Selfie

We recently noticed that selfie has also potential in making more advanced topics
such as software verification accessible to broader and younger audiences. We
have therefore started a project integrating verification technology into selfie.
Surprisingly, this effort appears to have potential in research as well. Selfie is
simple yet realistic. In fact, programming language and software system are so
simple that selfie may be amenable to formal reasoning from within the system
itself. Moreover, C* is still sufficiently realistic to serve as input to state-of-the-
art compiler optimizations. In short, C* is simple but may still be fast.

While there is considerable amount of literature on software verification and
related topics there is little hands-on information on how to do what we are
interested in. Ideally, we would like to have selfie perform self-verification of non-
trivial correctness properties [9] and self-optimization of its own implementation.
This may or may not be feasible but at least verifier and optimizer “only” need to
work on selfie code and not “any” code. We are even free to trade-off complexity
between subject and object. In other words, we can make the system smarter or
the code, that is, its proof obligations simpler.

Because of selfie’s dual role in education and research, we are interested
in the absolute simplest yet sufficiently efficient design. There are essentially
two key challenges that we are facing in this project. The first challenge is to
figure out what the simplest way of doing things actually is. For example, it is
difficult to choose the right data structures sufficient for our purpose. The second
challenge is to figure out which optimizations dominate others in their effect on
performance and scalability and are actually needed for our purpose.

3 http://leanpub.com/selfie
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So far, we have considered SAT and SMT solvers [2], (bounded) model
checkers [1, 2, 14], symbolic execution engines [3, 4], and even inductive theorem
provers [6]. The very first step we have already taken is to implement a näıve
SAT solver in selfie which we call babysat. We also implemented a parser for
SAT instances encoded in the DIMACS CNF file format. The babysat algorithm
simply enumerates all possible variable assignments of a given SAT instance and
takes 58 lines of C* code. In contrast, even the most näıve implementations we
found online feature some form of optimization such as a watchlist, for example.
However, at least for SAT, instead of introducing optimizations one by one, we
decided to take microsat,4 an existing state-of-the-art SAT solver implemented
in C, port it to C*, and integrate it into selfie.

We are now working on implementations of a näıve SMT solver with babysat
and microsat in the backend as well as a näıve symbolic execution engine for
MIPSter code. The idea is to stay away from any optimizations unless we have
evidence that they are really needed to make the system scale up to selfie. Also,
näıve implementations often turn out to have significant pedagocial value helping
students and us understand the problem better.

3.2 C* Performance

To our initial surprise, we noticed that the C* port of microsat is not slower than
the original C version in our experiments. The port of microsat to C* essentially
requires three potentially performance-relevant modifications:

1. structs and arrays are eliminated by removing their declarations and replac-
ing their access operators with adequate pointer arithmetic and casting,

2. control-flow statements such as break, continue, and goto are eliminated
by introducing new variables that enable modifying the truth value of loop
conditions without changing the rest of the program state, and

3. logical operators such as &&, ||, and ! are eliminated by replacing them
with adequately nested if statements.

All other modifications are minor. In particular, macros are easily expanded,
for loops are turned into while loops, and, more surprisingly, all bitwise opera-
tors in the microsat implementation can be replaced by simple integer arithmetic.

We report on a macrobenchmark with microsat and on eight microbench-
marks each focusing on a particular aspect of the three modifications. Our ex-
periments ran on a 512GB NUMA machine with four 16-core 2.3 GHz AMD
Opteron 6376 processors (16KB L1 data cache, 64KB L1 instruction cache,
16MB L2 cache, 16MB L3 cache) and Linux kernel version 3.13.0. We used
gcc 6.4 and 7.2 as well as clang 4.0.1 to generate 32-bit binaries with -O0 and
-O3 optimization levels. For simplicity, selfie only supports 32-bit binaries.

Tables 1, 2, and 3 show the data obtained with x86 binaries generated by
gcc 6.4, gcc 7.2, and clang 4.0.1, respectively. The microsat performance data

4 https://github.com/marijnheule/microsat
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Table 1. Performance and binary size of C* over C using gcc 6.4

-O0 -O3
Benchmark C

[sec.]
C*

[sec.]
Perf.
[%]

Size
[%]

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

microsat 4036.26 6912.24 58.3 64.1 2671.34 2678.82 99.6 88.9

struct 97.41 327.48 29.7 91.8 0.23 0.25 92 92.8

array 160.63 308.83 52 91.6 7.09 39.05 18.2 101.1

array pointer - 270.85 59.3 91.3 - 7.13 99.4 93.6

struct with int* - 326.9 29.8 91.5 - 0.23 100 93

array of int* - 306.61 52.4 91.3 - 7.12 99.6 93.6

break 65.12 65.51 99.4 99.6 26.71 17.17 155.6 100.5

logical and 90.63 90.6 100 100 41.49 41.49 100 100

logical or 118.85 100.15 118.7 100 68.02 68.06 99.9 100

Table 2. Performance and binary size of C* over C using gcc 7.2

-O0 -O3
Benchmark C

[sec.]
C*

[sec.]
Perf.
[%]

Size
[%]

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

microsat 4037.47 6907.40 58.4 64 2866.97 2817.88 101.9 77.8

struct 110.77 327.92 33.8 91.6 0.31 0.31 100 92.9

array 160.03 312.1 51.3 91.4 4.69 37.67 12.5 98.3

array pointer - 264.67 60.5 91.1 - 4.7 99.8 93.3

struct with int* - 325.67 34 91.6 - 0.31 100 92.9

array of int* - 307.86 52 91.3 - 4.69 100 93.3

break 64.81 65.51 98.9 99.6 26.71 26.71 100 99.9

logical and 90.06 90.14 99.9 100 24.13 24.1 100.1 100

logical or 120.55 101.89 118.3 100 44.92 44.91 100 100

Table 3. Performance and binary size of C* over C using clang 4.0.1

-O0 -O3
Benchmark C

[sec.]
C*

[sec.]
Perf.
[%]

Size
[%]

C
[sec.]

C*
[sec.]

Perf.
[%]

Size
[%]

microsat 4011.74 7787.89 51.5 73.3 2630.39 2514.90 104.2 90.1

struct 89.26 418.07 21.4 98.2 33.8 22.7 148.9 98.2

array 106.02 416.14 25.5 98.3 34.42 32.66 105.4 98.3

array pointer - 329.07 32.2 98.2 - 6 573.7 98.2

struct with int* - 418.85 21.3 98.2 - 33.86 99.8 98.2

array of int* - 420.94 25.2 98.2 - 6.01 572.7 98.2

break 72.05 72.41 99.5 99.9 27.63 27.63 100 99.9

logical and 99.4 98.93 100.5 100 48.27 48.27 100 100

logical or 131.77 137.98 95.5 100 65.97 65.97 100 100
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shows the total execution time of running microsat on the industrial benchmark
of the SAT 2004 competition5 with a timeout of 120 seconds. Instances that
took less than 5 seconds to solve were excluded. We repeated the experiment to
obtain a ±5% margin of error with a probability of 90%. For the microbenchmark
performance data the margin of error is ±2% with a probability of 99%.

In nearly all cases, the size of x86 binaries generated from C* versions of the
code is either the same or less than the size of the binaries generated from the
corresponding C versions. Without any compiler optimizations (option -O0),
code generated from C* versions is generally slower by up to around 79%. There
is one notable exception which is the microbenchmark replacing the logical op-
erator || with adequate if statements. Code generated from the C* version
with both versions of gcc runs around 18% faster in this case.

With compiler optimizations (option -O3), the picture is quite different.
Performance is generally the same for both the C and C* versions in nearly all
benchmarks, in particular the macrobenchmark with microsat. However, there
are some notable exceptions as well. For example, struct access mimicked in C*
and compiled with clang is faster than the original in C. However, with array
access and gcc it is the opposite.

Structs and Arrays. In order to measure the impact of porting C structs and
arrays to C* pointer arithmetics and casting, we designed five microbenchmarks
that share the code in Listing 1.5 for exercising struct and array accesses in
two nested while loops. The input1 and input2 parameters were set to
200,000,000 and 100, respectively.

Listing 1.5. Code for microbenchmarking struct and array access performance

1 int* ptr; // used in inlined code
2 ...;
3 while (i < input1) {
4 j = input2;
5 while (j > 0) {
6 // inline code here for microbenchmarking
7 // struct and array access performance
8 ...;
9 j = j - 1;

10 }
11 i = i + 1;
12 }

Listing 1.6 shows the C code for measuring struct and array access perfor-
mance. For example, for measuring struct access performance we inlined the
body of the struct-access procedure into the body of the inner while loop
in Listing 1.5.

5 http://www.satcompetition.org
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Listing 1.6. struct and array microbenchmarks in C

1 struct strc_t {
2 int* f1;
3 int f2;
4 int f3;
5 };
6 struct strc_t* strc;
7
8 void struct_access() {
9 strc->f1 = ptr + j;

10 strc->f2 = j;
11 strc->f3 = strc->f2 + j;
12 }
13
14 void array_access() {
15 strc->f1[j] = 1;
16 strc->f2 = j;
17 strc->f3 = strc->f2 + j;
18 }

Listing 1.7 shows the C* version of the C code in Listing 1.6 using getters
and setters for struct and array access through pointer arithmetics and casting.
This method is used in our C* port of microsat as well as in the implementation
of selfie. The array access performance with C* is poor using both versions of
gcc with -O3 since they fail to move the loop-invariant base address of the array
outside the loops.

Listing 1.7. struct and array microbenchmarks in C*

1 int* getF1(int* strc) { return (int*) *strc; }
2 int getF2(int* strc) { return *(strc + 1); }
3 int getF3(int* strc) { return *(strc + 2); }
4 void setF1(int* strc, int* f1) { *strc = (int) f1; }
5 void setF2(int* strc, int f2) { *(strc + 1) = f2; }
6 void setF3(int* strc, int f3) { *(strc + 2) = f3; }
7
8 int* strc;
9

10 void struct_access() {
11 setF1(strc, ptr + j);
12 setF2(strc, j);
13 setF3(strc, getF2(strc) + j);
14 }
15
16 void array_access() {
17 *(getF1(strc) + j) = 1;
18 setF2(strc, j);
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19 setF3(strc, getF2(strc) + j);
20 }
21
22 int* array;
23
24 void array_pointer_access() {
25 *(array + j) = 1; // with array set to getF1(strc)
26 setF2(strc, j);
27 setF3(strc, getF2(strc) + j);
28 }

We therefore designed another microbenchmark in C* for measuring array
access performance when using a variable called array that caches the pointer
to the beginning of the accessed array. The data shows that this modification
restores the array access performance of the optimized C* code compiled with
both versions of gcc. With clang performance even multiplies by a factor of five.
However, the code generated for the array access microbenchmark in C as well
as in C* is inefficient.

Listing 1.8. struct and array microbenchmark with content typed as int*

1 int* getF1(int** strc) {return *strc; }
2 int getF2(int** strc) {return (int) *(strc + 1);}
3 int getF3(int** strc) {return (int) *(strc + 2);}
4 void setF1(int** strc, int* f1) {*strc = f1;}
5 void setF2(int** strc, int f2) {*(strc + 1) = (int*) f2;}
6 void setF3(int** strc, int f3) {*(strc + 2) = (int*) f3;}
7
8 int** strc;
9

10 void struct_with_intstar_access() {
11 setF1(strc, ptr + j);
12 setF2(strc, j);
13 setF3(strc, getF2(strc) + j);
14 }
15
16 void array_of_intstar_access() {
17 *(getF1(strc) + j) = 1;
18 setF2(strc, j);
19 setF3(strc, getF2(strc) + j);
20 }

The fact that array access performance with C* is so poor with both versions
of gcc made us look even closer and design two more microbenchmarks as shown
in Listing 1.8. The code is not proper C* which we acknowledge by underlining
the obtained data. However, the code still reveals that gcc is able to optimize
struct and array access through pointer arithmetics and casting if the struct is
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declared as int** rather than just int* and casting in the getters and setters
is adapted accordingly.

Control Flow. Listing 1.9 shows on the left C code using a break statement
and on the right its equivalent C* version. The C* code avoids the break state-
ment by using a variable tmp for saving and restoring the loop variable j which
we modify temporarily in order to mimic the behavior of the original C code. We
used this technique in the C* port of microsat to eliminate break, continue,
and goto statements.

Listing 1.9. C code and its equivalent C* version replacing break

1 int tmp;
2 while (i < input1) { while (i < input1) {
3 j = input2; j = input2;
4 while (j > 0) { while (j > 0) {
5 if (j < input3) { if (j < input3) {
6 ...; ...;
7 tmp = j;
8 break; j = 0;
9 } } else

10 j = j - 1; j = j - 1;
11 } }
12 j = tmp;
13 i = i + 1; i = i + 1;
14 } }

The data shows that performance is generally unaffected except when using
gcc 6.4 with -O3. In this case, surprisingly, performance increases significantly
with the C* version.

Boolean Operators. Listing 1.10 shows the microbenchmark for eliminating
the logical operator && using adequately nested if statements. The microbench-
mark for || works similarly. We used this technique in the C* port of microsat.

Listing 1.10. C code and its equivalent C* version replacing &&

1 while (i < input1) { while (i < input1) {
2 j = input2; j = input2;
3 while (j > 0) { while (j > 0) {
4 if (j < input3 && j % 12) { if (j < input3)
5 if (j % 12) {
6 ...; ...;
7 } }
8 j = j - 1; j = j - 1;
9 } }

10 i = i + 1; i = i + 1;
11 } }
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The data shows that performance is generally maintained. In fact, the gener-
ated code is almost the same for the C and C* versions using any of the compilers
with -O3. As mentioned before, performance even improves for || when using
both versions of gcc with -O0.

4 Conclusions

Software verification is difficult. Many important problems in that field are in-
tractable or even undecidable. However, that challenge and the fact that ver-
ification provides another way of constructing the semantics of formalisms is
our motivation to try integrating verification technology into selfie. We see ver-
ification integrated with compilation, emulation, and virtualization as key to
advancing both the rigorous and efficient design of software systems as well as
the computer science education of broader audiences. What is the meaning of
code and how is it constructed by a machine? What happens during execution?
How does that become a utility? Why can I not compute everything and how is
this a good thing? The simplicity and realism of selfie has already helped us give
increasingly better answers to some of these questions. We conclude that with
the verification technology already available there is a good chance that we are
able to continue that development with selfie even in a largely intractable and
undecidable problem domain.
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