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Abstract
Imagine a world in which virtually everyone at least in-
tuitively understands the fundamental principles of infor-
mation and computation. However, computer science, in
research and in education, is still a young field compared to
others and lacks maturity despite the enormous demand cre-
ated by information technology. To address the problem we
would like to encourage everyone in the computer science
community to go back to their favorite topic and identify the
absolute basics that they feel are essential for understanding
the topic. We present here our experience in trying to do just
that with programming languages and runtime systems as
our favorite topic. We argue that understanding the construc-
tion of their semantics and the self-referentiality involved
in that is essential for understanding computer science. We
have developed selfie, a tiny self-compiling C compiler, self-
executing MIPS emulator, and self-hosting MIPS hypervi-
sor all implemented in a single, self-contained file using a
tiny subset of C. Selfie has become the foundation of our
classes on the design and implementation of programming
languages and runtime systems. Teaching selfie has also
helped us identify some of the absolute basics that we feel
are essential for understanding computer science in general.

CCS Concepts • Applied computing → Education; •
Software and its engineering → Compilers; Interpreters;
Virtual machines;
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1 Introduction
This is a very personal piece. It is about how I hope com-
puter science could be taught to more students, including
the ones not majoring in computer science, and eventually
even school children. What I describe here reflects how I
learned about computer science and how I understand it ever
since I started coding 35 years ago. But it is also about how
I see things more clearly now after working in automated
theorem proving, model checking, embedded and real-time
systems, and concurrency and memory management. Never-
theless, I am neither a formal methods nor a systems person,
and certainly not a programming language expert. This is
important because I do a lot of cherry picking from all these
fields while dismissing everything else potentially stepping
on everyone’s toes in the end. I like formal methods but I
do not like complexity, especially in teaching. I really like
engineering but only principled. The best, I think, is to do
formal methods and principled engineering at the same time.
So, the story goes like this.

Three years ago a colleague of mine at UC Berkeley asked
me if I was interested in visiting him and teach computer
science to graduate students for one semester in the civil
engineering department. The idea was to have a computer
scientist expose engineering students to a range of basic
computer science topics. I gladly accepted the offer, prepared
the class, and began teaching around 20 students in the Fall
of 2014. It only took one week of teaching until I realized
that my expectations on prior knowledge exceeded reality
by far. I had to change my plans completely.
It turned out that the students were all coding every day

without adequate formal training. I asked the students how
they do it. The answer was: stackoverflow.com! They were
following a simple development process: 1. search the Inter-
net for answers and code, 2. copy-paste code that appears
to be reasonable, 3. adapt and integrate that code until it
“works”. Most students appeared to me as quite unhappy
about that choice but they nevertheless did not see any alter-
natives. There appeared to be little hope to gain the level of
knowledge and confidence they were used to in their actual
field of study.

That experience forced me to go back to the material I had
been teaching for ten years and simplify it to the most basic
level possible. This article is about that experience and its
outcome. The most striking result is that being forced to be
truly basic rather than comprehensive in teaching computer
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science does not only produce new non-trivial insight even
into long established material but also reveals that very few
absolute basics are sufficient and still get us surprisingly far.
The key observation with the engineering students was

that they only had a vague understanding of the software
they were developing even though they were all very bright
and highly motivated. Sure, some of the software included
non-trivial concurrent, distributed, and even real-time code
but the problem was there even with sequential code. So, the
question was and still is how to teach students computer sci-
ence within a reasonable amount of time that leaves enough
room for other fields of study. This question is of course
not new and there have been many attempts at answering it
which I discuss below.

For our attempt, we decided to go through my personal
teaching material on systems engineering (architecture, com-
pilers, operating systems, virtual machines) and theory of
computation (logic, formal languages, automata theory, com-
putability, algorithmic complexity) to see if there is a more or
less linear path of absolute basics that the students need to
know to understand the software they are developing. Iden-
tifying these basics turned out to be a lot more difficult than
I thought and made me rethink how I teach all my classes,
in particular my compiler and operating systems classes.
Eventually, I found myself developing an open-source

software system called selfie1 which helps me answer the
question that I believe plays a key role in understanding
computer science: How is the semantics of a formalism cre-
ated by a machine and in particular how is self-referentiality
involved in that process ultimately resolved?
Selfie helps answering that question using three well-

established techniques, that is, compilation, interpretation,
and virtualization. In fact, selfie is a 7k-line C program writ-
ten in a single, self-contained file implementing:

1. a self-compiling compiler called starc that compiles a
tiny but powerful subset of C called C Star (C*) to a
tiny but powerful subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes
MIPSter code including itself when compiledwith starc
(I get to why self-execution is important later),

3. a self-hosting hypervisor called hypster that virtualizes
mipster machines which can host all of selfie, that is,
starc, mipster, and hypster itself, and

4. a tiny C* library called libcstar utilized by selfie.
There is also a simple linker, disassembler, profiler, and

debugger as well as minimal operating system support in
the form of MIPS32 o32 system calls built into the emula-
tor. C* features only five different statements (assignment,
while, if, procedure call, return) and has no data types other
than signed integer and pointer to signed integer. The only
way to access dynamically allocated memory is through the
dereferencing operator * hence the name. Selfie runs in a
1http://selfie.cs.uni-salzburg.at

terminal supporting any combination of self-compilation,
self-execution, and self-hosting in a single invocation.

Two bachelor students have recently ported selfie to RISC-
V in such a way that starc generates ELF binaries that are
compatible with the official RISC-V toolchain, in particular
the spike simulator and the pk kernel. Support of additional
features is still in progress. For example, work on x86 support
as well as on integrating a self-verifying theorem prover
has just begun with a naïve SAT solver already in the code
repository. More on that below.
Explaining selfie in class has lead me to develop a list of

absolute basics that in my experience appear to be essential
for understanding not just selfie but computer science in
general. For example, knowing how basic information is
encoded in bits or what the difference between compile time
and runtime is appears to be essential for everyone trying to
code. However, I have no scientific evidence of that of course
hence the venue.
In the following I discuss the scientific and educational

context of selfie and then present an overview of the system
and what it can do in a how-to section. After that I present
selfie inmore detail. The selfie section and the how-to section
are independent and may be read in any order. I then go
through a Q&A session inspired by discussions I already
had with colleagues and students. The Q&A may answer
questions you might have but requires reading the selfie
section first. Finally, I go through the list of absolute basics
that I think are essential in teaching selfie and computer
science in general. That section is again kept as independent
as possible even though it is derived from teaching selfie.
I provide a brief summary and an outlook on ongoing and
future work at the end of this article.

2 Context
Selfie is inspired by seminal work in computer science and
motivated by the challenge of teaching computer science to
broader audiences than computer science majors. The list of
textbooks I mention here is by no means complete. It only
represents my favorite titles on the book shelf in my office.

2.1 Inspiration
The design of selfie is inspired by numerous projects and text-
books of which some go way back and are now considered
classics in computer science. Selfie can be seen as an attempt
to cherry pick the absolute basics from that material and com-
bine it into a new self-contained system. In particular, there
is seminal work related to selfie in systems [8, 14, 24, 28], the-
ory [27], algorithms [20, 31], and programming [30] as well
as architecture [15], compilers [32], operating systems [23]
and programming languages [18, 25].
Selfie is written in C* which is a tiny subset of C [18]

where all data is handled at the granularity of machine words
similar to the programming language BCPL [25], an early
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predecessor of C. The self-compiling starc compiler in selfie
is a single-pass, recursive-descent compiler similar to the
Oberon compiler [32] but even simpler using, for example,
a stack allocator for register allocation. Understanding the
algorithms [31] and programming techniques [30] in selfie
only requires the absolute basics of “The Art of Computer
Programming” [20]. While the mipster emulator in selfie
implements a tiny subset of MIPS [15] that is much simpler
than most instruction sets, the hypster hypervisor is trickier.
It is essentially a tiny microkernel [23] that virtualizes the
machine emulated by mipster and, interestingly, shares most
of its code with mipster.
Selfie’s unique contribution is to demonstrate the fully

self-contained construction of programming language se-
mantics [14] from first principles [24] using self-referential
compilation [32], interpretation [28], and virtualization [8].
Ongoing work on integrating a self-verifying theorem

prover [21] into selfie is inspired by the success [29] of SAT
and SMT solvers [5] as well as boundedmodel checking [4, 5],
symbolic execution [6], whitebox fuzzing [13], and inductive
theorem proving [17]. The goal is to provide, in addition
to compilation, interpretation, and virtualization, another
perspective on how to construct semantics, and eventually
teach that perspective earlier than graduate school.

2.2 Teaching
There are numerous projects world-wide on teaching com-
puter science to broader audiences than just computer sci-
ence majors. The goal is widely seen as important for the
global economy and society in general and has recently re-
ceived increasing recognition, for example, by the US gov-
ernment2 and funding agencies such as the National Science
Foundation.3 There is a similar trend in many other countries
around the world such as the UK,4 for example.

Selfie is related to projects that aim at identifying essential
topics and principles rather than at developing pedagogical
tools and platforms. While services such as Khan Academy,
Coursera, and Udacity, to name a few, are important to reach
broader audiences the long-term goal here is to identify
the essential knowledge for understanding basic computer
science and coding in particular. Projects such as the K-12
Computer Science Framework,5 Bootstrap,6 Code.org,7 Pro-
gram by Design,8 and the Computer Science Field Guide9
are large-scale efforts closer in spirit [11] based on extensive
teaching experience and class evaluations.10

2http://wh.gov/blog/2016/01/30/computer-science-all
3http://nsf.gov/csforall
4http://www.computingatschool.org.uk
5http://k12cs.org/
6http://bootstrapworld.org
7http://code.org
8http://programbydesign.org
9http://csfieldguide.org.nz
10http://www.acm.org/education/CS2013-final-report.pdf

2.3 Target Audience
Selfie’s target audience is undergraduate and graduate stu-
dents in computer science and other engineering disciplines.
Unsurprisingly, there is controversy among my colleagues
and reviewers if a bottom-up approach from first principles
is what non-computer-science students want and need. I can
only say that the civil engineering students in the class I
taught at Berkeley very much appreciated seeing how things
really work. The only challenge was to find a way to simplify
everything to the absolute basics while still being sufficiently
realistic. This is a lot of work but in my opinion at the heart
of the problem when it comes to reaching out to broader
audiences, and it is something only the scientific community
can do. Try it!
I even believe that, if not selfie, then at least the basics

derived from teaching selfie can also be taught to school
children, first playfully and later more formally. It ought to
be possible to develop, in a younger audience, an intuitive
understanding of what it means to automate problem solving.
I still remember the first time I realized as teenager how a
computer requires me to spell out everything for it to be able
to solve anything interesting. There was no magic, just bits,
and that was good. Nevertheless, after all these years I still
only have experience in teaching students at college level.

3 How-to
The best introduction to selfie, I think, is to see how to use it.
Bootstrapping selfie works on Linux, macOS, and Windows
machines with minimal effort.11 A terminal and a C compiler
that can generate 32-bit binaries (option -m32) will do:
> make
cc -w -O3 -m32 -D'main(a,b)=main(a,char**argv)' \
selfie.c -o selfie

By now we have an executable selfie compiled from
selfie.cwhich implements all of selfie in a single file. Selfie
without options responds with its usage pattern:
> ./selfie
usage: selfie { -c { source } | -o binary | \
-s assembly | -l binary | -sat dimacs } \
[ ( -m | -d | -y | -min | -mob ) size ... ]

The order in which the options are used matters. Com-
piling selfie with selfie is simple and takes seconds on my
laptop (option -c):
> ./selfie -c selfie.c
this is selfie compiling selfie.c with starc
191548 characters read in 7576 lines and 1032 comments
with 105824(55.24%) characters in 31199 actual symbols
270 global variables, 311 procedures, 455 string
literals, 2094 calls, 809 assignments, 71 while,
627 if, 287 return, 129704 bytes generated with
30755 instructions and 6684 bytes of data

11https://github.com/cksystemsteaching/selfie/releases/tag/Onward17
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The system provides a detailed profile of input and output
which we use in class for teaching C* and MIPSter. However,
the above invocation does not output any code. The compiler
did generate code and data (initial values of global variables
and string literals) but only stored the binary in memory.
Selfie outputs generated code and data into a file, here

selfie.m, like so (option -o):
> ./selfie -c selfie.c -o selfie.m
this is selfie compiling selfie.c with starc
...
129704 bytes with 30755 instructions and \
6684 bytes of data written into selfie.m

Executing that binary is simple. Have selfie load the binary
(option -l) and then create a mipster instance with, say, 1MB
of physical memory to execute it (option -m 1):
> ./selfie -l selfie.m -m 1
129704 bytes with 30755 instructions and 6684 bytes \
of data loaded from selfie.m
this is selfie executing selfie.m with 1MB of \
physical memory on mipster
selfie.m: usage: selfie { -c { source } \
| -o binary | -s assembly | -l binary | -sat dimacs } \
[ ( -m | -d | -y | -min | -mob ) size ... ]
selfie.m exiting with exit code 0 and 0.00MB of \
mallocated memory
this is selfie terminating selfie.m with \
exit code 0 and 0.13MB of mapped memory
profile: total,max(ratio%)@addr,2max(ratio%)@addr, \
3max(ratio%)@addr
calls: 2254,913(40.65%)@0x321C,489(21.73%)@0x35DC, \
278(12.34%)@0x327C
loops: 167,137(82.64%)@0x4F34,30(17.98%)@0x174,0(0.00%)
loads: 17527,913(5.21%)@0x3230,489(2.79%)@0x35F0, \
278(1.58%)@0x3294
stores: 9758,913(9.36%)@0x3220,489(5.01%)@0x35E0, \
278(2.84%)@0x3280

Any console arguments to the right of the -m 1 option
(there are none here) are passed as arguments to the code
executed by that mipster instance. Since we execute selfie
and there are no arguments selfie responds with its usage
pattern. However, since mipster is in charge now there is
more information on what happened. For example, there
was no memory allocated with malloc but out of the 1MB
of physical memory there was 0.13MB actually used by the
system, namely for loading the selfie binary into the mipster
instance.
Also, the profiler reports that there were 2254 procedure

calls in total, out of which 40.65% or 913 calls were the most
calls done to the same procedure. The first MIPS instruction
implementing that procedure is stored at memory address
0x321C. The second and thirdmost called procedures are also
listed. Similar information is provided for number of while
loop iterations as well as memory loads and stores. In my
experience providing quantitative information on relevant

aspects of code as well as on code execution helps students
develop an intuition on what they are dealing with.
Which procedure is called 913 times even though selfie

does not really do anything? Simple. Execute the code gen-
erated for selfie right after compiling selfie in the same invo-
cation like so:
> ./selfie -c selfie.c -m 1
this is selfie compiling selfie.c with starc
...
this is selfie executing selfie.c with 1MB of \
physical memory on mipster
...
profile: total,max(ratio%)@addr(line#), \
2max(ratio%)@addr(line#),3max(ratio%)@addr(line#)
calls: 2254,913(40.65%)@0x321C(~1438), \
489(21.73%)@0x35DC(~1481),278(12.34%)@0x327C(~1444)
loops: 167,137(82.64%)@0x4F34(~1850), \
30(17.98%)@0x174(~230),0(0.00%)
loads: 17527,913(5.21%)@0x3230(~1438), \
489(2.79%)@0x35F0(~1481),278(1.58%)@0x3294(~1444)
stores: 9758,913(9.36%)@0x3220(~1438), \
489(5.01%)@0x35E0(~1481),278(2.84%)@0x3280(~1444)

This does exactly the same as before with the additional
benefit that approximate source code line numbers are now
provided by the profiler. The most called procedure is at
around line 1438 in the selfie.c source code. The procedure
is part of libcstar and involved in bitwise shifting and string
handling. Connecting machine code back to the source code
for which it was generated is very helpful for students.

How about feeding some console arguments into the mip-
ster instance that executes the code we just generated? How
about letting that code compile selfie again? This takes a few
minutes on my laptop and requires a larger mipster instance
with 2MB of physical memory:
> ./selfie -c selfie.c -m 2 -c selfie.c
this is selfie compiling selfie.c with starc
...
this is selfie executing selfie.c with 2MB of \
physical memory on mipster
selfie.c: this is selfie compiling selfie.c with starc
...
selfie.c exiting with exit code 0 and 1.37MB of \
mallocated memory
this is selfie terminating selfie.c with \
exit code 0 and 1.25MB of mapped memory
...

This time around the code actually allocated 1.37MB of
memory using malloc. The total amount of physical memory
needed to execute the mipster instance was 1.25MB, slightly
less than the dynamically allocated memory of which some
is never accessed. On-demand paging in mipster avoids allo-
cating physical memory for that.
So, we can compile selfie with selfie and then execute

the generated code to compile selfie again. Will the code
generated the second time be the same as the code generated
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the first time? Let us output two binary files selfie1.m and
selfie2.m:
> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c \
-o selfie2.m
this is selfie compiling selfie.c with starc
...
129704 bytes with 30755 instructions and 6684 bytes \
of data written into selfie1.m
this is selfie executing selfie1.m with 2MB of \
physical memory on mipster
selfie1.m: this is selfie compiling selfie.c with starc
...
selfie1.m: 129704 bytes with 30755 instructions and \
6684 bytes of data written into selfie2.m
selfie1.m exiting with exit code 0 and 1.37MB of \
mallocated memory
this is selfie terminating selfie1.m with \
exit code 0 and 1.25MB of mapped memory
...

and check:
> diff -s selfie1.m selfie2.m
Files selfie1.m and selfie2.m are identical

A key challenge in teaching selfie is to make students truly
understand self-compilation. It requires teaching all basic
principles discussed below but virtualization. Students who
finally understand usually report deep intellectual satisfac-
tion and often describe the experience as progress beyond
anything they have done before in their intellectual lives.
Seeing that encouraged me to pursue self-referentiality even
further. So, let us continue and see where this goes. Selfie can
also output MIPS assembly, here into a file called selfie.s,
as follows (option -s):
> ./selfie -c selfie.c -s selfie.s
this is selfie compiling selfie.c with starc
...
1293223 characters of assembly with \
30755 instructions written into selfie.s

That assemblywould also pass the above fixed-point check,
of course. It looks like this:
> more selfie.s
0x0(~1): 0x24080007: addiu $t0,$zero,7
0x4(~1): 0x24094000: addiu $t1,$zero,16384
0x8(~1): 0x01090019: multu $t0,$t1
0xC(~1): 0x00004012: mflo $t0
0x10(~1): 0x00000000: nop
0x14(~1): 0x00000000: nop
0x18(~1): 0x25083AA4: addiu $t0,$t0,15012
0x1C(~1): 0x251C0000: addiu $gp,$t0,0
0x20(~1): 0x24080FFF: addiu $t0,$zero,4095
0x24(~1): 0x24094000: addiu $t1,$zero,16384
0x28(~1): 0x01090019: multu $t0,$t1
0x2C(~1): 0x00004012: mflo $t0
0x30(~1): 0x00000000: nop
0x34(~1): 0x00000000: nop

0x38(~1): 0x25083FFC: addiu $t0,$t0,16380
0x3C(~1): 0x8D1D0000: lw $sp,0($t0)
0x40(~1): 0x0C007804: jal 0x7804[0x1E010]
...

Each line lists exactly one MIPS instruction, in particular
its address in memory, the approximate source code line
number for which it was generated, and its 32-bit-binary and
assembly representations.

The debugger of selfie, which is based onmipster, uses that
format to output each executed instruction (option -d 1):
> ./selfie -c selfie.c -d 1
this is selfie compiling selfie.c with starc
...
this is selfie executing selfie.c with 1MB of \
physical memory on mipster
$pc=0x0(~1): 0x24080007: addiu $t0,$zero,7: \
$t0=0,$zero=0 -> $t0=7
$pc=0x4(~1): 0x24094000: addiu $t1,$zero,16384: \
$t1=0,$zero=0 -> $t1=16384
$pc=0x8(~1): 0x01090019: multu $t0,$t1: \
$t0=7,$t1=16384,$lo=0 -> $lo=114688
$pc=0xC(~1): 0x00004012: mflo $t0: \
$t0=7,$lo=114688 -> $t0=114688
...
selfie.c exiting with exit code 0 and 0.00MB of \
mallocated memory
this is selfie terminating selfie.c with \
exit code 0 and 0.13MB of mapped memory
...

The important piece of information here is that the debug-
ger also outputs, for each executed instruction, the part of
the machine state affected by the instruction and on which
the instruction depends before executing it (left of ->) and
the affected part of the machine state after executing the
instruction (right of ->). For example, the first executed in-
struction addiu $t0,$zero,7 overwrites the value of the
$t0 register and depends on the value of the $zero register
($t0=0,$zero=0) because it stores the result of adding the
value of the $zero register and 7 in the $t0 register ($t0=7).
By just following these arrows it is possible to reconstruct the
full state of the machine at any time during code execution.
In class I connect how machine state evolves back to how
program state develops. In particular, I show students how
much smaller the state space of C* programs usually is com-
pared to the state space of MIPSter machines executing the
generated code. This helps me explain, independent of any
application, why reasoning about correctness of programs,
rather than machine code, is simpler.

Another component of selfie useful for testing and debug-
ging is the linker which supports linking C* source code as
it is compiled. Suppose we would like to compile and run a
C* program integer.c that implements its own main pro-
cedure. It outputs the decimal number 85 in various ways
by calling printing functions implemented by libcstar in
selfie.c yet without using any #include directives since
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they are not supported. Compiling and running that program
works as follows:
> ./selfie -c manuscript/code/integer.c selfie.c -m 1
this is selfie compiling manuscript/code/integer.c \
with starc
...
this is selfie compiling selfie.c with starc
warning in selfie.c in line 7571: redefinition of \
procedure main ignored
...
130332 bytes generated with 30881 instructions and \
6808 bytes of data
this is selfie executing manuscript/code/integer.c \
with 1MB of physical memory on mipster
85 in decimal: 85
'U' in ASCII: 85
"85" string: 85
85 in hexadecimal: 0x55
85 in octal: 00125
85 in binary: 1010101
manuscript/code/integer.c exiting with \
exit code 0 and 0.00MB of mallocated memory
this is selfie terminating manuscript/code/integer.c \
with exit code 0 and 0.13MB of mapped memory
...

Source code files are compiled and linked in the order in
which they are listed as console arguments. The redefinition
of the main procedure in selfie.c is ignored with a warn-
ing. Tolerating redefinitions even allows us to reimplement
functionality in selfie without changing selfie.c.

Now, let us do something seemingly crazy. Let us compile
selfie with selfie, then execute the generated code to compile
selfie again, and then execute that generated code to compile
selfie again. In other words, let us run a mipster instance on
top of a mipster instance and self-compile three times:
> ./selfie -c selfie.c -m 4 -c selfie.c -m 2 -c selfie.c

First of all, this takes hours on my laptop. In contrast,
just compiling selfie with selfie takes seconds. As mentioned
before, compiling selfie with selfie and then executing the
generated code to compile selfie again takes a few minutes.

Going from seconds to minutes is because of mipster exe-
cuting the generated code. Going from minutes to hours is
because of another mipster running on top of a mipster. In
fact, the slowdown is exponential in the number of mipsters.

So, why would we do this? Because it shows the argueably
simplest path to implementing a kernel that can execute
multiple processes concurrently while completely ignoring
temporal and spatial performance. Consider the following,
slightly different invocation of selfie (using option -y 2
instead of -m 2):
> ./selfie -c selfie.c -m 4 -c selfie.c -y 2 -c selfie.c

This time, instead of running another mipster on mipster,
we run a hypster instance on mipster. Logically, hypster does
exactly the same as mipster, but instead of interpreting the
code, hypster virtualizes a MIPSter machine by asking the

mipster on which it runs to execute the code on its behalf
(through context switching isolated in virtual memory).

What will the execution time be? Just a fewminutes rather
than hours, that is, a little more than twice as much time as
compiling selfie with selfie once. This is true even if we run
another hypster on hypster. In fact, the only slowdown in the
number of hypsters is through context switching and paging.
Virtualization removes the exponential. There is more on
that below.
Selfie’s latest design allows switching between emulated

and virtualized code execution at runtime. Given anyMIPSter
code, selfie can have mipster (on top of another mipster)
execute that code for a while and then switch over to hypster
to execute it virtualized for some more time and finally go
back to mipster to execute it and so on. We recently realized
that this should be possible and got it to work with a few
modifications to the existing code that actually made the
implementation even cleaner than before. This work is part
of an ongoing effort of showing functional equivalence of
emulation and virtualization in selfie. More on that below.

There is one more thing. We have recently begun integrat-
ing verification technology into selfie and released, as first
component of this project, a naïve SAT solver called babysat
which supports the DIMACS format for SAT formulae in
clausal normal form (option -sat):
> ./selfie -sat manuscript/cnfs/rivest.cnf
this is selfie loading SAT instance rivest.cnf
7 clauses with 4 declared variables loaded from rivest.cnf
p cnf 4 7
2 3 -4 0
1 3 4 0
-1 2 4 0
-1 -2 3 0
-2 -3 4 0
-1 -3 -4 0
1 -2 -4 0
rivest.cnf is satisfiable with -1 -2 3 4

We are now working on a minimal high-performance SAT
solver but plan to keep babysat for educational purposes.
Again, more on that below.

4 Selfie
Selfie’s main features are the C* programming language,
the MIPSter instruction set, the libcstar library, the starc
compiler, the mipster emulator, and the hypster hypervisor,
introducing them here in that order. While everything is
implemented in a single file the compiler code is independent
of the emulator and hypervisor code, and could therefore be
implemented separately. However, all code depends on the
library code, and most of the emulator and hypervisor code
is shared including the bootloader and virtual memory. Early
versions of the system were in fact implemented separately
until we realized that putting all source code into a single
file as well as all executable code into a single binary enables
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selfie’s unique bootstrapping capabilities. Also, the single-file
implementation removes the need for a build system.

4.1 The C* Programming Language
C* is a tiny subset of C designed to trade-off code size, sim-
plicity, and readability of selfie while providing interesting
challenges for compilation and educational opportunities
for extensions. In particular, C* is an attempt at identifying
a subset in which a self-referential system like selfie can
be implemented with the least amount of code that is still
simple and easily readable. It took around two years of selfie
development work to settle on its design. During develop-
ment we were driven by the observation that whenever we
added a language feature we needed code to compile it but
could potentially save or improve code elsewhere including
the emulator and hypervisor when using that feature. This
means that if we now add or remove a feature the code is
likely to either grow, get more complicated, or less readable.
For example, adding structs requires quite a bit of compiler
code but would not save much code elsewhere while remov-
ing string literals would save and simplify compiler code but
make the rest of the code much less readable. In short, we
were doing programming language design driven by self-
referentiality.
The grammar of C* is LL(1) and has six keywords (int,

while, if, else, return, void). C* features five statements
(assignment, while loop, if-then-else, procedure call, and re-
turn) as well as five built-in functions that are sufficient to
bootstrap selfie (exit, malloc, open, read, write). Notably,
there is no free and no close. Procedures can have argu-
ments, local variables, and return values. There are standard
arithmetic operators (+, -, *, /, %) and comparison operators
(==, !=, <, <=, >, >=) but no bitwise and no Boolean operators.
Integer, character, and string literals are supported.
There are only two data types in C*, namely signed in-

teger (int) and pointer to signed integer (int*). In partic-
ular, there are no composite data types for two important
reasons. Firstly, showing that something like selfie can be
implemented without composite data types has a profound
effect on students. It makes students realize that data types
in programming languages are not needed for expressive-
ness which is something that comes as a surprise to many
students. Secondly, not supporting composite data types in
C* allows me to ask students to implement their own (usu-
ally, arrays and structs) which in my experience appears to
make students truly understand the concept and motivation
of data types.

The only way to access dynamically allocated memory in
C* is through the dereferencing operator * which gave C*
its name. Dereferencing and pointer arithmetic provide full
control over memory access and therefore play a key role in
systems programming and in particular in selfie. The basic
principle that is so important for students to understand is
that an integer in selfie can also be an address and vice versa.

In other words, main memory is not just storage, it is always
also an address space that is in the same value domain as
the storage modulo word alignment. In my experience, C*
helps students develop awareness and understanding of the
duality of address and storage, in addition to the duality of
code and data.

4.2 The MIPSter Instruction Set
MIPSter is a tiny subset of MIPS32. There are only 16 MIP-
Ster instructions (nop, addu, subu, multu, divu, mfhi, mflo,
slt, jr, syscall, addiu, lw, sw, beq, jal, j). MIPSter re-
flects what is needed to implement C*. In particular, there
are no bitwise instructions and no sub-word data transfer
instructions.

The only issue is with signed integer literals in C* (32 bits)
that are too large to fit as immediate values in MIPSter (16
bits). Such values are decomposed by the compiler into the
largest numerals in base two that can still be loaded into reg-
isters and then reconstructed with the available instructions.
MIPSter itself can be taught in around two weeks of classes
even to audiences with little architecture background.

4.3 The libcstar Library
The implementation of selfie includes its own tiny C* li-
brary called libcstar for bit manipulation, string manipula-
tion, ASCII to integer (atoi) and integer to ASCII (itoa)
conversion, and printing of strings.

Bit manipulation is implemented with signed integer arith-
metic which is non-trivial since avoiding integer overflows
is necessary for correct bootstrapping. The code serves as an
educational example for students to see what signed integer
arithmetic does and in particular how two’s complement
works. An exercise for students is to implement bitwise C*
operators and bitwise MIPSter instructions. Replacing bit
manipulation functions in selfie with bitwise C* operators
results in significant performance improvement.

4.4 The starc Compiler
Selfie originally began with separate implementations of
a simple, self-compiling, single-pass, recursive-descent C
compiler and a simple DLX (DeLuXe) emulator that was the
target of the compiler. DLX is an educational instruction
set derived from MIPS with a focus on logical functionality
rather than architecture-specific details [26].
Only later we realized that there is a subset of MIPS in-

structions that we now call MIPSter which is almost as sim-
ple as DLX but in fact part of a realistic ISA. We decided
to implement a MIPSter emulator and port the compiler to
target MIPSter instead. That port of the compiler eventually
became what we now call the starc compiler.
Nevertheless, similar implementations of such compilers

and emulators have been done many times before. The dif-
ference to other projects, however, goes back to two key
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observations. Firstly, we decided to focus on code size, sim-
plicity, readability, and self-compilation of the compiler while
keeping the design of programming and machine language
open. We kept asking if we needed a particular language
feature or not. During development of the compiler we real-
ized that we could get away with no composite data types
in the language by using a coding convention with getters
and setters instead. This simplified the compiler dramatically
while creating new opportunities for teaching. Secondly, we
realized that we can implement compiler and emulator in
the same file in such a way that the emulator can even run
on top of another instance of itself. We therefore call mipster
self-executing. More on that below.

Also, the backend of the compiler and the frontend of the
emulator now appear right next to each other in the code.
This simplifies code maintenance and helps teaching side by
side how to encode machine instructions in the compiler and
decode machine code in the emulator. Moreover, since com-
piler and emulator are compiled into the same executable,
selfie can compile C* programs, including itself, and imme-
diately execute the generated MIPSter code even without
writing that code into a file. Computing the fixed point of
self-compiled selfie executables can therefore be done in a
single invocation of selfie.

Even more importantly, however, implementing compiler
and emulator in the same file significantly simplifies teach-
ing how to bootstrap a compiler. For this purpose, we have
implemented each built-in function of C* in two procedures
appearing side by side in the code. The first procedure is in-
voked by the compiler to generate wrapper code that invokes
a system call using the MIPS o32 convention. The second pro-
cedure actually implements the system call and is invoked
by the emulator. We have applied the same technique in the
implementation of microkernel functionality for the hypster
hypervisor.
Self-referentiality of compiler and emulator makes the

choice of output language of the compiler become part of
the equation over the choice of input language and the code
size, simplicity, and readability of the overall implementation.
The result is two tiny, easy to teach yet realistic languages,
C* and MIPSter, and the starc compiler as well as the mipster
emulator in their current form.
The design of the starc compiler is originally inspired by

the Oberon compiler of Niklaus Wirth [32]. In addition to
the choice of programming and machine language and the
degree of self-referentiality, the difference is that starc has
been designed purely for educational purposes. Moreover,
starc does not perform any optimizations, not even constant
folding. Register allocation is also simpler based on a naïve
stack allocator.

4.5 The mipster Emulator
The mipster emulator is an unoptimized interpreter of MIP-
Ster code. An interesting twist in its implementation is that

we use, for example, the + operator for signed integer ad-
dition in C* to implement the addu instruction for signed
integer addition in mipster. That instruction, however, is gen-
erated by starc for implementing the + operator. Students
realizing that connection and how bootstrapping breaks the
seemingly unbreakable cycle of self-referentiality often ap-
pear to be almost grateful for finally understanding this. At
this point, we anyway emphasize that we could avoid us-
ing the + operator and instead implement a full adder using
nothing but Boolean operations, or go even further and sim-
ulate the whole circuit, and so on. This is the time when
students also understand that it is ultimately the physics of
the underlying machine that determines the semantics [22]
and that we are assuming elementary arithmetic as given to
avoid going there.
Besides interpreting MIPSter code, mipster can also be

invoked to disassemble a given binary into MIPS assembly,
and even provide for each machine instruction approximate
line numbers of the source code for which the instruction
was generated, if compilation and disassembling is done in
the same selfie invocation. Moreover, mipster profiles proce-
dure calls, loop iterations, and load and store operations, and
reports for each category the top three machine code loca-
tions, again including their approximate source line numbers
if available. Lastly, for debugging purposes, mipster can be
invoked to output each executed machine instruction and
its effect on the machine state.

The fact that mipster is self-executing, that is, can execute
itself allows me to demonstrate to students how simple it is
to implement a kernel that can execute multiple processes
concurrently if temporal and spatial performance is irrele-
vant. Just have a mipster running on top of another mipster
create multiple emulator instances, load possibly different
code into each, and then execute them round-robin style,
maybe just one instruction in each emulator at a time. That
mipster is a kernel, no need for context switching and virtual
memory! In fact, I ask students to do this within a week as
part of an introductory homework assignment.

However, as mentioned before, compiling selfie on top of
two mipsters takes a day whereas doing the same on top of
just one mipster only takes minutes. The way out of this is of
course to remove the second layer of interpretation through
virtualization as discussed next.

4.6 The hypster Hypervisor
The most advanced yet still accessible part of selfie is the
hypster hypervisor which provides full virtualization of the
machine emulated by mipster. My goal with hypster is to
provide simple yet realistic infrastructure that enables stu-
dents to develop their own operating system kernels. There
are many other projects with similar goals such as PintOS
from Stanford University, for example, but are typically a lot
more involved.
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Similar to the synergy of starc and mipster, we leverage
the synergy of starc, mipster, and hypster all implemented
next to each other in the same file. Here, we again make
two key observations that are relevant. Firstly, instead of
exposing the details of any interrupt and memory hardware
we implemented the required functionality as part of mipster
to provide an easier-to-understand execution environment
for handling machine contexts and virtual memory on top of
mipster. Secondly, by paging not just virtual but also physical
memory in mipster, the code implementing hypster can in
fact be made part of the code that implements mipster. The
only difference between mipster and hypster is whether to
interpret code (mipster) or to context switch the machine on
which we run to interpret code on our behalf (hypster). This
works when running hypster on top of mipster and even on
top of another hypster, any number of times. We therefore
say that hypster is self-hosting, similar to recursive virtual
machines [12].

Independently of whether we run just mipster, or hypster
on top of mipster, or even hypster on top of itself, the same
code loads and runs binaries, and handles exceptions, inter-
rupts, and page faults. Surprisingly, still, both mipster and
hypster are really implemented by the same code except at
the point where we decide to either invoke the interpreter
or context switch to the interpreter that executes us. Selfie
demonstrates that running a binary by interpretation or by
context switching is logically the same thing. This is an in-
sight that in my opinion is the key to understanding that
self-referentiality in kernels is the fundamental source of
their complexity and therefore requires proper logical or-
thogonalization.

5 Q&A
Rather than trying to provide hard evidence on why selfie
should be as it is and before going into the details of how to
teach students selfie, I go through my best anwers so far to
a list of questions that came up when presenting selfie and
the basics to colleagues.

Question #1: Why did you pick C and MIPS rather than a
modern, type-safe, maybe even functional programming lan-
guage and a modern ISA?

The short answer is I picked C and MIPS because this is
my background. The long answer is three-fold: (1) unopti-
mized compilation targeting a simple but still realistic ISA
such as MIPS is straightforward for an imperative language
such as C, and (2) evil implicit state in programs written in C*
(global variables!) as well as (3) evil pointer arithmetic as the
only way to create dynamically allocated memory layouts in
C* makes students truly appreciate the wonders of modern,
type-safe and possibly functional programming languages.
Maybe the even more relevant question is whether to

expose students to low-level machine-related artifacts or not.

I think we need to do both, bottom-up training à la selfie as
well as top-down coding using an adequate programming
language [10]. I only focus on the bottom-up approach here
and try to show how far we can simplify it so that we do
not need to avoid teaching it. C* is specifically designed to
feature structured programming for code but not data. This
creates a sufficiently interesting compilation challenge while
leaving most of the work on how to manage state to the
students (if you want arrays and structs implement them!).
This is my best answer so far but I am not saying that

C* is the best way to do selfie. In fact, porting selfie to a
functional programming language could be a very interesting
and exciting project yet potentially in direct competition
with the classics [28]. In the meantime, we have already
ported selfie to RISC-V which is a modern ISA. There is also
ongoing work on x86 support.

Question #2: Why do you draw the line at Boolean logic and
elementary arithmetic rather than going down to the level of
circuits?

I believe Boolean logic and elementary arithmetic is in fact
the global minimum in intellectual challenge in the sense
that going down to the level of circuits as well as going up
to the level of more abstract machines makes things more
difficult to understand. A MIPSter machine is hard to make
any simpler while still keeping things realistic. It does make
sense to explore other levels of abstraction and there are ex-
amples of that [24] but probably only for students majoring
in computer science.

Question #3: How do you know if selfie is sufficiently realistic
and not too simplistic?

Good question. The design avoids any performance opti-
mizations but is still structurally close to a realistic system.
The key difference to a real system is self-containment. Selfie
is a sandbox that features everything students need to exper-
iment with real implementations of programming language
concepts and runtime features. The system can easily be
extended and made faster by students as part of weekly
homework assignments as well as larger projects. For ex-
ample, support of arrays and many other language features
can be done in one-week assignments. Integrating user-level
runtime features such as a more realistic memory allocator
or even a conservative garbage collector and kernel-level
components such as process schedulers and locks can readily
be done as well.

Question #4: How can I integrate selfie into my own classes?
Do you have any recommendations for that?

I would of course be delighted if you would use selfie in
your own classes. Selfie as a system may be a bit too tough
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for first-year students. However, C* as an introductory lan-
guage and the code in libcstar are easily accessible even for
inexperienced students. The starc compiler is ideal as a stan-
dalone system for introductory compiler classes. It is less
suited for more advanced classes on compiler optimization
since starc is single-pass. However, simple optimizations
such as constant folding can easily be done. Similarly, the
mipster emulator provides a nice foundation for an introduc-
tory architecture class. The combination of mipster with the
hypster hypervisor may nevertheless serve as foundation of
introductory as well as more advanced operating systems
classes because mipster can easily be extended to provide
hardware features calling for support by adequate non-trivial
extensions of hypster.

Question #5: Why do you think that virtualization is essen-
tial rather than other ways of constructing semantics such as
computational logic, for example?

I actually do not think that. I do think that virtualization
plays an important role and it ought to be possible to teach
broader audiences what it is and how it works. However,
other ways of constructing semantics are important as well.
We are in fact exploring ways to integrate testing and verifi-
cation technology into selfie such as symbolic execution in-
spired by KLEE [6], whitebox fuzzing inspired by SAGE [13],
and even simple (!) inductive theorem proving inspired by
ACL2 [17] that will hopefully be able to check simple (!) state-
ments on some selfie code, hopefully even itself, in the spirit
of the project. This could help exposing students to higher
levels of abstraction and create awareness of the logics of
programming. We have already begun laying the ground-
work by implementing a naïve SAT solver in selfie. There
will eventually be more efficient versions of SAT and SMT
solvers and maybe a bounded model checker.

Question #6: Why do you leave out so many interesting fea-
tures such as a file system and a network stack, for example?

My best answer is lack of time and background. I am nei-
ther a file system nor a network stack person but I would
be delighted to see someone implement support of that in
selfie. Other educational operating systems projects already
support some of that. For example, PintOS does implement
a simple file system. It would also be nice to have a (self-
referential?) terminal implemented in selfie.

Question #7: Why do you use self-reference to define seman-
tics rather than a formalism specifically designed for defining
semantics?

My short answer is that I aim at the arguably simplest yet
still self-contained introduction to computer science. Self-
referentiality allows me to do exactly that. There is no need

to introduce any additional concepts and formalisms. We
bootstrap from Boolean logic and elementary arithmetic.
My long answer goes like this. Programming languages

are formalisms whose semantics can be defined in different
ways. While defining semantics using mathematical nota-
tion specifically developed for this purpose is standard for
computer scientists, it requires defining and understanding
the semantics of that notation as well to be self-contained.
Moreover, while semantics may be mathematically defined,
it is ultimately the machines executing code that determine
its behavior. I therefore believe that self-referentiality is a
fundamental concept that is hard to avoid.

In fact, programming languages and runtime systems are
by construction self-referential, just like natural languages,
even though they are otherwise quite different concepts. In-
terestingly, teachers of foreign language classes often speak
exclusively in the language they are teaching and use other
means of communication including body language to ex-
plain semantics. Nevertheless, people speaking a language
to communicate may or may not need to understand self-
referentiality which is probably an interesting question stud-
ied by linguists and neuroscientists. However, programming
languages are not natural languages. Their semantics is for-
mally defined. We may not need to use the same program-
ming language or even any programming language at all to
define the semantics of a programming language but can
anyway not avoid self-referentiality.

Not understanding self-referentiality in programming lan-
guages and in particular not knowing how self-referentiality
is resolved means that our understanding of programming
language semantics is not well-founded. This may or may
not be fine for natural languages but it is definitely not for
programming languages and in fact any notation with formal
semantics. People learning about computer science need to
know that programming can be a lot of fun but is ultimately
a formal activity, no matter how casual the programming
language they use may appear. Interestingly, even when rea-
soning about the limits of computation self-referentiality
shows up, as in diagonalization proofs, for example. There
are abstract mathematical statements such as Cantor’s The-
orem that provide great opportunities for creating further
intuition on the construction of semantics.

Question #8: Do you really believe that a system like selfie
and the self-referentiality involved in it can help teach every-
one computer science?

Yes, I do believe that. Teaching programming languages in-
formally is important and helps students learn how to code.
However, even though teaching selfie and in particular self-
referentiality may appear to be difficult does not mean that it
should be avoided. For computer science and coding in par-
ticular to become an established discipline like other much
older disciplines I do not see much of an alternative than to
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identify and teach principled material and simplify every-
thing involved in that as much as possible. There is no reason
why computer science needs to remain an often admired but
still inaccessible subject in schools and colleges and even
society in general around the world.

6 The Basics
Now with all the fun stuff taken care of the only thing that
remains to be done is to figure out how to teach computer
science to people who have no clue. Surprisingly, the so-
lution is right there in that statement. Just imagine what
it is like to explain something like selfie to someone who
does not know anything about computer science (or worse,
has false knowledge about computer science). Explaining
selfie under that assumption has helped me gather a list of
absolute basics I call “principles” that in my experience are
essential in understanding selfie. In fact, you may be able
to do the same in your favorite area of computer science.
Build a representative system similar to selfie and then try
to explain that system in order to identify the “principles”
essential for understanding it.
In the meantime, the “principles” I present here have be-

come the conceptual and structural foundation of a textbook
on selfie that exists as an early draft online with three chap-
ters finished and the fourth in progress.12 The book intro-
duces each “principle” in a dedicated chapter using selfie as
motivation and example. Students are encouraged to read
the book and work with the code of selfie at the same time
in order to improve their understanding of each principle.

The idea of presenting and teaching a list of absolute basics
differs from the categorization found in many textbooks. Un-
fortunately, I have no evidence of completeness or even just
necessity. The list is really just the result of trying to explain
selfie. What do you need to know to understand the compiler,
emulator, and hypervisor? The answer is that list. I then go
one step further and claim that understanding selfie is key
to understanding computer science because selfie provides
well-established and self-contained ways of constructing se-
mantics on digital computers. That argument makes the list
of absolute basics essential for teaching computer science.

Principle #1: Semantics
What is the meaning of the bits stored in a computer and
where does it come from? The answer is there is none unless
the machine does something with them. As is, bits have no
meaning. The semantics principle is that change determines
semantics. In particular, the meaning of bits comes from
change over time, by being changed or by changing others,
as determined by the machine storing and executing the bits.
For example, bits represent data such as an integer value
at the time when they are used as operand of an integer
operation. Bits represent code such as an integer operation

12http://leanpub.com/selfie

at the time when they direct the machine to perform an
integer operation. At all other times, their meaning could
be anything. This also means that bits can sometimes be
data, code, or even both. Self-compilation exemplifies that
phenomenon.
The semantics principle creates awareness of the funda-

mental difference between representation and meaning, and
provides a simple explanation of the origin of semantics of
formalisms such as source code and machine code. The ear-
lier students and hopefully school children become aware
of the semantics principle, first playfully and later more for-
mally, the easier it may be for them to reflect about their
own understanding of any kind of notation.

In class, just showing how to build and run selfie provides
a number of great opportunities to explain the semantics
principle. In particular, I point out that selfie is implemented
by a sequence of characters encoded by a sequence of bits.
Compiling selfie translates these bits into another sequence
of bits encoding the executable machine code which we then
run on a machine. That machine code can of course be exe-
cuted to translate the source code again and so on. Learning
about self-referentiality early has two interesting effects on
students: confusion and curiosity. I leverage the confusion
by trying to get students with prior but incomplete and of-
ten false knowledge to question their knowledge, and all
students to reflect on the difference between representation
and meaning.

Principle #2: Encoding
But how is code and data actually encoded in bits and why
is it done in one way over another? Depending on how in-
formation is encoded, computing with it may be faster or
slower and storing it may require more or less space. How-
ever, encoding does not create any meaning. For example,
the bit string 1010101 may represent the decimal number 85
but also the uppercase ASCII letter U or in fact any other
information. However, the binary encoding of an integer
such as 85 is exponentially more succinct than its numerical
value (just 7 bits rather than 85) enabling compact storage
while arithmetic operations are still fast thus making it the
default for encoding integers.

The encoding principle is to distinguish how information
is encoded, bounding temporal and spatial performance of
computation, from how to compute with it. The encoding
principle creates awareness of the importance of represen-
tation and its impact on temporal and spatial performance
when handling it. Teaching students and school children
how to encode numbers, for example, using other notation
than decimal is simple and can be done before even talking
about computation.
In class, we study how C* literals including characters

and integers but also MIPSter instructions are encoded in
bits. Surprisingly, even more experienced students often do
not know how this is done and certainly not why it is done
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the way it is. Many students may have not even realized
the exponential difference in size between unary and binary
encodings of numbers while going from binary to decimal
encoding does not make much of a difference. Explaining
the encoding principle is another great opportunity to point
out that an encoding as is still does not have meaning but
only facilitates creating meaning during computation.

Principle #3: State
Ok, but what is computation really? For example, the process
of encoding a decimal number in bits is in fact computation
which works by accumulating the numerical value of that
number incrementally one digit at a time. The state of this
computation is the accumulated value and, not to forget, the
control state of the code that implements the encoding. The
state principle is to model computation as the evolution of
state, that is, as a sequence of states encoded in bits. Each
step in a computation determines the change in bits from
one state to the next. A correct program keeps computation
in good states whereas a bug may take it to a bad state.

The state principle reveals the importance of state during
computation. In particular, it reveals that coding is about
staying in good states. In combination with the encoding
principle it also reveals the potentially enormous amount
of states involved in a computation as the key challenge
in engineering correct software. In my experience, many
students do not reflect about the nature of computation on
that level of abstraction even though it is simple to do. The
consequence of that is a lack of understanding that there
should be as little state as possible to make establishing
correctness easier. I therefore stress in the next two principles
that remembering the least and forgetting the soonest are
essential principles in programming.

In class, I introduce C* and MIPSter code simultaneously
and demonstrate how code execution creates the notion of
program and machine state, respectively. In particular, I use
examples of C* programs with a focus on simple numerical
computation and their selfie-compiled implementations in
MIPSter. Importantly, there is no dynamic memory manage-
ment here, not even implicit stack allocation with procedures.
This can be seen as an introduction to programming on two
different levels of abstraction at the same time. It requires
explaining, at least intuitively, semantics of C* without pro-
cedures and the von Neumann machine model, CPU and
memory, and how they connect via state.

Principle #4: Regularity
Now, what state information do we really need to remember
in a computation? The answer is that we should not focus so
much on remembering information but rather on forgetting
it. The regularity principle is to use finite state code when-
ever possible since it is regularly forgetful, that is, when
the same state is computed twice everything is forgotten
that happened in between. This is of course the essence of

the proof of the pumping lemma for regular languages. The
regularity principle focuses on the essential feature of finite
state machines which is the capability to forget automat-
ically eventually almost everything simply by proceeding
in a computation. It creates awareness that finite state is
the simplest form of memory management and that forget-
ting information on a machine can be a challenge. Kleene’s
theorem provides an alternative, more abstract language-
theoretic perspective on the regularity principle.

Students are often not aware that their code is finite state
and therefore does not require any form of dynamically
allocated memory. Just being made aware of that is already
an essential step towards understanding how to write correct
code. Interestingly, however, students sometimes rightfully
point out that any digital computer is by construction finite
state. My response is that computer scientists consider the
state space of a computer as unbounded anyway because
the machine is too slow and the state space too large for full
exploration in reasonable time.
In class, we study the regular portion of the C* grammar

and work with the C* scanner as well as the command line
scanner of selfie to explain the regularity principle. I ask
students to extend the C* grammar and scanner to support
new symbols for bitwise operators, for example. Students
usually appreciate seeing the duality of regular expressions
and finite state machines in practice. I even ask students to
spot, in the source code, the states of the finite state machine
implemented by the C* scanner. The natural next step is to
show the parts of the C* grammar that cannot be handled by
a finite state machine anymore. However, there is of course
a simple way of handling unbounded state and still forget
almost everything just by continuing in a computation.

Principle #5: Stack
What is the arguably simplest, safest, and most efficient form
of managing unbounded state? It is stack allocation, explic-
itly, but also implicity using, for example, call stacks. The
stack principle is to consider stack allocation, if finite state
is not enough, before any other method for managing un-
bounded state. If forgetting state in reverse of remembering
it is good enough, stack allocation should be used. Functional
programming experts are probably not the only ones who
would agree with that.

Procedures (in imperative languages) and functions (in
functional languages), for example, are implicit means for
stack allocation but rarely introduced as such. Students are
often not aware of that point of view but like it because
stacks are easier to understand than recursion, for example.
But even before it comes to programming, just developing
an intuition of what a stack is, how it works, and that it can
do a lot more than one would expect is within reach of a
broader audience.
In class, we introduce C* procedures at this point and

show, by example, how they translate to MIPSter code and
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how that code constructs the call stack in memory. Also,
we study the non-regular, context-free portion of the C*
grammar and work with the C* parser to explain the stack
principle. Similar to before, I ask students to extend the C*
grammar and parser to support bitwise operators in arith-
metic expressions, for example, to experience the duality of
context-free grammars and pushdown automata in practice.
Here, the obvious question is to ask students to spot, in the
source code, the stack of the pushdown automaton imple-
mented by the C* parser. Both the regularity and the stack
principle emphasize the importance of forgetting rather than
remembering state. Unfortunately, however, there is often
more state to remember which often cannot be forgotten in
reverse either.

Principle #6: Name
How do we compute with unbounded state that we have to
remember and cannot forget in reverse? A hashtable whose
content changes depending on program input is an exam-
ple of such a scenario. Whatever the method is, however,
managing unbounded state requires finite representation.
The name principle is to distinguish, for each entity in a
program, the name of the entity and the entity itself, at least
in your mind. There is no anonymity here, that is, an entity
without name does not exist. For example, as long as there
is a reference to the hashtable it exists along with all the
references to its content and the content itself.
There are of course countless other examples where the

distinction between name and entity is important such as
variable and procedure names in source code versus values
and control state during execution, for example. However,
the principle is always the same and creating awareness
of the difference helps address many issues in managing
unbounded state. Forgetting information in arbitrary order
works by forgetting names in namespaces explicitly created
for this purpose. Students with prior knowledge are often
not aware that they generally need to say which information
is still needed, or conversely, not needed anymore, even in
managed languages (by destroying references). Ask your
students what a reachable memory leak is!
In class, we use the symbol table of the starc compiler as

example and show how it implements the scope of proce-
dures and variables in C*. In fact, this is the first time the
students see the use of malloc in selfie and learn that the
heap is just a range of memory addresses, just like the stack.
Here, I would like to emphasize the importance of exposing
students to the conventions for using memory. Many stu-
dents are surprised by how simple this is, one pointer for the
top of the stack growing downwards towards the heap and
one (bump) pointer for the end of the heap growing upwards
towards the stack, that’s it. Ultimately, however, keeping
namespaces finite, that is, saying what is needed and what
is not is required to manage unbounded state. This takes us
to the next principle.

Principle #7: Time
What is the difference between compile time and runtime? It
is countability. There is more behavior or in fact semantics
than there is code. Philosophically speaking, we can pro-
gram (enumerate) what we want but we cannot compute
what we want. The time principle is to distinguish program-
ming, the design of a finite piece of code, and computing,
the potentially unbounded execution of code, again at least
in your mind. For example, the difference between a vari-
able declaration or procedure definition and the use of a
variable or the invocation of a procedure must be clear, espe-
cially since there is usually no syntactic distinction in many
programming languages.
In my experience, students often understand the differ-

ence only superficially, which is usually revealed when it
comes to self-compilation. But even less ambitiously, stu-
dents struggling with understanding recursion, for example,
can often be helped by pointing out the difference between
definition and use of procedures. But also more abstract
content such as Cantor’s Theorem, unlike Gödelisierung,
for example, should be within reach of a broader and also
younger audience. It is then up to us to point out how Can-
tor beautifully explains the difference in cardinality between
programming and computing.

In class, we also look at code generation in the starc com-
piler to figure out the difference between compile time and
runtime. Extending that part to support bitwise operators,
for example, is often difficult for students because they need
to understand which code the compiler needs to generate
and how exactly this is done but also what happens when
the generated code actually executes. Implementing support
of simple code optimization techniques such as constant
folding, for example, is helpful for students as well. In short,
the challenge is to understand compilation and execution at
the same time. Students are typically not used to thinking in
multiple timelines. Using a system like selfie appears to help
but the challenge remains, unsurprisingly, given the depth of
the topic. Interestingly, there is also a spatial principle that
is essential for understanding how selfie and digital memory
in general works.

Principle #8: Memory
What is an essential property of digital memory? It is spatial
contiguity. Digital memory not only provides storage for in-
formation but also address space. The memory principle is to
distinguish contiguous and non-contiguous use of memory
addresses for trading off temporal and spatial performance
of memory management and access. Constant-time access
of contiguous memory, assuming that arithmetic operations
are constant-time, comes at the expense of memory fragmen-
tation which may or may not manifest in increased memory
consumption. Non-contiguous memory access may not be
constant-time and require additional storage for referencing
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but may help avoid memory fragmentation through the use
of same-sized blocks. Spatial locality and false sharing are
consequences of spatial contiguity as well and can make
orders-of-magnitude difference in performance.
The memory principle provides a great opportunity to

teach students how to answer questions about whether they
should use, say, a list or an array. Students realize how impor-
tant it is to control the time and space it takes to address and
store information in memory. Teaching how data structures
are stored (and encoded) in memory or in fact any type of
digital media, at least in principle, is essential because it re-
veals the fundamental difference between memory addresses
and storage as well as managing and accessing memory, one
of my favorite topics [1–3, 7].
In class, I ask students to implement support of arrays

and structs in the starc compiler, and then port selfie to use
arrays and structs rather than pointer arithmetic. Not just
computing but also generating code that computes the cor-
rect addresses of array elements and struct fields in memory
is an important exercise for students. Combining that with
constant folding is helpful as well. Once students have im-
plemented their own arrays and structs, the question comes
up what the role of data types really is.

Principle #9: Type
Is there a way to program the intended meaning of some
of the bits stored in memory? Yes, of course! The type prin-
ciple is to distinguish intended semantics (the what) and
actual semantics (the how) of code and data through typing.
This is essential for developing a deeper understanding of
how semantics is created on a machine. Typing introduces
something as simple and purely syntactic as the name of a
data type for an entity as complex and abstract as a value
domain, for example, and then allows deriving semantical
information from that without running the code.

Students are often used to programming with data types.
However, many students are not aware that typing is an effi-
cient and incredibly successful way to overapproximate, even
at compile time, actual semantics which can in general not
be determined without running the code. The type principle
deepens the understanding of the other principles by show-
ing that there are ways to construct abstract semantics that
do not require the whole machinery of computation. Typing
is thus another way to reduce the state space of computation,
similar to forgetting information as soon as possible.
In class, I show students that the starc compiler does in-

deed perform simple type checking on signed integers and
pointers to signed integers. While some of that is optional,
type checking in expressions with pointer arithmetic is not.
Students are then asked to implement their own, more ad-
vanced type checking on arrays and structs. At this point,
students realize that they make the compiler “understand”
the intention of a data structure, provided the data struc-
ture is properly typed and not just accessed through pointer

arithmetic. From what I hear many students seem to like
that insight very much.

Principle #10: Bootstrapping
Now, how do we finally break that apparent cycle of deter-
mining the semantics of bits using bits? The bootstrapping
principle is to distinguish bootstrapping computation and
actual computation, acknowledging that any computational
system is incomplete in the sense that it requires support
from outside the system to start up. Knowing how to boot-
strap something as practical as a compiler or something as
abstract as the definition of a formalism is essential for un-
derstanding how semantics is created from first principles.

In my experience, many students do nevertheless not even
know how a computer actually boots and how the code they
develop is eventually loaded and executed on their machines.
I see this as yet another challenge in teaching computer
science and believe that there should always be an explicit
focus on how to bootstrap any non-trivial system whatever
the actual topic is.

In class, I discuss how a computer boots but also how the
mipster emulator in selfie boots, that is, how selfie loads
MIPSter code into a mipster instance and then starts the
emulator to execute it. The boot loader in selfie is important
for students to see because it shows how a machine, here
the mipster instance, requires external help, here selfie, to
begin its existence. Interestingly, the boot loader is exactly
the same even for hypster instances.
The principles presented so far are derived from the pro-

cess of creating semantics through translation. The final two
principles provide another essential perspective on creating
semantics through interpretation and virtualization as done
by most runtime systems.

Principle #11: Interpretation
What is the simplest way to implement the essence of an
operating system kernel that can run n binaries concurrently
and spatially isolated from each other on the machine on
which the kernel runs? The answer is to have the kernel
maintain n interpreters, one for each binary, and have the
interpreters in round-robin fashion execute, say, one instruc-
tion at a time. To my own initial surprise, there is no need
for processor context switching and virtual memory man-
agement at all, if we completely ignore temporal and spatial
performance for a moment and just focus on what an op-
erating system does logically. However, interpreted code is
of course slower than native code by a significant constant
factor, which increases exponentially with the number of
interpreters (meaning operating systems) running on top of
each other. Virtualization avoids that as we see below.

The interpretation principle is that interpretation defines
semantics in terms of the formalism in which the interpreter
is written but is exponential time in the number of inter-
preters running on top of each other. The interpretation
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principle shows that teaching even advanced behavior such
as concurrent code execution is within reach and explains
why it is anyway worth replacing interpretation with native
code execution through virtualization. In my experience, stu-
dents appreciate this point of view and report that it makes
them understand, often for the first time, what operating
systems and other runtime systems actually do.
In class, we exploit the self-referentiality of the mipster

emulator to explain and demonstrate the interpretation prin-
ciple firsthand. Support of running n binaries concurrently
through interpretation can easily be done in a one-week
assignment. Once this is done, we take the opportunity to
design and implement other well-known concepts such as
shared memory, atomic instructions, locks, and so on. In
more advanced classes we then ask students to experiment
in selfie with lock-free concurrent data structures, another
favorite topic of mine [9, 16].

Principle #12: Virtualization
How can we encapsulate interpretation as well as context
switching and memory isolation such that an operating sys-
tem kernel can execute user code either by interpretation
or natively using essentially the same kernel infrastructure?
Upon executing user code, the kernel would either interpret
that code or ask the processor on which it runs to execute
that code natively in its own address space isolated from
the kernel’s address space. This does indeed work in selfie
and shows that teaching even virtualized concurrent code
execution is within reach if functionality and performance
are properly orthogonalized.
The virtualization principle is that virtualization defines

semantics in terms of the semantics of the virtualized sys-
tem and that the time to execute virtualized code is equal
to the time to execute the code unvirtualized plus the time
to execute the virtualizing code. The virtualization principle
reveals the essence of virtualization, and also its weakness
which is the fact that the performance of virtualization ap-
proaches that of interpretation if the virtualizing code has
to run too often, that is, in the limit for each instruction of
the virtualized code. Introducing virtualization as a form
of interpretation that is often efficient in practice is much
appreciated by many students. In essence, I am saying that
in order to understand virtualization we first need to build
our own version of what we want to virtualize through naïve
but functionally equivalent interpretation and only then vir-
tualize that.
In class, we do exactly that. Each new feature is first im-

plemented through interpretation and only then virtualized
with the hypster hypervisor. Imagine all operating systems
camewith a simple (!) but functionally equivalent interpreter-
based version as executable specification of what they are
supposed to be doing. That would open up a lot of interesting
directions in teaching and already does in research [19].

7 Conclusions and Future Work
How can we teach computer science to broader audiences
than just computer science students? Is asking how to cre-
ate the semantics of a formalism on a machine the right
question? In order to find out we have developed selfie, a
self-compiling compiler of a tiny subset of C, a self-executing
MIPS emulator targeted by the compiler, and a self-hosting
hypervisor of the machine emulated by the emulator. Selfie
is a self-contained 7k-line C implementation in a single file.
Selfie exemplifies how to create semantics on a machine
using compilation, interpretation, and virtualization.
I use selfie in all my compiler and operating systems

classes, and plan to include other classes such as a software
verification class later. In fact, selfie may eventually help me
develop a new class structure in which I do not distinguish
between classes on compilers, operating systems, theorem
provers, and so on but instead categorize according to con-
cepts and properties: computer science classes on semantics,
concurrency, logics, performance, and so on. This is some-
thing I am still working on and probably another interesting
topic for debate.
We are currently exploring formal verification based on

SAT and SMT solving as well as boundedmodel checking and
inductive theorem proving to provide another perspective
on how to construct semantics in future versions of selfie.
The goal is to introduce formal methods into our bachelor
curriculum and study ways to leverage the synergy of verifi-
cation techniques within selfie. For example, an interesting
long-term effort is to verify the functional equivalence of
the mipster emulator and hypster hypervisor.

Acknowledgments
This work has been supported by the National Research
Network RiSE on Rigorous Systems Engineering (Austrian
Science Fund (FWF) Grant S11404-N23 and S11411-N23), a
Google PhD Fellowship, and a Google Research Grant.

Selfie is the result of more than ten years of studying and
teaching systems engineering. Many colleagues and students
have been involved in its development through inspiring con-
versations as well as numerous coding sessions. In particular,
I thank Alireza Abyaneh, Martin Aigner, Sebastian Arming,
Christian Barthel, Armin Biere, Heidi Graf, Andreas Haas,
Thomas Hütter, Michael Lippautz, Cornelia Mayer, Simone
Oblasser, Sarah Sallinger, Raja Sengupta, and Ana Sokolova
as well as all the students who have taken my compiler
and operating systems classes over the years. I also thank
James Noble as well as the other anonymous reviewers for
their constructive feedback on earlier versions of this paper.
The design of the starc compiler is inspired by the Oberon
compiler of Professor Niklaus Wirth from ETH Zurich [32].
The design of the microkernel in hypster is inspired by mi-
crokernels of Professor Jochen Liedtke from University of
Karlsruhe [23].

212



Onward!’17, October 25–27, 2017, Vancouver, Canada Christoph M. Kirsch

The idea of teaching the absolute basics of computer sci-
ence came up in the Fall of 2014 in conversations with Profes-
sor Raja Sengupta at UC Berkeley while teaching graduate
students in the systems program of Berkeley’s Civil and En-
vironmental Engineering Department. We noticed that most
students spend considerable time on coding, independent of
their backgrounds and interests, yet with little understand-
ing of some of the most basic principles in computer science.
That class turned out to be a revelation to us. Breaking down
computer science into the absolute basics appears to be ex-
actly what students want and need.

Selfie has already enabled me to unify my compiler and op-
erating systems classes, and inspired local colleagues to use
selfie in teaching their classes. The project has also inspired
me to start writing my first textbook. I owe a particular thank
you to the class of 2014 at Berkeley that endured our experi-
ment which eventually lead to the development of selfie. I
am particularly proud of one student who even changed his
major to computer science after taking that class, eventually
got his masters in computer science, and by now works as
software engineer at Google Inc.
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