
Modeling and Controlling the Structure of
Heterogeneous Mobile Robotic Systems: A

BigActor Approach
Eloi Pereira1,2, Camille Potiron1, Chirstoph M. Kirsch3, and Raja Sengupta1

Abstract—In this paper we address the problem of mod-
elling and controlling heterogeneous mobile robotic systems at
a structure-level abstraction. We consider a system of mobile
robotic entities that are able to observe, control, compute, and
communicate. They operate upon an abstraction of the structure
of the world that entails location and connectivity as first-class
concepts. Our approach is to model mobile robotic entities as
bigActors [18], a model of computation that combines bigraphs
with the actor model for modeling structure-aware computation.
As case study, we model a mission of heterogeneous unmanned
vehicles performing an environmental monitoring mission.

I. INTRODUCTION

In this paper we investigate the use of the BigActor Model
[18] as a formalism for modeling and controlling systems of
networked mobile robotic systems with dynamic structure.

Modeling and controlling systems with dynamic structure is
a topic that has been raising attraction in the Cyber-Physical
Systems and Robotics communities. Olfati-Saber et al. present
in [17] a theoretical framework for analysis of consensus
algorithms for multi-agent networked systems focusing on the
robustness to changes in network topology. Martinez et al.
discuss in [10] methods to model spatially distributed dynamic
networks of robotic agents based on proximity graphs and
spatially distributed maps. SHIFT [4] and R-Charon [8] are
two languages for modeling networks of hybrid systems where
the network topology may vary with time. The Collaborative
Sensing Language (CSL) is a language introduced by Love
et al. [9] for specifying controllers for missions of networked
vehicles with ad-hoc resource pool. Karman et al. [7] present
a process algebra for modelling mission specifications of
interactive Unmanned Air Vehicles (UAVs). Pereira and Sousa
present in [19] a strategy for dynamic allocation between
teams of UAVs using Dynamic Programming. The control
strategy also considers interactions with a human operator
(known as mixed-initiative interactions).

1Systems Engineering, UC Berkeley, CA, USA. Email: eloi@berkeley.edu,
potironc@berkeley.edu, sengupta@ce.berkeley.edu.

2Research Center of the Portuguese Air Force Academy, Portugal.
3Department of Computer Science, University of Salzburg, Austria. Email:

ck@cs.uni-salzburg.at.
Research supported in part by the National Science Foundation

(CNS1136141), by the Fundação para a Ciência e Tecnologia
(SFRH/BD/43596/2008), by the Portuguese MoD - project PITVANT,
and by the National Research Network RiSE on Rigorous Systems
Engineering (Austrian Science Fund S11404-N23)

The literature is also rich on models of computation where
structure is a first-class concept. Kahn Process Network (KPN)
[6] models deterministic sequential processes communicat-
ing through unbounded First-In First-Out channels. Milner
introduced the Calculus of Communicating Systems where
processes communicate synchronously [13]. KPN and CCS
assume static structures. The π−calculus [14] introduces dy-
namic structure by allowing channel names to be communi-
cated through other channels. The Actor Model, introduced
by Hewitt and Agha [1], also enables modeling concurrent
distributed entities with dynamic structure although the struc-
ture is implicitly entailed in the actor addresses that each
actor knows. In [15] Milner introduces Bigraphs which models
dynamic structures by means of two graphs: one for modelling
location and another for modelling connectivity.

Pereira et al. introduces the BigActor Model [18] - a
hybrid model of computation for structure-aware computation.
BigActors are distributed concurrent computation entities that
interact with a dynamic structure of the world modelled as a
bigraph reactive system.

In this paper we investigate the use of bigActors for
modelling and controlling networks of heterogeneous mobile
robotic systems. Each robot hosts one or more bigActor
that can: observe the structure, perform internal computation,
communicate with other bigActors and change the structure
by requesting control actions. The structure of the world is
abstracted as a bigraph which provides a notion of location
and connectivity of the robotic entities.

We use a collaborative control mission of unmanned vehi-
cles as a case study. We model an environmental monitoring
mission where teams of unmanned vehicles collaborate for
searching, and tracking oil tankers and sample the water at
their vicinities to serve as a proof for water contamination.
This case study is motivated by recent evidences of illegal
bilge dumping in the west coast of Africa [20] and in the
coast of Vietnam [21], raising awareness for this environmental
problem. The evidences were collected using satellite imagery
correlated with information of Automatic Identification Sys-
tem (AIS).

Example 1. Consider three kinds of unmanned vehicles
- UAVs, Autonomous Surface Vehicles (ASVs), and Au-
tonomous Underwater Vehicles (AUVs). UAVs have the ca-
pability to search and track oil tankers. A UAV can also send
a request to an AUV to sample the water at the vicinities of an

oil tanker being tracked. Due to communication constraints we
assume that UAVs can not communicate directly with AUVs.
Instead, they can communicate with an ASV that relays the
information to the desired AUV.

We use this example throughout the paper for demonstrating
the use of bigActors for the specification of mission controllers
for heterogeneous collaborative teams of vehicles.

The remainder of this paper goes as follows. Section II
presents the bigActors for modeling structure-level controllers.
Section III presents a case study described informally in
Example 1. Section IV describes briefly our testbed and our
implementation plans. Section V concludes the paper and
presents our plans for future work.

II. BIGACTOR MODEL

In this section we present informally the semantics BigActor
model. For a formal treatment please refer to [18].

A. Bigraphs for Modeling Dynamic Structures

The BigActor model uses bigraphs [15] for modeling the
structure of the world. As the name indicates a bigraph is
a mathematical structure composed by two graphs over the
same set of nodes: a forest for modeling nested locality of
components (placing graph) and a hypergraph for modeling
connectivity between components (linking graph). Figure 1
presents an example of a bigraph (left-hand side) with the
corresponding placing graphs and linking graphs (right-hand
side). Placing graphs are contained inside regions (dashed

Fig. 1. Example of a bigraph and the corresponding place and link graphs.

rectangles) and may also contain holes (dark grey empty
rectangles) Regions and holes enable composition of placing
graphs, i.e. a hole of a given bigraph can be replaced by a
region of another bigraph using the composition operator.

A linking graph may contain edges, inner names, and outer
names. Names are graphically represented by a line connected
at one end to a port or an edge and the other end left loose.
Composition of linking graphs is performed by merging inner
names and outer names.

A node can have ports (black dots) which are points for
connections to edges or names. The kinds of nodes and their
number of ports (arity) are specified by the signature of the
bigraph.

A signature is a tuple (K, ar) where K is a set of kinds
called controls and ar : K → N is a function that assigns an
arity (i.e. a natural number) to each control. Each node in the
bigraph is assigned to a control2. For example, the bigraph of
Figure 1 has the signature:

K = {Air : 0, Surf : 0, Under : 0, Tanker : 0, Oil : 0, (1)
Asv : 1, Auv : 1, Ref : 1, Uav : 2}

The controls K represent, respectively, airspaces, ocean sur-
face areas, underwater volumes, oil tankers, oil spills, ASVs,
AUVs, reference points (i.e. points that indicates the target
being tracked), and UAVs. By convention we start kind names
with upper-case characters and node names with lower-case
characters. The number next to the kind name denotes the
arity of the respective control.

A bigraph B is called concrete when each node and each
edge is assigned to a unique identifier (known as support). We
denote the set of node identifiers of B as VB and the set of
edge identifiers as EB . Note that all nodes and edges of Figure
1 are identified with unique names. Thus, the corresponding
bigraph is concrete.

A bigraph without support is called abstract. In abstract
bigraphs, nodes are denoted by their control while edges
are kept anonymous. Abstract bigraphs are defined using an
algebra. In this paper we use concrete bigraphs (except in the
specification of Bigraph Reaction Rules).

B. Structure Dynamics

A bigraph can change upon the application of Bigraph
Reaction Rules (BRR) [15] .

A BRR R → R′ is composed by two bigraphs: a redex R
and the reactum R′. The application of a BRR R→ R′ over
a bigraph B is performed by first finding a context in B that
matches R and then replace replace R with R′ over the same
context.

If R and R′ are defined abstractly, then R → R′ is an
abstract BRR. If R and R′ are concrete then the BRR is
concrete. It is often convenient to define BBRs to be abstract
while working with concrete bigraphs. This defines rules that
can be applied to several contexts. The abstract BRR must then
be equipped with a support before applying it over a concrete
bigraph. See [15] for further details on BRR application.

Example 2. Consider the BRR TRACK of Figure 2(a). The
application of TRACK to B0 (first bigraph of Figure 6) results
in the bigraph B1.

C. Actor Model

Before introducing BigActors and its semantics we provide
a brief introduction to actors. The Actor model of computation
is a model for distributed concurrent computing entities [1],
[2]. An actor system is composed of autonomous objects called
actors. Actors communicate using asynchronous message pass-
ing. Messages that have been sent but not yet received are

2Note that the term control is used here in the sense bigraph theory and
not control theory.

queued up in the receiver’s mailbox. The receiver eventually
removes the message and processes it. An actor encapsulates
a state and a thread. Each actor has a mail-address used by
other actors to send it messages.

As a response to a message an actor a may: compute and
change its own local state; send a message m to an actor a′

using the command send(a′, m); or create a new actor using
the command new().

In [2] and [16] the semantics of the Actor model is for-
malized as a transition relation λ→ over the universe of actor
configurations. An actor configuration is a tuple 〈α | µ〉 where
α is a set of actors and µ is a set of pending messages. λ→ is
specified as a set of inference rules written in an contextual
operational semantics style where λ is a label that identifies
the rule that triggers the transition. There are five basic rules3:
〈fun : a〉 which models an internal computation of actor a;
〈new : a,a′〉 which models a spawn of a new actor a′ by
actor a; 〈term : a〉 which terminates a local computation of
a; 〈snd : a, 〈a′ ⇐m〉〉 where a generates a new message
m for a′; and 〈rcv : a, 〈a⇐m〉〉 which models the actor a
receiving a message with contents m (note that communication
is asynchronous).

D. BigActor Model Semantics

BigActors are actors hosted by entities of the structure
(i.e. bigraph nodes denoting the physical entity executing the
corresponding bigActor). A bigActor a hosted by a node h (de-
noted as a@h) is able to perform the regular actor commands
(compute, send messages and create new bigActors) and also
to observe the structure of the world, request control actions
to change the structure, and migrate from one host to another
host. The new three commands are denoted as: observe(q)
for requesting an observation of the bigraph specified with a
query q, control(u) for requesting the execution of a BRR
u, and migrate(h′) for migrating from the current host to h′.

The commands send(a′@h′, m) and migrate(h′) require
the host of the current bigActor (say a@h) to share a link
with h′ in the current bigraph. The reasoning is behind this
semantics choice is that any exchange of data must be carried
by some physical connection in the structure of the world.
This makes the communication structure of bigActors explicit
(contrasting with the topology in the Actor model which is
modeled implicitly by the actor’s addresses that each actor
knows).

The semantics of BigActors is specified by extending the
operational semantics presented in [16]. The BigActor con-
figuration 〈α | µ | η | B〉 extends the Actor configuration
with two new elements: η which is a set of requests, and B
which is the current bigraph. The semantics of the composition
of a set of bigActors α and a bigraph B is asynchronous,
e.g. any interaction between bigActors and bigraphs is first
requested, by adding a new request in η, and later executed.

3The original semantics includes two extra rules for external actors. Since
external actors are not essential for the specification of BigActors we omit
these two rules.

The requests are modeled by a new semantic rule 〈req : r〉
where r can be a send, observe, control, or migrate com-
mands. The semantics includes three new rules for consuming
requests observe(q), control(u), and migrate(h) (respec-
tively, 〈obs : q〉, 〈ctr : u〉, and 〈mgrt : h〉) and introduces
a rule 〈snd : a@h, 〈a′@h′ ⇐m〉〉 that changes the standard
actor rule snd requiring that the hosts h and h′ to share a link.
For a full formalization of bigActors semantics see [18].

BigActors observe the underlying bigraph by requesting
queries locally with respect to their host. A query is interpreted
over a bigraph B with respect to a host h by a map

[[·]]Bh : Q → B

where Q is the set of queries (i.e. the query language) and
B is the universe of bigraphs. In [18] we introduce a simple
query language specified by the following grammar:

query ::= node|children.node|linkedTo.node
node ::= host|parent.node

where:
• [[host]]Bh is interpreted as a bigraph with the h
• [[parent.node]]Bh is interpreted as a bigraph with the

parent of [[node]]Bh
• [[children.node]]Bh is interpreted as a bigraph with all

the children of [[node]]Bh
• [[linkedTo.node]]Bh is interpreted as a bigraph with all

the nodes linked to [[node]]Bh
Note that all queries refer to the host of the bigActor that
is requesting the query. This makes observations “local” with
respect to the the host. For a full formalization of the semantics
of query see [18].

III. CASE STUDY: STRUCTURE CONTROL OF NETWORKED
UNMANNED VEHICLES

Recall Example 1. In this section we introduce a set of bi-
gActors for modeling the interactions between the autonomous
vehicles (i.e. UAVs, ASVs, AUVs) and the remaining structure
of the world. For the sake of keeping the exposition simple
we consider a mission with one UAV, one ASV, one AUV,
and one tanker. The intention of this example is not to model
elaborate controllers but rather to show the basic methodology
and reasoning behind specifying structure-aware entities using
bigActors.

A. Bigraph Reaction Rules
This section is dedicated to model a set of Bigraph Reaction

Rules for equipping bigActors to control the structure of the
system described in Example 1. The bigraphs that model
the structure for this system are specified by the signature
presented in Equation 1. Recall the bigraph of Figure 1 for an
example of a bigraph with such signature.

Figure 2 presents a set of BRRs used for modeling Example
1. We also consider dual rules (where redexes are swapped
with reactums) for TRACK, CON UAV ASV, CON ASV AUV,
and DIVE, called respectively, UNTRACK, DISCON UAV ASV,
DISCON ASV AUV, and SURFACE.

(a) TRACK

(b) CON UAV ASV

(c) CON ASV AUV

(d) DIVE

(e) POLLUTE

(f) SAMPLE

Fig. 2. Bigraph Reaction Rules for the collaborative control example.

The rule in Figure 2(a) models a UAV tracking a oil
tanker. The rule checks for a UAV inside a node of kind Air
and a tanker inside a node of kind Surf. It then creates a
reference point inside the tanker and connects it to the outer
name sensors. The holes (dark grey boxes) allow the rule
to be applied parametrically, i.e. regardless of the remaining
structure abstracted by the holes. For example, one could
apply this rule even if there would be other tankers inside the
Surf node or more UAVs inside Air or even if other UAVs
would be already tracking the tanker. All rules in Figure 2 are
parametric.

The rule in Figure 2(b) models a UAV connecting to a ASV
for enabling communication between both vehicles while the
rule in Figure 2(c) does the same for connecting ASVs to

AUVs. Note that the former allows a UAV to connect to
several ASVs while the latter only allows a point-to-point
communication between ASVs and AUVs. Also note that a
AUV must be on the surface to be able to communicate with
the ASV.

The rule in Figure 2(d) models an AUV diving, i.e. going
from the surface node to the underwater node.

The rule in Figure 2(e) models a tanker polluting by creating
an oil node inside the underwater node while the rule in Figure
2(f) models an AUV sampling an oil spill (modeled by creating
a oil node inside the AUV node).

Example 3. Consider the sequence of bigraphs
B0, B1, . . . , B8 of Figure 6. The sequence of bigraphs
is obtained by applying the following sequence of BRRs
starting at B0: TRACK, CON UAV ASV, DISCON UAV ASV,
CON ASV AUV, DISCON ASV AUV, DIVE, POLLUTE, and
SAMPLE.

The set of BRRs presented in Figure 2 addresses a concrete
example but nevertheless the reasoning used for their formal-
ization can be applied to other missions of heterogeneous
mobile robotics. Next we present some remarks about the
reasoning behind the definition of these rules. We conjecture
that our modeling strategy can be applied to other mobile
robotics domains.

Remark 1. Consider the rule TRACK (Figure 2(a)) where a
node Ref is located inside Tanker. Modeling a tracking
relation using a node as a reference point inside the target
can be used in other domains where an agent uses a sensor
for tracking a non-cooperative target. Note that this modeling
strategy allows several agents to independently track the same
target. We call these kind of interactions as non-cooperative
interactions because no link is shared between the tracking
entity and the target entity.

Remark 2. The rules CON UAV ASV and CON ASV AUV
contrast with the rule TRACK in the sense that they connect
directly two nodes to a link. Connecting nodes that host bigAc-
tors enables interaction by communication. Thus, these rules
enable cooperation between entities. In contrast to the rule in
Remark 1 we call these kind of interactions as cooperative
interactions.

Remark 3. The rule DIVE (and corresponding dual rule
SURFACE) models an entity changing location. One may ar-
gue that these rules are too coarse for modeling motion of
autonomous vehicles. This is indeed not the intention of these
rules. The reasoning is to model location and mobility meaning
logically changing of interaction capabilities. For example,
with the DIVE rule, an AUV “moves” to be able to “sense”
(observe if there is an oil spill) and “moves” to enable control
(sample the water). On the other hand, with the rule SURFACE
a AUV “moves” to be able to interact (in this case connect to
a ASV).

Remark 4. The rules POLLUTE and SAMPLE spawn new
elements on the structure (in this case Oil nodes). The rule

POLLUTE generates new nodes and thus we call it a generator.
The rule SAMPLE generates, in the presence of an Oil node,
another Oil node inside the AUV. We call these kind of rules
as sensing rules.

B. Structure Controllers Specified Using BigActors

The mission of Example 1 is specified using four
bigActors: uavBA@uav, asvBA@asv, auvBA@auv, and
tankerBA@tanker. The specification of each bigActor is per-
formed in a Domain-Specific Language (DSL) implemented in
Scala.

Figure 3 specifies the bigActor uavBA@uav. The bigActor

"uavBA" hosted_at "uav" with_behavior{
control(TRACK)
control(CON_UAV_ASV)
send("asvBA","SAMPLE")
control(DISCON_UAV_ASV)

}

Fig. 3. BigActor uavBA.

uavBA@uav requests a control action for tracking the tanker,
requests to connect with the ASV, sends a message to
the ASV informing that there is a sampling mission to
be performed, and closes the connection with the ASV.
The transitions 〈ctr : TRACK〉, 〈ctr : CON UAV ASV〉,
〈snd : uavBA@uav, 〈asvBA@asv⇐ ”SAMPLE”〉〉, and
〈ctr : DISCON UAV ASV〉 over the execution of Figure 6 are
due to uavBA@uav. For the sake of space we removed all the
transitions due to internal computation of bigActors and keep
only the ones regarding structure manipulation and bigActors
interactions.

Figure 4 specifies the bigActor asvBA@asv. The bigActor

"asvBA" hosted_at "asv" with_behavior{
react{

case "SAMPLE" =>
control(CON_ASV_AUV)
send("auvBA","SAMPLE")
control(DISCON_ASV_AUV)

}
}

Fig. 4. BigActor asvBA.

asvBA@asv waits for a message to be received 4. As
soon as a message is received, the bigActor checks if it
is “SAMPLE”. If so, the bigActor requests to connect to
the AUV, sends a “SAMPLE” message to the auvBA, and
closes the connection. The transitions 〈ctr : CON ASV AUV〉,
〈snd : asvBA@asv, 〈auvBA@auv⇐ ”SAMPLE”〉〉, and
〈ctr : DISCON ASV AUV〉 of the execution of Figure 6 are
due to asvBA@asv.

Figure 5 specifies the bigActor auvBA@auv. The bigActor
auvBA@auv reacts upon two cases: either it receives a message
SAMPLE or it receives an observation. In case of the former
the bigActor requests to dive, and requests an observation with
a query children.parent.host. This query is interpreted as

4The react body waits for a message to come. Messages are pattern-
matched over the set of case definitions. This commands are specific from
the Scala actors library.

"auvBA" hosted_at "auv" with_behavior{
react{

case "SAMPLE") =>
control(DIVE)
observe(children.parent.host)

case obs: Bigraph =>
if (exists Oil in obs) control(SAMPLE)
else observe(children.parent.host)

}
}

Fig. 5. Pseudo-code for the auvBA BigActor.

a bigraph containing all the nodes inside the parent of the
asv (in this case the node under). In case an observation
is received, it is bound to the local variable obs. The bi-
gActor checks if there exists a node of kind Oil in obs.
If so, the bigActor requests to sample the water, otherwise
it requests to observe again. The transitions 〈ctr : DIVE〉,
〈obs : children.parent.host〉, and 〈ctr : SAMPLE〉 of the
execution of Figure 6 are due to auvBA@auv.

The bigActor tankerBA@tanker requests non-
deterministically control actions with POLLUTE BRR.
For the sake of space we do not represent the bigActor.
Note that one can think of tankerBA@tanker as modelling
an adversary environment. The transition labelled with
〈ctr : POLLUTE〉 is due to tankerBA@tanker.

IV. TESTBED AND IMPLEMENTATION PLAN

We finished the first implementation of the BigActor DSL
implemented in Scala and we are currently investigating its
binding to a robotics middleware. We are considering the
Willow Garage Robotics Operating System (ROS) and Dune
[11], a middleware developed at University of Porto. We
are planning to demonstrate the use of bigActors to specify
controllers for heterogeneous unmanned vehicles performing
an environmental monitoring mission.

We are planning to deploy the system using the Portuguese
Air Force Academy (AFA)/University of Porto (UP) testbed
for unmanned vehicles (known as PITVANT). This testbed
includes several kinds of fixed-wing UAVs with wingspan
ranging from 1 to 6 meters. In the summer of 2012, during the
Portuguese Navy exercise REP12, some of these UAVs were
used to demonstrate a mission of searching and tracking com-
mercial vessels. The demonstration was join effort between
AFA, UP and UC Berkeley. The mission was performed using
the Extended UAV (see Figure 7) offshore of Santa Cruz, Por-
tugal. See [3] for further details about the PITVANT testbed.
The Underwater Systems and Technologies Laboratory of UP
has been also developing small AUVs [12], and ASVs [5] that
can also be used for this effort.

V. CONCLUSIONS

In this paper we investigate the use of the BigActor Model
[18] for modelling and controlling the structure of heteroge-
neous mobile networked robotic systems.

We show how to use bigActors to model mobile robotic
entities that are able to perform internal computation, commu-
nicate with other entities by asynchronous-message passing,
request control actions to change the structure of the world

Fig. 6. An execution of the collaborative control example.

Fig. 7. AFA/UCB/UP Team with the Extended UAV at REP12 exercise,
Santa Cruz, Portugal.

and query the structure of the world for observations. The
structure of the world is abstracted using bigraphs providing
a notion of “location” and “connectivity” of robotic entities.

We used a simple case study of autonomous vehicles
performing a environmental monitoring mission. With this
example we present our heuristics for abstracting the structure
of heterogeneous mobile robotic systems.

As future work we plan to bind our BigActor DSL to a
robotics middleware (e.g. ROS, Dune, etc.) and demonstrate
our methodology for modelling and controlling the structure
of robotic networks in the PITVANT testbed. We also plan to
generalize the structure formalism introduced in this paper (i.e.
bigraphs and BRRs) to address a wider spectrum of mobile
robotic systems.

REFERENCES

[1] G. Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[2] G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7(1):1–72, 1997.

[3] J. de Sousa, G. Gonçalves, A. Costa, and J. Morgado. Mixed initiative
control of unmanned air vehicle systems: the pitvant r&d uav program.
Technical report, 2010.

[4] A. Deshpande, A. Gollu, and L. Semenzato. The shift programming lan-
gauge for dynamic networks of hybrid automata. In IEEE Transactions
on Automatic Control, volume 43. April 1998.

[5] H. Ferreira, R. Martins, E. Marques, J. Pinto, A. Martins, J. Almeida,
J. Sousa, and E. Silva. Swordfish: an autonomous surface vehicle for
network centric operations. In OCEANS 2007-Europe, pages 1–6. IEEE,
2007.

[6] G. Kahn and D. B. Macqueen. Coroutines and networks of parallel
processes. In Information Processing 77, pages 993–998. North Holland
Publishing Company, 1977.

[7] S. Karaman, S. Rasmussen, D. Kingston, and E. Frazzoli. Specification
and planning of uav missions: a process algebra approach. In American
Control Conference, 2009. ACC ’09., pages 1442 –1447, june 2009.

[8] F. Kratz, O. Sokolsky, G. Pappas, and I. Lee. R-charon, a modeling
language for reconfigurable hybrid systems. In Lecture Notes in
Computer Science, pages 392–406. Springer-Verlag, 2006.

[9] J. Love, J. Jariyasunant, E. Pereira, M. Zennaro, K. Hedrick, C. Kirsch,
and R. Sengupta. Csl: A language to specify and re-specify mobile
sensor network behaviors. In Real-Time and Embedded Technology and
Applications Symposium, 2009. RTAS 2009. 15th IEEE, pages 67–76.
IEEE, 2009.

[10] S. Martinez, J. Cortes, and F. Bullo. Motion coordination with distributed
information. Control Systems, IEEE, 27(4):75–88, 2007.

[11] R. Martins, P. Dias, E. Marques, J. Pinto, J. Sousa, and F. Pereira.
Imc: A communication protocol for networked vehicles and sensors.
In OCEANS 2009-EUROPE, pages 1–6. IEEE, 2009.

[12] A. Matos, N. Cruz, J. Borges de Sousa, and F. Lobo Pereira. Auv and
rov developments at porto university. In IFAC Workshop of Modelling
and Analysis of Logic Controlled Dynamic Systems, 2003.

[13] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3):267 – 310, 1983.

[14] R. Milner. Communicating and mobile systems: the π-calculus. Cam-
bridge Univ Press, 1999.

[15] R. Milner. The Space and Motion of Communicating Agents. Cambridge
University Press, 2009.

[16] B. Nielsen and G. Agha. Semantics for an actor-based real-time
language. Proceedings of the 4th International Workshop on Parallel
and Distributed Real-Time Systems, pages 223–228, 1996.

[17] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and Coop-
eration in Networked Multi-Agent Systems. Proceedings of the IEEE,
95(1):215–233, Jan. 2007.

[18] E. Pereira, C. Kirsch, R. Sengupta, and J. Borges de Sousa. Bigactors - a
model for structure-aware computation. In 4th International Conference
on Cyber-Physical Systems. ACM/IEEE, April 2013.

[19] E. Pereira and J. Sousa. Reallocations in teams of uavs using dynamic
programming and mixed initiative interactions. In Autonomous and
Intelligent Systems (AIS), 2010 International Conference on, pages 1–6.
IEEE, 2010.

[20] SkyTruth. Bilge dumping? busted using satellite images and ais data.
http://blog.skytruth.org/2012/06/bilge-dumping-busted-using-satellite.
html, June 2012.

[21] SkyTruth. Bilge dumping off vietnam. http://blog.skytruth.org/2012/02/
bilge-dumping-off-vietnam-february-22.html, Feb. 2012.

