
Work in Progress: Adaptive Scheduling with
Approximate Computing for Audio Graphs

Pierre Donat-Bouillud
Sorbonne Université/STMS/Inria

Paris, France
pierre.donat-bouillud@ircam.fr

Christoph M. Kirsch
University of Salzburg

Salzburg, Austria
ck@cs.uni-salzburg.at

I. INTRODUCTION

Interactive Music System (IMS) are highly dynamic pro-
grammable authorship systems that combine audio processing
and control in real-time in an audio graph. Audio graphs
combine several dependent signal processing nodes in an
online reconfigurable graph with soft real-time constraints (but
more stringent than for video for example).

Composers and musicians mainly use these IMS on main-
stream operating systems such as Windows or Linux, where
a reliable estimation of the worst execution time (WCET) is
difficult, due to complex cache hierarchies, lack of real-time
schedulers, lack of temporal isolation between tasks, and the
difficulty to predict which tasks are executed at any time.

Hence, we do not assume that we know the WCET of tasks,
but we react to the changes in the execution environment,
by adapting the execution time of a task with approximate
computing. We do not only have to degrade one node, but
to choose which nodes to degrade, while preserving real-
time constraints. In the context of signal processing nodes,
nodes are considered to be black boxes and degradations only
occur on the data streams between boxes: degradations can be
resampling or substituting a node by another version.

If we consider that time is a resource, in real-time systems,
time is often the only resource that is degraded (i.e. by missing
a deadline). Here, we also degrade other ones, and want to
make explicit the tradeoff among various quality metrics of
the task, such as the sample rate.

We have started to investigate how nodes to be degraded
can be chosen at execution time, online. The scheduler must
be overhead-aware, and we aim at keeping the computations
of the scheduler as low as possible. A model well suited for
describing signal processing tasks and the streams between
nodes is the dataflow paradigm. We will show how we can
adapt approximate programming to a dataflow graph.

Our contributions are the following ones:
• integrate degradations in the dataflow paradigm,
• how to choose which nodes to degrade online,
• overhead-aware degradations

II. BACKGROUND AND MOTIVATIONS

A. Interactive music systems
IMSs deal with audio streams and are used to perform

pieces, described by programs also called scores, during a

concert in real-time by combining various audio effects. They
have to deal with signal processing, with filling audio buffers
periodically and sending them to the soundcards, and controls,
that can be aperiodic (such as GUI change) or periodic (such
as a low frequency oscillator). Puredata [1] is an IMS that
graphically shows the audio graph but makes it difficult to
change it dynamically. Other IMS are more dynamic, such
as ChucK [2]. In Antescofo [3], a computer and a musican
interact on stage.

B. Real-time constraints for audio

The soundcard requires audio samples to be written in
its input buffer periodically. For example, for the usual CD
sampling rate of 44.1 kHz, and a buffer size of 64 samples,
the audio period is 1.45 ms. Depending on the targeted latency
and the resources of the platform, the buffer size ranges from
as little as 32 samples for audio workstations to 2048 samples
for some Android phones.

Audio real-time constraints are soft real-time, but the real-
time requirements are more stringent than for video. For video
streams, dropping a frame does not entail a visible decrease
in quality, and thus is used in a lot of video streaming [4]
protocols. On the contrary, missing a deadline for an audio
task is immediately audible.

a) Underrun: The audio driver uses a ring buffer the size
of which is a multiple of the size of the audio soundcard. If the
audio task misses a deadline, it does not fill the audio buffer
quickly enough. It is called a buffer underflow. Depending on
the implementation, previous buffers are replayed (so-called
“machine gun” effect) or silence is played, leading to cracky
audio and clicks due to discontinuities in the audio signal.

b) Overrun: In the same way, filling the audio buffer too
quickly will entail audible discontinuities in the output sound.

C. Related work

Some approaches have tackled adaptive scheduling, either
by discarding tasks entirely, or by degrading them.

a) Approximate computing: It is a paradigm of compu-
tation that allows some errors in computations to improve
performance. It relaxes absolute correctness to correctness
with a quantified error. The goal is to design systems with
a favourable quality vs performance or energy tradeoff. A
coarse grain strategy [5] can consist of dividing tasks into



a mandatory part and a discardable optional part. This makes
it easier to schedule tasks in real-time, with low-overhead,
but does not take into account dependencies between tasks.
Another computation model [6] uses a graph to represent
a programs and generates approximate versions given an
error bound. Accuracy-aware transformations are separated
into two classes: substitution transformations and sampling
transformations. This model does not natively embed time
constraints and requires a preliminary phase of profiling, and
hence cannot help for dynamic graphs.

b) Resource reservation: A fraction of the CPU process-
ing power is reserved [7] to some tasks. It works well for
different competing tasks: for multimedia for instance, video
tasks and audio tasks can have various reservations as audio
tasks are more real-time than video tasks (see Subsection II-B).
However, resource reservation does not deal well with identical
tasks competing for resources that would require a higher
fraction of the CPU.

c) Mixed criticality: In mixed criticality systems [8], the
high criticity tasks must be scheduled imperatively, contrary
to the low criticality ones, that can be discarded if it could
entail missed deadlines for the high criticality ones. In our
case though, all the tasks have the same criticality.

III. MODEL OF AN AUDIO GRAPH

We want to model an audio graph, for which audio streams
flow from input to output at different rates depending on the
requirements of the nodes of the graph. The dataflow model [9]
is well suited to represent such tasks with data dependencies.
Here, we do not limit ourselves to synchronous dataflow where
the rates of the tasks are fixed. However, the dataflow model
does not take time into account, so we will consider a timed
dataflow model, where we precise when and how long a task
can be executed.

A. The dataflow model

The dataflow model is data-driven. Dataflow graphs are
directed graphs where nodes are computations, and arcs are
data paths. Data is represented as sequences of tokens. The
execution is based on the availability of tokens on the input of
a given node. A node can fire when there is enough tokens on
its input. In the context of audio processing, the audio signal
is sampled at periodic intervals. These samples correspond to
the tokens in the dataflow model.

The nodes without inputs ports are called inputs: they are
typically audio stream generators. The nodes without output
ports are the outputs: they are audio sinks, to the audio sound
card for instance. Node that are neither inputs or outputs are
called effects.

B. The timed dataflow model

A dataflow graph does not describe the time instants of
firing, but only their partial ordering. However, dataflow
graphs are often used to describe real-time processing, for
instance, digital signal processing. For the CDs with a 44.1
kHz sampling rate, there is one sample every 1

44100 seconds.

In the following, input nodes are given firing dates, and all
the nodes in the dataflow graph get a current execution time
Te and a mean execution time (MET) Me. The output nodes
are given deadlines, which correspond to when the soundcard
requires samples.

IV. QUALITY

The quality of an audio graph is a subjective and relative
concept: does this version of the graph sound better or worse
than this other one? But comparing degraded and normal ver-
sions is not suited for real-time execution. We rather compute
an a priori quality measure based on some parameters of
the computations. The quality should also be a compositional
measure: the quality of a graph should be computable given
the quality of its nodes and edges.

Each node e of the graph is given a quality function qe.
a) Composing quality: Given two nodes e and e′ such

that e → e′, if we note t the input data on e and t′ the output
data of e′, we note:

qe→e′ = qe(t, e(t))⊗ qe′(e(t), t
′)

⊗ is associative but not commutative in general.
For a chain e1 → · · · → en, we will assume that qe1→e2 ≤

min{qe1 , qe2}, that is to say, the quality never increases on a
path.

The quality qG of graph G is derived in the same way for all
its chains and as the minimum of the quality of every chains
that it is composed of.

A. Degrading quality

In a dataflow graph, nodes receive samples and then process
them when they have got enough to be fired. Hence, if a node
receives samples less often, it will use less processing time.
This operation of changing the number of samples is common
in digital signal processing, and is called resampling: less
samples is downsampling; more, oversampling. To resample,
we insert nodes that will change the rate of producing or con-
suming samples. These resampling nodes are normal nodes:
they may interpolate values, copy values between buffers.
Hence they also have a quality measure and a MET to take
the overhead of this degradation into account.

If we insert a downsampling node, all the nodes that are on
a path starting on this nodes will process on a downsampled
stream. In case of an output node dictating a specific sample
rate, we also have to insert an oversampling node.

B. Measuring the quality

We measure qe a priori: the lower the sample rate, the lower
the quality. When audio is output too late, we get a click, a
discontinuity (see Subsect. II-B). On the contrary, if the audio
stream had been downsampled, there would have been some
samples, non-zero values. Thus we assume that a lower sample
rate yields a better quality than a discontinuity.



C. Estimating the error on the whole graph

We degrade a chain C of processing nodes e1, . . . , en by
downsampling. Let edown and eup the node that respectively
downsamples at the beginning of the chain, and upsamples at
the end of it. According to the beginning of IV, the error is
qC = qedown→···→eup .

Regarding the processing time of the whole chain, it is at
least divided by the downsampling factor r (for instance 2 to
downsample from 96 kHz to 48 kHz), as the processing time of
a node is no more than linear in the number of input samples:
real-time audio programmers always enforce this maximum
complexity, and so we assume it here. The whole processing
time becomes:

Tedown +
1

r

n∑
i

Tei + Teup

V. DEGRADING THE WHOLE GRAPH

The tasks are dependent tasks and dependencies are given by
the audio graph. We can find the schedule with a topological
sort on the graph (which means that we assume that the
audio graph is acyclic). We estimate the expected remaining
execution time before executing each node of the graph by
using the MET of each node. Before executing each node, we
check whether the expected remaining time is smaller than the
actual remaining time, with the deadlines given by the outputs.
After executing a node, its MET is updated.

We have started to investigate how to degrade the graph
online, for a dynamic real-time audio graph. Finding the
best tradeoff between quality and lateness is an optimization
problem, it may be too costly to solve optimally for real-time
systems.

a) Transient overload: A first observation is that given a
chain of the same processing nodes, it is better to degrade the
nodes at the end of the chain than the nodes at the beginning,
due to the property that quality never increases on a chain
(see Sect. IV). Another heuristic is to try to minimize the
number of resampling nodes we add, while maximizing the
number of nodes that are degraded, in order to minimize the
degradation overhead. It means that the number of branches
to be degraded should be minimized, and thus we explore the
graph one branch at a time.

The algorithm works as follows: check before executing
every node if there is enough time before the deadline. If not,
look for nodes to degrade among the ones that have not been
executed, starting from the last one in an arbitrary branch,
and traversing the graph backward, and adding other branches,
until the deadline violation is prevented. Finally, downsampler
and upsampler nodes are inserted.

b) Permanent overload: In case of permanent overload,
we can reuse the degraded version previously used, instead of
computing it again.

VI. EXPERIMENTS

The degradation algorithm has been implemented on a
custom audio graph application written in Rust. We use lib-

samplerate1 to handle the resampling. It provides 5 converters
with various qualities.

In our experiments, with 2000 modulator nodes on a simple
chain on a Macbook Pro with a 2.6 GHz Intel Core i7
processor and 8 Gb of RAM, the scheduler has enough time to
detect that a deadline violation could occur and to degrade the
graph. The overhead was on average 1,25 % of the load for
2000 nodes. However, the complexity of choosing the nodes
and updating the remaining times is linear in the number of
the nodes.

VII. CONCLUSION AND PERSPECTIVES

We have devised an online algorithm to degrade nodes
in a dataflow graph, to reach a tradeoff between quality
and lateness. In case of permanent overload, as soon as we
execute the first node in the graph, we know that we have to
degrade some nodes. It means that we could use pre-computed
optimal degraded versions of the graph and switch to them
directly. The online algorithm is still useful in case of transient
overload, which is detected when executing an arbitrary node
in the graph. We cannot store all possible degraded graphs for
a given audio graph and so we are working on using a hybrid
online and offline computation of the degraded versions of the
graph. We want to validate the work on more comprehensive
experiments with random graphs and also typical graphs for
IMS. The next step would be to add the degradation algorithm
to an existing IMS; we have started to implement it in an open
source IMS, Puredata.

ACKNOWLEDGEMENTS
This work has been supported by the National Research Network RiSE on

Rigorous Systems Engineering (Austrian Science Fund (FWF) Grant S11404-
N23 and S11411-N23), by ENS Rennes, and by Inria.

REFERENCES

[1] M. Puckette, “Using pd as a score language,” in Proc. Int. Computer
Music Conf., September 2002, pp. 184–187. [Online]. Available:
http://www.crca.ucsd.edu/∼msp

[2] G. Wang, “The chuck audio programming language.” a strongly-timed and
on-the-fly environ/mentality”,” Ph.D. dissertation, Princeton University,
2009.

[3] J. Echeveste, A. Cont, J.-L. Giavitto, and F. Jacquemard, “Operational
semantics of a domain specific language for real time musician–computer
interaction,” Discrete Event Dynamic Systems, vol. 23, no. 4, pp. 343–383,
2013.

[4] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over http,” in Pro-
ceedings of the second annual ACM conference on Multimedia systems.
ACM, 2011, pp. 157–168.

[5] J. W. Liu, K.-J. Lin, W. K. Shih, A. C.-s. Yu, J.-Y. Chung, and W. Zhao,
Algorithms for scheduling imprecise computations. Springer, 1991.

[6] Z. A. Zhu, S. Misailovic, J. A. Kelner, and M. Rinard, “Randomized
accuracy-aware program transformations for efficient approximate com-
putations,” in ACM SIGPLAN Notices, vol. 47, no. 1. ACM, 2012, pp.
441–454.

[7] K.-E. Årzén, V. Romero Segovia, S. Schorr, and G. Fohler, “Adaptive
resource management made real,” in 3rd Workshop on Adaptive and
Reconfigurable Embedded Systems, 2011.

[8] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, 2013.

[9] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

1http://www.mega-nerd.com/SRC/


