
A Workload-oriented Programming Model for
Temporal Isolation with VBS?

Silviu S. Craciunas, Christoph M. Kirsch, and Ana Sokolova

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. Workload-oriented programming is a design methodology for
specifying throughput and latency of real-time software processes in tem-
poral isolation from each other on the level of individual process actions
such as system or procedure calls. The key programming abstraction is
that the type and amount of workload involved in executing a process
action fully determines the action’s response time, independently of any
previous or concurrent actions. The model enables sequential and con-
current real-time process composition while maintaining predictability of
each action’s workload-determined real-time behavior. We show how the
model can be implemented using variable-bandwidth servers (VBS) and
discuss performance-related options for adequately configuring servers in
the presence of non-zero scheduler overhead.

1 Introduction

Real-time software processes typically process data under known or estimated
temporal application requirements and resource constraints. Application require-
ments are, for example, the usually throughput-oriented rates at which video
frames in an MPEG encoder must be processed, or the mostly latency-oriented
rates at which sensor data in a control system must be handled. Resource con-
straints might be the maximum rate at which data can be analyzed or written to
a harddisk. Both application requirements and resource constraints in turn can
often directly be related to the workload, in particular, the type [1] and amount of
the involved data. For example, a real-time process that compresses video frames
usually needs to process a given number of frames within some finite response
time. Similarly, resource constraints may be characterized by the execution time
it actually takes to process a given number of frames. Workload-oriented pro-
gramming is a design methodology for expressing such workload-determined tem-
poral application requirements and resource constraints (Section 2). Variable-
bandwidth servers (VBS) [2] can be used to implement workload-oriented pro-
gramming and, as a result, provide temporal predictability (Section 3), but re-
quire non-trivial server configuration for proper performance in the presence of
non-zero scheduler overhead (Section 4).
? Supported by the EU ArtistDesign Network of Excellence on Embedded Systems

Design and the Austrian Science Fund No. P18913-N15 and V00125.

2 Programming Model

For an example of workload-oriented programming consider Figure 1, which
shows the pseudo-code implementation of a real-time software process P .

loop {
int number of frames = determine rate();

allocate memory(number of frames);
read from network(number of frames);

compress data(number of frames);

write to disk(number of frames);
deallocate memory(number of frames);
} until (done);

Fig. 1. A real-time software process P

The process reads a video
stream from a network
connection, compresses it,
and finally stores it on
disk, all in real time.
The determine rate and
compress data procedures
implement process func-
tionality and are therefore
referred to as process code.
The other procedures are
system code. In our process
model, we call an invoca-
tion of process or system
code an action of the invok-

ing process. An action has an optional workload parameter. In the example, P
has five actions with the same workload parameter, which specifies the number
of frames to be handled. The parameter may be omitted in actions that only
involve process code if the action’s time complexity is constant or unknown. The
determine rate action does not have a workload parameter because the action
always executes in constant time. For unknown complexity, an omitted workload
parameter implicitly represents CPU time, see below for more details. For each
action, there are two discrete functions, fR and fE , which characterize the ac-
tion’s performance in terms of its workload parameter. Figure 2 shows example
functions for the allocate memory action.

9.8 ms

100 ms

dR
dE

time(ms)

dR = 4 ms

number of frames

dE = 200µs

cU = 10%

fE(w) = 0.4w + 0.2

fR(w) = 4w + 4

0 4 8 12 16 20 24

Fig. 2. Timing of the allocate memory action

The response-time (RT) func-
tion fR : RD → Q+ character-
izes the action’s response time
bound for a given workload, in-
dependently of any previous or
concurrent actions. The domain
RD of the RT-function is the
set of workloads, which is any
linearly ordered set [1]. In our
example, fR is a linear func-
tion with RD = N, which shows
that allocating memory, e.g., for
24 frames, may take at most
100ms, even when interrupted by other concurrent processes. RT-functions map
any workload to a non-zero, positive bound of which the smallest is the action’s
intrinsic response delay dR. In the example, dR = 4ms.

RT-functions help trading off throughput and latency. For example, if mem-
ory is allocated latency-oriented, say, just for a single frame, the response time
is only at most 8ms but the resulting allocation rate merely provides enough
memory for 125 frames per second (fps) if the action were invoked repeatedly as
fast as possible. If memory is allocated throughput-oriented, say, for 24 frames
at once, there could be enough memory for at least 240fps because dR plays
a smaller role, but the action’s response time would also increase to 100ms in
the worst case. For non-branching processes, one can derive an RT-function for
the whole process, whereas RT-functions of processes with branching control
flow may in general just be approximated, or described more accurately but in
languages richer than plain arithmetics, c.f. [3].

An RT-function provides an upper bound on an action’s response time. In
order to trade off responsiveness for determinacy, one can also view the bound
as both upper and lower bound, similar to the notion of logical execution time
(LET) [4]. In this case, not considered here, one gets a logical-response-time
(LRT) function.

The execution-time (ET) function fE : ED → Q+ characterizes the action’s
execution time bound for workloads in the action’s execution domain ED ⊆ RD,
in the absence of any concurrent actions. In the example, fE is also a linear
function with ED = N, which states that allocating memory, say, again for 24
frames, may take up to 9.8ms if not interrupted by any other process. Similar to
RT-functions, ET-functions map any workload to a non-zero, positive bound of
which the smallest is the action’s intrinsic execution delay dE . In the example,
dE = 200µs since fE(w) ≥ 200µs for all w ∈ ED, which means that allocating
memory may take at least 200µs on any workload, if not interrupted.

The notion of worst-case execution time (WCET) can be seen as a special
case of ET-functions that map to a constant execution time bound for all work-
loads. In turn, this means that determining ET-functions requires parametric
forms of WCET analysis, e.g., as in [5]. Moreover, not all actions may be ET-
characterized, i.e., compositional, on large execution domains. For example, the
temporal behavior of write accesses to harddisks is known to be unpredictable
just in terms of the workload. However, even such actions may be properly ET-
characterized by limiting workloads to smaller execution domains.

The ratio between fE and fR induces a discrete (partial) utilization function
fU : ED → Q+

0 with:

fU (w) =
fE(w)− dE

fR(w)− dR

assuming there is zero administrative overhead for handling concurrency. In the
example, fU is a function that maps any workload w ∈ N+ to a constant cU = 0.1
or 10% CPU utilization when allocating memory. In general, only workloads w ∈
ED with 0 ≤ fU (w) ≤ 1 (and ratios 0 ≤ dE/dR ≤ 1) may be handled properly.
We call the set of such workloads the action’s utilization domain UD ⊆ ED. Even
if fU (w) is not constant for all w ∈ UD, there is still a minimal upper bound cU
such that fU (w) ≤ cU for all w ∈ UD. This allows for a conservative but fast
cU -based schedulability test.

Recall that workload parameters are omitted in actions that only involve pro-
cess code but have unknown time complexity. In this case, RT-functions directly
determine the resulting CPU utilization. For example, consider a process that
invokes process code with an unknown execution time. Then, the RT-function
translates CPU time into real time by stating that, e.g., 10ms CPU time may
take up to 100ms real time. The result is 10% CPU utilization since the ET-
function is simply the identity function from CPU time to real time.

3 Variable-Bandwidth Server for Predictability

Figure 3 shows possible executions of the allocate memory action on workloads
of up to four frames. Consider the action when invoked on four frames where
the response time is 20ms. The scheduler could in principle immediately release
the action with a 20ms-deadline and apply earliest-deadline-first (EDF) schedul-
ing. This strategy would, however, involve schedulability tests that depend on
action invocation times and thus require analyzing process implementations and
interactions. To avoid this and ensure programmable temporal isolation we use
the concept of Variable-Bandwidth Servers (VBS) [2] for process scheduling.

}

0 1 2 3 4

time(ms)

λ

π

number of frames

4

8

16

20

12

2

fR

Fig. 3. The execution of allocate memory

With VBS there is one server
per process controlling the ex-
ecution of process actions. Each
action is assigned a virtual pe-
riodic resource R [6], which is a
pair of a period π and a limit λ:
an action using R will be sched-
uled for at most λ time units
each π time units. The resource
bandwidth is the ratio of limit
over period. A VBS can change
resources from one action to an-
other under the restriction that

the bandwidth of any used resource stays below a given per-server bandwidth
cap. In the example, the resource used by the allocate memory action has a
period of 2ms and a limit of 200µs. Upon arrival, the action is delayed until
the beginning of the next period, unless the arrival time coincides with a period
instance. All released actions are then EDF-scheduled using their resources’ pe-
riods as deadlines and their resources’ limits as durations. When an action has
exhausted the limit, it is delayed until the beginning of the next period when it is
released again, and so on, until the action completes. In the example, the action
executes for nine periods after being delayed in the first period and completes
in the tenth period. Finally, the completed action must be terminated by the
scheduler, which happens at the end of the period in which the action completed,
i.e., the tenth period in the example. In total, the action is scheduled for up to
1.8ms, which is exactly its execution time bound for four frames.

The duration from the action’s arrival until its termination for all workloads
is given by the scheduled-response-time (SRT) function fS . For all w ∈ ED, we
have that:

π ·
⌈
fE(w)
λ

⌉
≤ fS(w) ≤ π − 1 + π ·

⌈
fE(w)
λ

⌉
if

∑
P

max
R

λ

π
≤ 1,

i.e., if the system utilization through the most-utilized resources R of each pro-
cess P is less than or equal to 100% [7]. The upper bound (yellow step function
in Figure 3) occurs if the action arrives one time instance after a period has
begun. The lower bound for fS (green step function in Figure 3) occurs if the
involved action arrives exactly at the beginning of a new period.

4 Server Design for Performance

The server design problem is the problem of finding the right π for a given
action. Given a value for π we then set λ = π ·cU . The goal is that the scheduled
response time fS approximates the specified response time fR best.

We have that fS(w) ≤ fR(w) + π if π divides dR evenly, i.e., π | dR, and

0 < π ≤ dR −
dE

cU

This is true even if π does not divide dR evenly, but only for π less than or
equal to half of the upper bound. The constraint is a sufficient condition, which
ensures that at least the dE portion of an action’s invocation will be completed
within dR time even when the first period of the invocation is not used. In
our example, the upper bound is 2ms, which would come down to, say, 1ms if
dE were increased to 300µs. Note that, with dE approaching 400µs, i.e., 10%
utilization, π would have to become zero because of the potentially unused first
period. In order to have that fS(w) ≤ fR(w) actually holds, π also needs to
divide the remaining response time fR(w)− dR evenly, i.e., π | (fR(w)− dR) or
equivalently λ | (fE(w)−dE), which is true in the example. In general, checking
this constraint may be difficult, in particular, on unbounded utilization domains,
but is easy in case fR or fE are linear functions with RD = N. For example, if
fR(w) = aR · w + dR, then π | (fR(w)− dR) for all w ∈ N if and only if π | aR.

No scheduler overhead. If we assume zero scheduler overhead, the best is to
choose the smallest π possible, as this samples the specified response time best
(fS approximates fR best). Moreover, as can be seen from the bounds, the
scheduled-response-time jitter is π − 1, so smaller π mean less response-time
jitter.

With scheduler overhead. In a real system with non-zero scheduler overhead,
smaller π lead to more scheduler overhead. However, one can either account for
the overhead in increased CPU utilization maintaining the scheduled response

time of actions (utilization accounting), or one can maintain CPU utilization by
accounting for the overhead in increased response times of the actions (response
accounting), or finally one can also combine both [8]. In all cases, it is important
to estimate the number of scheduler invocations. For an action α with a virtual
periodic resource (λ, π), the number of scheduler invocations in every period is
bounded by dπ/ gcd(Π)e + 1 where the Π denotes the set of all periods of all
actions that may execute in parallel with α. Hence, the scheduler overhead is
not only dependent on the period of an action but also on (almost) all other
periods in the system, more specifically on the gcd of (almost) all other periods
in the system. Thus, when choosing a period for an action we must consider the
trade-off between response time approximation and scheduler overhead. If the
CPU utilization leaves enough room for the scheduler overhead to be accounted
for in increased CPU utilization, we can choose π for each action in such a way
that the scheduled response time best approximates the specified response time.
Otherwise, the scheduled response time of each process will increase as a result of
response accounting. Intuitively, it is desirable to have large harmonic periods in
the system which are small enough to approximate the specified response time.

A way out may be a higher-level scheduler that diverges from standard VBS
scheduling (with a fixed resource per action). The higher-level scheduler would
select a small period for the first part of an action (because the first period is
waiting time) and a large period for the remaining part. In the example given in
Figure 3, the first period would remain 2ms but then, depending on the workload,
the remaining periods would be lumped together into one large period. This
both maintains the scheduled response time of the action and may decrease the
number of scheduler invocations, however, at the expense of potentially increased
response-time jitter.

References

1. Chakraborty, S., Kirsch, C. Generalized from [7] inspired by private communication
(2009)

2. Craciunas, S., Kirsch, C., Payer, H., Röck, H., Sokolova, A.: Programmable temporal
isolation through variable-bandwidth servers. In: Proc. SIES. (2009)

3. Chakraborty, S., Thiele, L.: A new task model for streaming applications and its
schedulability analysis. In: Proc. DATE. (2005)

4. Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: A time-triggered language for
embedded programming. Proc. of the IEEE 91(1) (2003) 84–99

5. Bernat, G., Burns, A.: An approach to symbolic worst-case execution time analysis.
In: Proc. 25th Workshop on Real-Time Programming. (2000)

6. Shin, I., Lee, I.: Periodic resource model for compositional real-time guarantees. In:
Proc. RTSS. (2003)

7. Craciunas, S., Kirsch, C., Röck, H., Sokolova, A.: Real-time scheduling for workload-
oriented programming. Technical Report 2008-02, University of Salzburg (2008)

8. Craciunas, S., Kirsch, C., Sokolova, A.: Response time versus utilization in scheduler
overhead accounting. Technical Report 2009-03, University of Salzburg (2009)

