Fast, Multicore-Scalable, Low-Fragmentation Memory Allocation
through Large Virtual Memory and Global Data Structures

Martin Aigner

firstname.lastname@cs.uni-salzburg.at

Abstract

We demonstrate that general-purpose memory allocation in-
volving many threads on many cores can be done with high
performance, multicore scalability, and low memory con-
sumption. For this purpose, we have designed and imple-
mented scalloc, a concurrent allocator that generally performs
and scales in our experiments better than other allocators
while using less memory, and is still competitive otherwise.
The main ideas behind the design of scalloc are: uniform treat-
ment of small and big objects through so-called virtual spans,
efficiently and effectively reclaiming free memory through
fast and scalable global data structures, and constant-time
(modulo synchronization) allocation and deallocation opera-
tions that trade off memory reuse and spatial locality without
being subject to false sharing.

Categories and Subject Descriptors D.4.2 [Operating
Systems]: Storage Management—Allocation/deallocation
strategies; D.3.4 [Programming Languages]: Processors—
Memory management (garbage collection)

Keywords Memory allocator, virtual memory, concurrent
data structures, multicore scalability

1.

Dynamic memory management is a key technology for high-
level programming. Most of the existing memory allocators
are extremely robust and well designed. Nevertheless, dy-
namic memory management for multicore machines is still
a challenge. In particular, allocators either do not scale in
performance for highly dynamic allocation scenarios, or they
do scale but consume a lot of memory. Scalable performance
of concurrent programs is crucial to utilize multicore hard-

Introduction

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).
OOPSLA’15, October 25-30, 2015, Pittsburgh, PA, USA

ACM. 978-1-4503-3689-5/15/10
http://dx.doi.org/10.1145/2814270.2814294

Christoph M. Kirsch
University of Salzburg, Austria

451

Michael Lippautz ~ Ana Sokolova

ware. Scalable allocation is needed for scalable performance
of concurrent programs which allocate memory dynamically.

Even though general purpose allocation was shown su-
perior to custom allocation [4] a decade ago, many multi-
threaded applications still use custom allocation or limit dy-
namic allocation to very few threads. We have developed a
new memory allocator called scalloc that enables program-
mers to design many-threaded high-performance applications
that dynamically allocate memory without the need for any
additional application-tailored allocation strategies.

There are three high-level challenges in the design of a
competitive concurrent allocator: (1) fast allocation for high
performance, (2) memory layout facilitating fast access, and
(3) effective and efficient reuse of memory for low mem-
ory consumption. All need to be achieved for various object
sizes. Moreover, in presence of concurrency, all need to be
achieved with as little coordination as possible. In partic-
ular, it is well-established common practice in concurrent
allocators to allocate from thread-local allocation buffers
(TLABSs) [3] for fast allocation. The memory layout needs
to support spatial locality without introducing false sharing.
Finally, the key challenge is the reuse of free memory: When
many threads deallocate objects of various sizes, even in other
threads’ TLABs, the freed memory should ideally be globally
available for immediate reuse by any thread (requiring thread
synchronization) for any request (requiring memory defrag-
mentation). Coordination is necessary for memory reuse, the
challenge is to minimize its need and cost.

Most competitive concurrent allocators are separated into
a local (TLAB-based) frontend, for fast allocation, and a
global backend, for reusing memory. TLABs grow and shrink
incrementally in chunks of memory which we call spans.
Note that spans are called superblocks in Hoard [3], SLABs
in llalloc [23], superpages in Streamflow [27], and spans in
TCMalloc [10]. Allocation is thread-local and fast as long as
there is space in the allocating thread’s TLAB, otherwise the
TLAB needs to grow by a new span. Therefore, the larger
the spans are, the faster the allocation. However, the larger
the spans, the higher the memory consumption, since free
memory in the TLAB of a given thread is not available to any
other thread. Only when a span is empty it can be reused by

other threads via the global backend, or even be returned to
the operating system. The scalability of the global backend is
crucial for the scalability of the allocator. Hence, there is a
trade-off between scalability and memory consumption.

There are two possibilities in the design of spans: either
all spans are of the same size, or not. If not all spans are
of the same size, then making free spans reusable for as
many requests as possible requires thread synchronization
and defragmentation (to control external fragmentation). If
they are of the same size, then free spans can be reused by
all requests up to the size of the spans, only requiring thread
synchronization. The disadvantage of same-sized spans that
can accommodate small but also big objects is increased
memory consumption (due to internal fragmentation). Most
competitive concurrent allocators are therefore hybrids that
use relatively small same-sized spans for small objects and
different-sized spans for big objects.

To address the challenges in scalable concurrent alloca-
tion, we have designed scalloc based on three main ideas
introduced here: (a) virtual spans which are same-sized spans
in virtual memory; (b) a scalable global backend based on
recently developed scalable concurrent data structures; and
(c) a constant-time (modulo synchronization) frontend that
eagerly returns spans to the backend. We have implemented
these three new concepts in scalloc which is open source
written in standard C/C++ and supports the POSIX API of
memory allocators (malloc, posix_memalign, free, etc.).

Scalloc provides scalability and reduces memory consump-
tion at the same time. Virtual spans reduce the need and cost
of coordination (as they are all of the same size) and at the
same time reduce memory consumption. Namely, a virtual
span contains a real span of a typically much smaller size
for actual allocation. Due to on-demand paging, the rest of
the virtual span does not manifest in actual memory con-
sumption. The trick is that the operating system implicitly
takes care of physical memory fragmentation because the
fraction of the virtual span that is unused has no cost aside of
consuming virtual address space. Moreover, the same size of
virtual spans allows us to use a single global data structure
for collecting and reusing empty spans. Global shared data
structures were long considered performance and scalability
bottlenecks that were avoided by introducing complex hier-
archies. Recent developments in concurrent data structure
design show that fast and scalable pools, queues, and stacks
are possible [1, 11, 15]. We leverage these results by provid-
ing a fast and scalable backend, called the span-pool, that
efficiently and effectively reuses and returns free memory to
the operating system (through madvise system calls). To the
best of our knowledge, no other concurrent allocator uses a
single global data structure as its backend. The frontend takes
advantage of the scalable backend by eagerly returning spans
as soon as they get empty. In contrast to other approaches, the
frontend runs per-thread in constant time (modulo synchro-
nization) meaning that at least one thread will make progress

452

in constant time while others may have to retry. The combina-
tion of all three design choices is needed to achieve scalability
and low memory consumption.

Scalloc is based on a mix of lock-free and lock-based
concurrent data structures to minimize code complexity
without sacrificing performance (scalloc is implemented in
around 3000 lines of code). In our and others’ [13] experience
locks are still a good choice for synchronizing data structures
that are mostly uncontended.

Our experiments show that scalloc increases performance
on average while consuming less memory than the previously
fastest allocator (TBB). Furthermore, scalloc outperforms
and outscales all allocators for varying objects sizes that
fit virtual spans while consuming as much or less memory.
Scalloc handles spatial locality without being subject to active
or passive false sharing, like some other allocators. Access
to memory allocated by scalloc is as fast or faster than with
most other allocators.

In the following section we provide high-level insight into
the experience we gained when developing scalloc that is
relevant to a broader audience beyond memory management
experts. Section 3 explains the design of virtual spans, the
span-pool, and the frontend and how they are integrated in
scalloc. Section 4 discusses memory fragmentation and algo-
rithmic complexity of scalloc. Section 5 provides implemen-
tation details relevant for performance and reproducibility
but optional for understanding the rest of the paper. We dis-
cuss related work in Section 6 and present the experimental
evaluation in Section 7.

2. [Experience and Relevance

In our experience with multicore machines dynamic memory
management may be a temporal and spatial bottleneck on
machines with increasingly many cores and an increasing
amount of memory. The challenge is to develop fast, scalable,
and low-fragmentation allocators that provide fast memory
access and are robust, i.e., do all of that for as many workloads
as possible.

The following summary reflects our experience which we
obtained in numerous experiments with different configu-
rations and versions of scalloc as well as with many other
state-of-the-art allocators.

* 64-bit address spaces and on-demand paging help reduce
memory consumption and code complexity. On 64-bit
machines even extremely large amounts of virtual address
fragmentation can be tolerated because of on-demand
paging and the sheer number of virtual addresses available.
For example, when allocating 1-byte objects only, scalloc
in its default configuration may still allocate up to 256GB
of physical memory in 32TB of virtual memory (16KB
real spans in 2MB virtual spans). As on-demand paging
does not map unused virtual memory, defragmentation
is only done (simply through unmapping) when resizing
empty real spans. Virtual spans enable uniform treatment

of a large range of object sizes (1-byte to IMB objects
in default scalloc) only leaving huge objects (>1MB) to
the operating system. In particular, virtual spans enable
the use of a single global data structure for collecting and
reusing empty spans called the span-pool. However, that
data structure still needs to scale in performance.

Lock-freedom improves performance and scalability but
it may not always be necessary for overall performance
and scalability. The span-pool is a so-called distributed
stack [11] of lock-free Treiber stacks [29] (stacks rather
than queues for spatial locality). In default scalloc there
are as many Treiber stacks in the span-pool as there are
cores on the machine. Access to the span-pool works by
first identifying one of the Treiber stacks, which is fast,
and then operating on that, possibly in parallel with as
many threads as there are cores. The key insight here is
that a span-pool with only one Treiber stack does not
scale anymore but, most interestingly, results in slightly
lower memory consumption because threads find empty
spans even faster. Moreover, replacing Treiber stacks with
lock-based stacks results in loss of performance and limits
scalability [15]. In a different part of scalloc we neverthe-
less use locks to synchronize access to an uncontended
double-ended queue. Here, locking significantly reduces
code complexity while not harming overall performance
and scalability.

Constant-time deallocation is not only possible and ob-
viously good for robustness but can also be done to save
memory. Allocating objects thread-locally without syn-
chronization is fast and standard practice. Deallocating
objects, however, is more difficult as it may happen con-
currently in the same span. Encouraged by the perfor-
mance and scalability of the span-pool, a technical inno-
vation in scalloc is that spans are eagerly inserted into the
span-pool as soon as they get empty, replacing possibly
non-constant-time cleanup later. It turns out that doing
so reduces memory consumption further, again without
harming performance and scalability.

On top of the design choices, a careful implementation
of all concepts is necessary for competitive performance.
We note that when comparing with other allocators, the
implementations (and not necessarily the design choices)
are being compared. Even a great concept may not perform
when poorly implemented.

3. Virtual Spans, Span-Pool, and Frontend

This section explains on conceptual level how virtual spans,
the span-pool, and the frontend work, and how they are
integrated in scalloc.

3.1 Real Spans and Size Classes

Like many other allocators, scalloc uses the well-known
concept of size classes. A (real) span in scalloc is a contiguous

453

arena virtual span real span
/ /
D / & /
Q7 o ! X A /
:\ ¥ 7 \\,Q O& /
& & & &
a5 S ! S & !
& K § K block
! / payload
1 /
!
/
virtual span real span
\\\ header

Figure 1: Structure of arena, virtual spans, and real spans

portion of memory partitioned into same-sized blocks. The
size of blocks in a span determines the size class of the span.
All spans in a given size class have the same number of
blocks. In scalloc, there are 29 size classes but only 9 distinct
real-span sizes which are all multiples of 4KB (the size of a
system page).

The first 16 size classes, with block sizes ranging from
16 bytes to 256 bytes in increments of 16 bytes, are taken
from TCMalloc [10]. These 16 size classes all have the same
real-span size. Size classes for larger blocks range from 512
bytes to IMB, in increments that are powers of two. These
size classes may have different real-span size, explaining
the difference between 29 size classes and 9 distinct real-
span sizes. The design of size-classes limits block internal
fragmentation for sizes larger than 16 bytes to less than 50%.

Objects of size larger than any size class are not managed
by spans, but rather allocated directly from the operating
system using mmap.

3.2 Virtual Spans

A virtual span is a span allocated in a very large portion of
virtual memory (32TB) which we call arena. All virtual spans
have the same fixed size of 2MB and are 2MB-aligned in the
arena. Each virtual span contains a real span, of one of the
available size classes. Wa say “size class of the virtual span”
for the size class of the contained real span. Typically, the real
span is (much) smaller than the virtual span that contains it.
The maximal real-span size is limited by the size of the virtual
span. This is why virtual spans are suitable for big objects
as well as for small ones. The structure of the arena, virtual
spans, and real spans is shown in Figure 1. The advantages
of using virtual spans are:

1. Virtual memory outside of real spans does not cause
fragmentation of physical memory, as it is not used and
therefore not mapped (because of on-demand paging of
the operating system);

2. Uniform treatment of small and big objects;

3. No repeated system calls upon every span allocation since
the arena is mmapped only once.

Note that since virtual spans are of the same size and
aligned in virtual memory, getting a new virtual span from
the arena is simply incrementing a bump pointer. When a

virtual span gets empty, it is inserted into the free-list of
virtual spans, i.e., the span-pool discussed in the next section.
The disadvantages of using virtual spans are:

1. Current kernels and hardware only provide a 48-bit, in-
stead of a 64-bit, address space. As a result, not all of
virtual memory can be utilized (see below);

. Returning a virtual span to the span-pool may be costly
in one scenario: a virtual span with a real span of a
given size greater than a given threshold becomes empty
and is inserted into the span pool. Then, in order to
limit physical-memory fragmentation, we use madvise!
to inform the kernel that the remaining virtual (and thus
mapped physical) memory is no longer needed.

Note that the design of the span-pool minimizes the
chances that a virtual span changes its real-span size.

Mmapping virtual memory in a single call at this order
of magnitude (32TB) is a new idea first developed for scal-
loc. Upon initialization, scalloc mmaps 245 virtual memory
addresses, the upper limit for a single mmap call on Linux.
This call does not introduce any significant overhead as the
memory is not mapped by the operating system. It is still
possible to allocate additional virtual memory using mmap,
e.g. for other memory allocation or memory-mapped I/O. The
virtual address space still left is 2% — 245 bytes, i.e., 224TB.

In the worst case of the current configuration with 2MB
virtual spans, if real spans are the smallest possible (16KB),
the physical memory addressable with scalloc is (24°/221) -
21 bytes = 23® bytes = 256GB.

We have also experimented with configurations of up to
128MB for virtual spans resulting in unchanged temporal and
spatial performance for the benchmarks that were not running
out of arena space. Enhancing the Linux kernel to support
larger arenas is future work. On current hardware, with up to
48 bits for virtual addresses, this would enable up to 256TB
arena space and 2TB addressable physical memory (in the
worst case, with 2MB virtual spans and 16KB real spans).

Note that in scalloc virtual spans do not restrict the pos-
sibility of observing segmentation faults because unmapped
memory that is not used by a real-span is still protected
against access using the mprotect system call.

3.3 Backend: Span-Pool

The span-pool is a global concurrent data structure that
logically corresponds to an array of real-span-size-segregated
“stack-like” pools. The span-pool implements put and get
methods; no values are lost nor invented from thin air; it
neither provides a linearizable emptiness check, nor any order
guarantees. However, each pool within the span-pool is a
locally linearizable [12] “stack-like” pool. It is “stack-like”
since in a single-threaded scenario it is actually a stack.

'madvise is used to inform the kernel that a a range of virtual memory is
not needed and the corresponding page frames can be unmapped.

454

real-span size x real-span size y real-span size n

pre allocated

stack 1 stack 2 stack p
free span free span free span
N pan_|]] 1
free span _] free span _] free span _] s
free span [free span [free span [3
L 1 1

Figure 2: Span-pool layout

Figure 2 illustrates that the segregation by real-span size is
implemented as pre-allocated array where each index in the
array refers to a given real-span size. Consequently, all size
classes that have the same real-span size refer to the same
index. Each array entry then holds another pre-allocated array,
the pool array, this time of lock-free Treiber stacks [29]. The
pool array has size equal to the number of cores (determined
at run-time during the initialization phase of the allocator).
As a result a stack in any of the pools of the span-pool is
identified by a real-span index and a core index. A Treiber
stack is a pointer to the top of a singly-linked list of elements;
pushing and popping is done lock-free by atomic compare-
and-swap operations on the top pointer.

The design is inspired by distributed queues [11]. We use
stacks rather than queues for the following reasons: spatial
locality, especially on thread-local workloads; lower latency
of push and pop compared to enqueue and dequeue; and
stacks can be implemented without sentinel nodes, i.e., no
additional memory is needed for the data structure. Thereby,
we utilize the memory of the elements inserted into the pool
to construct the stacks, avoiding any dynamic allocation
of administrative data structures. Distributed stacks are, to
our knowledge, among the fastest scalable pools. To make
the occurrence of the ABA problem [16] unlikely we use
16-bit ABA counters that are embedded into link pointers>.
Completely avoiding the ABA problem is a non-trivial task,
which can be solved using e.g. hazard pointers [24].

Listing 1 shows the pseudo code of the span-pool. Upon re-
turning a span to the span-pool, a thread performing a put call
first determines the real-span index for a given span (line 21)
and the core index as thread identifier modulo the number of
cores (line 22). Before actually inserting (line 25) the given
span into the corresponding stack the thread may return the
span’s underlying memory to the operating system using the
madvise system call with advice MADV_DONTNEED (line 24),
effectively freeing the affected memory. This is the expensive
case, only performed on spans with large real-span size deter-
mined by a threshold, as unused spans with large physically
mapped real-spans result in noticeable physical fragmentation
and the madvise system call may anyway be necessary upon
later reuse, e.g. when a span is to be reused in a size class with

2 Currently a 64-bit address space is limited to 48 bits of address, enabling
the other 16 bits to be used as ABA counter.

Listing 1: Span-pool pseudo code

//
//
//

Returns the number of cores.
Returns this thread’s id
(0-based) .

Int num_cores();
Int thread_id ();

1

2

3

4

5 // Utility functions to map spans and real-span
6 // sizes to distinct indexes.

7 Int real_span_idx(Span span);

8 Int real_span_idx(Int real_span_size);

9

// Returns the real span size of a given span.
Int real_span_size(Span span);

// Madvise all but a span’s first page with
// MADV_DONTNEED.
void madvise_span(Span span);

SpanPool {
Stack spans [MAX_REAL_SPAN_IDX][num_cores()];

void put(Span span):
Int rs_idx real_span_idx (span);
Int core_idx thread_id () mod num_cores();
if real_span_size(span) >= MADVISE_THRESHOLD:
madvise_span (span);
spans [rs_idx] [core_idx].put (span);

Span get(Int size_class):
Int rs_idx real_span_idx(size_class);
Int core_idx thread_id () mod num_cores ();
// Fast path.
spans [rs_idx] [core_idx].get ();
if span == NULL:
// Try to reuse some other span.
for rs_idx in range (0, MAX_REAL_SPAN_IDX):
for core_idx in range (0, num_cores()):
spans_[rs_idx][core_idx].Get ();
if span != NULL:
return span;
// If everything fails, just return a span from
// the arena.
return arena.allocate_virtual_span();

a smaller real-span size. The MADVISE_THRESHOLD (line 23)
is set to 32KB, which is the boundary between real-span sizes
of size classes that are incremented by 16 bytes and those
that are incremented in powers of two. Note that lowering
the threshold does not substantially improve the observed
memory consumption in our experiments while it noticeably
decreases performance. Furthermore, for scenarios where
physical fragmentation is an issue, one can add a compaction
call that traverses and madvises particular spans.

Upon retrieving a span from the span pool, for a given
size class, a thread performing a get call first determines the
real-span index of the size class (line 28) and the core index
as thread identifier modulo the number of cores (line 29). In
the fast path for span retrieval the thread then tries to retrieve
a span from this identified stack (line 31). Note that this
fast path implements the match to the put call, effectively
maximizing locality for consecutively inserted) and retrieved
spans of equal real-span sizes. If no span is found in the
fast path, the thread searches all real-span size indexes and
core indexes for a span to use (lines 34-38). Note that this
motivates the design of the real-span sizes: For reuse, a span
of a large real-span size has anyway been madvised whereas

455

expected
Arena (RSS =0)

Backend (RSS compacted)

K‘ Frontend (RSS = real span size)
hot X./ reusable

floating

== malloc()
— free()

Figure 3: Life cycle of a span

all other spans have the same real-span size; Reusing a span
in the same real-span size (even if the size class changes)
amounts only to changing the header. Only when the search
for an empty virtual span fails, the thread gets a new virtual
span from the arena (as for initial allocation; line 41). Note
that the search through the span-pool may fail even if there
are spans in it due to the global use of the arrays (and the
nonlinearizable emptiness check).

3.4 Frontend: Allocation and Deallocation

We now explain the mutator-facing frontend of scalloc, i.e.,
the part of the allocator that handles allocation and dealloca-
tion requests from the mutator.

We distinguish several states in which a span can be,
illustrated in Figure 3. A span can be in a state: expected,
free, hot, floating, or reusable. A span is expected if it is
still in the arena, i.e., it is completely unused. Note that in
this state its memory footprint is O bytes. Spans contained in
the span-pool are free. A span can be in some of the other
states only when it is in the frontend, i.e., it is assigned a
specific size class. Spans that are hot are used for allocating
new blocks. For spans that are not hot we distinguish between
floating and reusable based on a threshold of the number of
free blocks. Spans with less than or equal free blocks than
the specified threshold are floating, spans with more free
blocks than specified by the threshold are reusable. We refer
to this threshold as reusability threshold. It is possible to only
have spans that are floating, i.e., no reuse of nonempty spans,
at the expense of increased fragmentation. Throughout its
life in the frontend, a span is always assigned to exactly one
local-allocation buffer (LAB), the so-called owning LAB. By
default LABs are TLABs in scalloc, i.e., each LAB has a
owner thread. Alternatively, scalloc can also be configured
to use core-local allocation buffers (CLABSs), i.e., one LAB
per core where threads with equal identifiers modulo number
of cores share the same LAB. Either way, in each LAB and
for each size class there is a unique hot span. Furthermore,
each LAB contains for each size class a set of reusable spans.
More details about this set are given in Section 5.

A consequence of the concept of ownership is that deal-
location of a block may happen in spans that are not owned
by a thread. We refer to such deallocation as remote free,
whereas deallocation in a span owned by a thread is a local

free. All allocations in scalloc are done locally, performed in
the corresponding hot span. A common problem in allocator
design is handling remote frees in a scalable way. Having
no mechanism for handling remote frees results in so-called
blowup fragmentation [3], i.e., any memory freed through
remote frees cannot be reused again. Similar to other span-
based allocators [23, 27], scalloc provides two free lists of
blocks in each span, a local free list and a remote free list.
The local free list is only accessed by an owning thread, while
the remote free list can be accessed concurrently by multiple
(not owning) threads at the same time.

Allocation. Upon allocation of a block in a given size class, a
thread checks its LAB’s size class for a hot span. If a hot span
exists the thread tries to find a block in the local free list of the
hot span. If a block is found, the thread allocates in this block
(this is the allocation fast path). The following situations can
also occur (for implementation details see Section 5):

(a) No hot span exists in the given size class. The thread then
tries to assign a new hot span by trying to reuse one from
the set of reusable spans. If no span is found there, the
thread falls back to retrieving a span from the span-pool.

(b) There is a hot span, but its local free list is empty. The
idea now is to use a remotely freed block. However, it
is not a wise option to allocate in the remote free list, as
that would make allocation interfere with remote frees,
destroying the performance of allocation. Therefore, this
is a point of choice: If there are enough blocks (in terms of
the reusability threshold) in the remote free list, the thread
moves them all to its local free list and continues with
fast-path allocation. Otherwise, if there are not enough
blocks in the remote free list, the thread gets a new hot
span like in (a).

Deallocation. Upon deallocation, a thread returns the block
to be freed to the corresponding free list, which is the local
free list in case where the thread owns the span, and the
remote free list otherwise. Depending on the state of the span
where the block is allocated, the thread then performs the
following actions (for implementation details see Section 5):

(a) The span is floating. If the number of free blocks in this
span is now larger than the reusability threshold, the span’s
state changes to reusable and the span is inserted into the
set of reusable spans of the owning LAB.

(b) The span is reusable. If the free was the last free in the
span, i.e., all blocks have been freed, the span is removed
from the set of reusable spans of the owning LAB and
returned to the span-pool.

If the span is hot, no additional action is taken.

Note that a new contribution of scalloc is that a span is
freed upon the deallocation of the last object in the span. All
other span-based allocators postpone freeing of a span until
the next allocation which triggers a cleanup.

456

4. Properties

Span-internal Fragmentation. Span-internal fragmentation
is a global property and refers to memory assigned to a real-
span of a given size class that is currently free (unused by the
mutator) but cannot be reused for serving allocation requests
in other size classes by any LAB.

Let f be the current global span-internal fragmentation.
Let s refer to the span on which the next operation happens.
Let size be the size class of s and u be the size of the payload
(memory usable for blocks) of s. At initialization f = 0.

Then, for an allocation of a block in s

{

where no usable spans means no hot span and no reusable
spans are present (1). Note that a span might already be
reusable (with respect to the threshold) but not yet present
in the set of reusable spans. This case is still covered by (1)
and is a result of the fact that freeing an object and further
processing it (reusable sets, or span-pool) are operations
performed non-atomically.
Furthermore, for a deallocation of a block in s

{

where last block (3) refers to the last free of a block in a
given span. Note that to achieve this fragmentation property
on a free call an allocator, such as scalloc, has to return an
empty span to a global backend immediately. A regular free
not emptying the span increases fragmentation by the size of
the block as this span cannot be reused globally (4).

f+u-size if no usable span

(€]

! @

f—size otherwise

if last block

otherwise

f-u

f+size

©)

/= @)

Operation Complexity. An allocation operation only con-
siders hot spans and reusable spans and does not need to
clean up empty spans. The operation is constant-time as in
the uncontended case either a hot span is present and can
be used for allocating a block or a reusable span is made
hot again before allocating a block in it. In the contended
case more than one reusable span may need to be considered
because of concurrent deallocation operations. At least one
of the operations will make progress in constant time.

A deallocation operation only considers the affected span,
i.e., the span containing the block that is freed. Local dealloca-
tions are constant-time and remote deallocations are constant-
time modulo synchronization (insertion into the remote free-
list which is lock-free). Spans that get reusable are made
reusable in constant-time modulo synchronization (insertion
into the set of reusable spans which is lock-based). Spans that
get empty are handled in the span-pool.

Span-pool put and get operations are constant-time mod-
ulo synchronization (the span-pool is lock-free).

header block payload

remote
f-list

local

e £-list

epoch | owner

Figure 4: Real span layout

S.

We now explain the implementation details of scalloc, i.e.,
the encoding of fields in headers and the concrete algorithms
used for allocation, deallocation, and thread termination.

The real-span header layout is shown in Figure 4. A 1ink
field is used to link up spans when necessary, i.e., it is used
to link spans in the span-pool as well as in the set of reusable
spans. The epoch field is used to uniquely identify a span’s
state within its life cycle (see below). The local and remote
free list contained in a span are encoded in the fields local
f-list and remote f-1list, respectively. A span’s owning
LAB is encoded in the owner field.

The fields of a LAB are: an owner field that uniquely
identifies a LAB; for each size class a field that refers to
the hot span, called hot_span; and per size class the set of
reusable spans kept in a field reusable_span.

Implementation Details

Owner encoding. The owner field consists of two parts, an
actual identifier (16 bits) of the owning LAB and a reference
(48 bits) to the owning LAB. The whole field fits in a single
word and can be updated atomically using compare-and-swap
instructions. Note that upon termination of the last thread
that is assigned to a LAB, the owner is set to TERMINATED.
Subsequent reuses of the LAB (upon assigning newly created
threads to it) result in a different owner, i.e., the actual
identifier is different while the reference to the LAB stays
the same. Also note that due to thread termination a span’s
owning LAB might have a different owner than the span’s
owner field indicates.

Epoch encoding. The epoch field is a single word that
encodes a span’s state and an ABA counter. The states hot,
free, reusable, and floating are encoded in the upper parts
(bitwise) of the word. The ABA counter (encoded in the
rest of the word) is needed for versioning spans as the state
alone is not enough to uniquely encode a state throughout a
span’s life cycle. E.g., one thread can observe a reusable span
that after the last free is empty. Since freeing the object and
transitioning the span into the state is not an atomic operation,
another thread can now observe this span as empty (because
it has been delayed after an earlier free operation) and put it
into the span-pool. This span can now be reused by the same
thread in the same size class ultimately ending up in the state
reusable, but not completely empty. At this point the thread
that initially freed the last block in the previous round needs
to be prevented from transitioning it into state free.

Remote f-list encoding. We use a Treiber stack [29] to
implement the remote free list in a span. The top pointer
of the stack is stored in its own cache line in the span header.

457

Listing 2: Auxiliary structures and methods

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 }
62
63
64
65

// Constant indicating terminated LABs.
Int TERMINATED;

LAB get_lab(Int owner);

Bool is_orphan(Span span);

Span { /* Free list implementations omitted. */
Int epoch;

Int owner;

Int size_class;

Bool
Bool
Bool
Bool

try_mark_hot (Int old_epoch);
try_mark_floating(Int old_epoch);
try_mark_reusable(lnt old_epoch);
try_mark_free(Int old_epoch);

Bool
Bool

try_refill_from_remotes ();
try_adopt (Int new_owner);

*/

Set { /* Set implementation omitted.
Int owner;

66 void open(Int owner);

67 void close(); // Sets owner to TERMINATED;
68

69 Span get();

70 Bool put(Int old_owner, Span span);

71

72}

Bool try_remove(Int old_owner, Span span);

Furthermore, we keep the number of blocks in the stack’s
top pointer. This number is increased on each put operation.
A single call is used to retrieve all blocks from this free list by
atomically setting the stack’s top pointer to NULL (implicitly
setting the block count to 0). Note that generating a new
state (putting and retrieving all blocks) only requires the top
pointer. As a result special ABA handling is not needed (ABA
can occur, but is not a problem) 3,

Listing 2 provides an overview of auxiliary methods on
spans and sets for reusable spans.

Recall that an owner field embeds a reference
to the corresponding LAB, which can be retrieved
using get_lab (line 46). Furthermore, the function
is_oprhan (line 47) is used to check whether the given span
is an orphan, i.e., all threads assigned to its owning LAB have
terminated before all blocks have been returned.

A span then contains the previously mentioned epoch
and owner fields (lines 50-51). The methods that try to
mark a span as being in a specific state (lines 54-57) all
take an epoch value and try to atomically change it to a
new value that has the corresponding state bits set and
the ABA counter increased. These calls are then used in
the actual algorithm for allocation and deallocation to tran-
sition a span from one state into another. The method
try_refill_from_remotes (line 59) is used to move re-
mote blocks (if there are more available then reusability
threshold) from the remote free list to the local one. The

3 For detailed explanations of the ABA problem see [24].

method try_adopt (line 60) is used to adopt orphaned spans,
i.e., atomically change their owning LAB.

Maintaining reusable spans should not have a notice-
able performance impact (latency of allocation and deallo-
cation) — which of course suggests using fast and scalable
rather than non-scalable and slow data structures. Our design
provides constant time put, get, and remove of arbitrary
spans (lines 69—71). Furthermore, reusable spans are cleaned
upon termination of the last thread assigned to a LAB, requir-
ing open and close methods (lines 66—67) that effectively
prohibit put and remove methods accessing a set when no
owner (i.e. TERMINATED) is present or the owner is different
than the one provided as parameter. For details on thread ter-
mination see below. Contention on sets of reusable spans is
low as the sets are segregated by size class and LABs. For the
implementation of reusable sets of spans in scalloc we use a
lock-based deque. We are aware of lock-free implementations
of deques [7] that can be enhanced to be usable in scalloc.
However, the process of cleaning up the set at thread termina-
tion (see below) requires wait-freedom as other threads may
still be accessing the data structure. Helping approaches can
be used to (even efficiently [19]) solve this problem. Exper-
iments suggest that contention on these sets is low and we
thus keep the implementation simple.

Listing 3 illustrates the main parts of scalloc’s frontend.
For simplicity we omit error handling, e.g. returning out of
memory. Recall that each LAB is assigned an owner and
holds for each size class a reference to the hot_span and the
reusable_spans (lines 74-76).

The method get_span (line 80) is used to retrieve new
spans, either from the reusable spans (lines 82—87), or from
the span-pool (line 88). The calls to try_mark_hot on
line 85 and line 89 represent the transitions free — hot and
reusable — hot, respectively. Note that the transition free —
hot does not compete with any other threads.

The method allocate (line 92) is used to allocate a
single block in a hot span. If no hot span is present a
new one is obtained using get_span (line 94). The hot
span is then used to retrieve a block from the local free
list of a span (line 95). If this attempt fails because the
local free list is empty, the remote free list is inspected. If
enough (with respect to reusability threshold represented
as REUSABILITY_THRESHOLD) remotely freed blocks are
available, they are moved to the local free list (line 98),
just before actually allocating a new block (line 99). If
not enough remotely freed blocks are available the current
hot span is marked as floating (line 101), i.e., the hot span
takes the transition hot — floating, and a new hot span is
retrieved (line 102). The block is then allocated in the new
hot span (line 103).

The method deallocate (line 106) is used to free
a single block. Since freeing a block and transitioning
spans through states are non-atomic operations, the owner
and epoch values of a span are stored before freeing the

458

Listing 3: Frontend: Allocation, deallocation, and thread
termination and initialization

73 LAB {

74 Span hot_span[NUM_SIZE_CLASSES];

75 Set reuseable_spans [NUM_SIZE_CLASSES];
76 Int owner;

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

// Retrieve a span from the set of reusable spans
// or the span-pool.
Span get_span(Int size_class):
Span span;
do:
span reuseable_spans[size_class].get ();
if span NULL &&
span.try_mark_hot (span.epoch):
return span;
until span == NULL;
span span_pool.get(size_class);
span.try_mark_hot (span.epoch);//always succeeds
return span;

Block allocate(Int sc /* size class */):
if hot_span[sc] NULL:
hot_span[sc] = get_span(sc);
Block block hot_span[sc]l.allocate_block();
if block NULL:
// Case of empty local free list.
if hot_span[sc].try_refill_from_remotes():
block hot_span[sc].allocate_block();
return block;
hot_span[sc]l.try_mark_floating(span.epoch);
hot_span[sc] get_span(sc);
block hot_span[sc].allocate_block();
return block;

void deallocate(Block block):
Span span span_from_block(block);
Int sc = span.size_class;
Int old_owner span.owner;
Int old_epoch span.epoch;
span.free(block, owner);
if span.is_orphan():
span.try_adopt (owner) ;
if span.free_blocks() > REUSABILITY_THRESHOLD:
if span.try_mark_reusable(old_epoch):
old_owner.reuseable_spans[sc].put(
old_owner, span);
if span.is_full():
if span.try_mark_free(old_epoch):
old_owner .reuseable_spans[sc].try_remove (
old_owner, span);
span_pool.put (span);

void terminate():
for sc in size_classes:
reuseable_spans[sc].close();
hot_spanl[sc].try_mark_floating(
hot_span[scl.epoch);
hot_span[sc] NULL ;
Span span;

131 do:

132 span = reuseable_spans([sc]l.get();
133 span.try_mark_floating(span.epoch);
134 until span == NULL;

135 owner = TERMINATED;

136
137
138
139
140

141 }

void init(Int new_owner):
owner new_owner ;
for sc in size_classes:
reuseable_spans[sc].open(new_owner);

block (lines 109-110). The span’s free call (line 111) then
puts the block into the corresponding free list (local or remote,
depending on the owner of the span). If after this free, the

number of free blocks is larger than the reusability thresh-
old (line 114), the span is put into state reusable (floating
— reusable). Similar to other state transitions, this action is
serialized through try_mark_reusable (line 115). The suc-
ceeding thread then also tries to insert the span into the set of
reusable spans for this size class (line 117). Note that this call
takes the old owner as parameter to prohibit inserting into a
reusable set of a LAB that has either no owner or an owner
that is different from the old owner. Similarly, making the
transition reusable — free requires marking it as free through
try_mark_free (line 119). Note that marking a span as free
competes with reusing it in get_span. After successfully
marking it as free the span can be removed (if needed) from
the set of reusable spans (line 121). Finally, the span is put
into the span-pool (line 122).

Thread Termination. Similar to others [17], we refer to
spans that have not yet been transitioned into the state free (be-
cause they contain live blocks) while all threads assigned to
their owning LAB have terminated as orphaned spans. Since
LABs do not necessarily have references to all owned spans
(there exist no references to floating spans) a span cannot
be declared as orphaned by setting a flag. Instead, orphaned
spans can be detected by comparing a span’s owner against
the owner that is set in the owning LAB. Owner fields that dif-
fer or a LAB owner set to TERMINATED indicates an orphaned
span. Orphaned spans are always floating and adopted by
threads upon freeing a block in these spans (lines 112—113).
LAB cleanup happens in terminate (line 124) where for
each size class (lines 125-134) the reusable spans set is
closed (line 126), and all spans (hot and reusable) are transi-
tioned into state floating (line 128 and line 133). For reusable
spans this transition competes with reusable — free (line 119),
where a potential last free of a block in a span triggers putting
the span into the span-pool. Finally, the LAB is marked as
terminated and consequently all spans that are not free can
be observed as orphaned. Reusing a LAB later on requires
setting a new unique owner (line 140).

Handling Large Objects. Scalloc provides span-based allo-
cation of blocks of size less than or equal to IMB and relies
on conventional mmap for all other objects. For allocation this
means that the frontend just forwards the allocation request
to an allocator that just mmaps the block and adds a header
containing the required size. Deallocation requires checking
whether a block has been allocated in a span or not. However,
since spans are contained in a single large arena this check is
cheap (xor-ing against aligned arena boundary). Depending
on whether the block has been allocated in a span or not, the
request is just forwarded appropriately.

Unwritten Rules. The illustrated concepts yield a design that
provides scalability on a multi-core system while keeping
memory compact with respect to to a reusability threshold.
To this end we would like to note that being competitive in
absolute terms requires an implementation that forces strict
inlining of code, careful layout of thread-local storage, and

459

intercepting thread creation and termination. Without those
techniques absolute performance suffers from overheads of
function calls as well as cache misses (for unnecessarily
checking conditions related to thread-local storage).

6. Related Work

We first discuss related work on concurrent data structures
and then on existing concurrent memory allocators.

Concurrent data structures in the fast path of the frontend
as well as the backend of scalloc are lock-free [16]. A
recent trend towards semantically relaxed concurrent data
structures [1, 15] opens doors for new design ideas and
even greater performance and scalability so that hierarchies
of spans (buffers in general) can be avoided and may be
utilized globally across the whole system. The concurrent
data structures in scalloc are pools, allowing in principle
every data structure with pool semantics to be used. However,
unlike segment queues [1] and k-Stacks [15], Distributed
Queues [11] with Treiber stacks [29], as used in scalloc, do
not require dynamically allocated administrative memory
(such as sentinel nodes), which is important for building
efficient memory allocators. The data structures for reusable
spans within a TLAB are implemented using locks but could
in principle be replaced with wait-free sets, which nowadays
can be implemented almost as efficiently as their lock-free
counterparts [19].

Many concepts underlying scalloc such as size classes,
hierarchical allocation (local allocation buffers, spans), and
local memory caching in so-called private heaps (span owner-
ship) have already been introduced and studied in thread-local
variants [3, 30]. Scalloc borrows from some of these concepts
and integrates them with lock-free concurrent data structures,
and introduces new ideas like virtual spans.

In our experiments we compare scalloc to some of the
best and most popular concurrent memory allocators: Hoard
(git-13c7e75), jemalloc (3.6.0), llalloc (1.4), ptrna110c24 (libc
2.19), Streamflow (git-41aa80d), SuperMalloc (git-bd7096f),
Intel TBB allocator (4.3), and TCMalloc (googleperftools
2.1). McRT-Malloc [17] is left out of our comparison because
of a missing implementation. For Michael’s allocator [25]
there exists no reference implementation — an implemen-
tation for x86-64 by the Streamflow authors crashes for all
our benchmarks; we have received another implementation5
which unfortunately does not perform and scale as we ex-
pect from the original paper. We thus decided to leave the
Michael allocator out of our comparisons. ptmalloc2 [9] ex-
tends Doug Lea’s malloc [22] (dlmalloc; 2.7.x) and is part
of the GNU libc library. jemalloc [8] is the default allocator
in FreeBSD and NetBSD and has been integrate