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Abstract
We demonstrate that general-purpose memory allocation in-
volving many threads on many cores can be done with high
performance, multicore scalability, and low memory con-
sumption. For this purpose, we have designed and imple-
mented scalloc, a concurrent allocator that generally performs
and scales in our experiments better than other allocators
while using less memory, and is still competitive otherwise.
The main ideas behind the design of scalloc are: uniform treat-
ment of small and big objects through so-called virtual spans,
efficiently and effectively reclaiming free memory through
fast and scalable global data structures, and constant-time
(modulo synchronization) allocation and deallocation opera-
tions that trade off memory reuse and spatial locality without
being subject to false sharing.

Categories and Subject Descriptors D.4.2 [Operating
Systems]: Storage Management—Allocation/deallocation
strategies; D.3.4 [Programming Languages]: Processors—
Memory management (garbage collection)

Keywords Memory allocator, virtual memory, concurrent
data structures, multicore scalability

1. Introduction
Dynamic memory management is a key technology for high-
level programming. Most of the existing memory allocators
are extremely robust and well designed. Nevertheless, dy-
namic memory management for multicore machines is still
a challenge. In particular, allocators either do not scale in
performance for highly dynamic allocation scenarios, or they
do scale but consume a lot of memory. Scalable performance
of concurrent programs is crucial to utilize multicore hard-
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ware. Scalable allocation is needed for scalable performance
of concurrent programs which allocate memory dynamically.

Even though general purpose allocation was shown su-
perior to custom allocation [4] a decade ago, many multi-
threaded applications still use custom allocation or limit dy-
namic allocation to very few threads. We have developed a
new memory allocator called scalloc that enables program-
mers to design many-threaded high-performance applications
that dynamically allocate memory without the need for any
additional application-tailored allocation strategies.

There are three high-level challenges in the design of a
competitive concurrent allocator: (1) fast allocation for high
performance, (2) memory layout facilitating fast access, and
(3) effective and efficient reuse of memory for low mem-
ory consumption. All need to be achieved for various object
sizes. Moreover, in presence of concurrency, all need to be
achieved with as little coordination as possible. In partic-
ular, it is well-established common practice in concurrent
allocators to allocate from thread-local allocation buffers
(TLABs) [3] for fast allocation. The memory layout needs
to support spatial locality without introducing false sharing.
Finally, the key challenge is the reuse of free memory: When
many threads deallocate objects of various sizes, even in other
threads’ TLABs, the freed memory should ideally be globally
available for immediate reuse by any thread (requiring thread
synchronization) for any request (requiring memory defrag-
mentation). Coordination is necessary for memory reuse, the
challenge is to minimize its need and cost.

Most competitive concurrent allocators are separated into
a local (TLAB-based) frontend, for fast allocation, and a
global backend, for reusing memory. TLABs grow and shrink
incrementally in chunks of memory which we call spans.
Note that spans are called superblocks in Hoard [3], SLABs
in llalloc [23], superpages in Streamflow [27], and spans in
TCMalloc [10]. Allocation is thread-local and fast as long as
there is space in the allocating thread’s TLAB, otherwise the
TLAB needs to grow by a new span. Therefore, the larger
the spans are, the faster the allocation. However, the larger
the spans, the higher the memory consumption, since free
memory in the TLAB of a given thread is not available to any
other thread. Only when a span is empty it can be reused by
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other threads via the global backend, or even be returned to
the operating system. The scalability of the global backend is
crucial for the scalability of the allocator. Hence, there is a
trade-off between scalability and memory consumption.

There are two possibilities in the design of spans: either
all spans are of the same size, or not. If not all spans are
of the same size, then making free spans reusable for as
many requests as possible requires thread synchronization
and defragmentation (to control external fragmentation). If
they are of the same size, then free spans can be reused by
all requests up to the size of the spans, only requiring thread
synchronization. The disadvantage of same-sized spans that
can accommodate small but also big objects is increased
memory consumption (due to internal fragmentation). Most
competitive concurrent allocators are therefore hybrids that
use relatively small same-sized spans for small objects and
different-sized spans for big objects.

To address the challenges in scalable concurrent alloca-
tion, we have designed scalloc based on three main ideas
introduced here: (a) virtual spans which are same-sized spans
in virtual memory; (b) a scalable global backend based on
recently developed scalable concurrent data structures; and
(c) a constant-time (modulo synchronization) frontend that
eagerly returns spans to the backend. We have implemented
these three new concepts in scalloc which is open source
written in standard C/C++ and supports the POSIX API of
memory allocators (malloc, posix_memalign, free, etc.).

Scalloc provides scalability and reduces memory consump-
tion at the same time. Virtual spans reduce the need and cost
of coordination (as they are all of the same size) and at the
same time reduce memory consumption. Namely, a virtual
span contains a real span of a typically much smaller size
for actual allocation. Due to on-demand paging, the rest of
the virtual span does not manifest in actual memory con-
sumption. The trick is that the operating system implicitly
takes care of physical memory fragmentation because the
fraction of the virtual span that is unused has no cost aside of
consuming virtual address space. Moreover, the same size of
virtual spans allows us to use a single global data structure
for collecting and reusing empty spans. Global shared data
structures were long considered performance and scalability
bottlenecks that were avoided by introducing complex hier-
archies. Recent developments in concurrent data structure
design show that fast and scalable pools, queues, and stacks
are possible [1, 11, 15]. We leverage these results by provid-
ing a fast and scalable backend, called the span-pool, that
efficiently and effectively reuses and returns free memory to
the operating system (through madvise system calls). To the
best of our knowledge, no other concurrent allocator uses a
single global data structure as its backend. The frontend takes
advantage of the scalable backend by eagerly returning spans
as soon as they get empty. In contrast to other approaches, the
frontend runs per-thread in constant time (modulo synchro-
nization) meaning that at least one thread will make progress

in constant time while others may have to retry. The combina-
tion of all three design choices is needed to achieve scalability
and low memory consumption.

Scalloc is based on a mix of lock-free and lock-based
concurrent data structures to minimize code complexity
without sacrificing performance (scalloc is implemented in
around 3000 lines of code). In our and others’ [13] experience
locks are still a good choice for synchronizing data structures
that are mostly uncontended.

Our experiments show that scalloc increases performance
on average while consuming less memory than the previously
fastest allocator (TBB). Furthermore, scalloc outperforms
and outscales all allocators for varying objects sizes that
fit virtual spans while consuming as much or less memory.
Scalloc handles spatial locality without being subject to active
or passive false sharing, like some other allocators. Access
to memory allocated by scalloc is as fast or faster than with
most other allocators.

In the following section we provide high-level insight into
the experience we gained when developing scalloc that is
relevant to a broader audience beyond memory management
experts. Section 3 explains the design of virtual spans, the
span-pool, and the frontend and how they are integrated in
scalloc. Section 4 discusses memory fragmentation and algo-
rithmic complexity of scalloc. Section 5 provides implemen-
tation details relevant for performance and reproducibility
but optional for understanding the rest of the paper. We dis-
cuss related work in Section 6 and present the experimental
evaluation in Section 7.

2. Experience and Relevance
In our experience with multicore machines dynamic memory
management may be a temporal and spatial bottleneck on
machines with increasingly many cores and an increasing
amount of memory. The challenge is to develop fast, scalable,
and low-fragmentation allocators that provide fast memory
access and are robust, i.e., do all of that for as many workloads
as possible.

The following summary reflects our experience which we
obtained in numerous experiments with different configu-
rations and versions of scalloc as well as with many other
state-of-the-art allocators.

• 64-bit address spaces and on-demand paging help reduce
memory consumption and code complexity. On 64-bit
machines even extremely large amounts of virtual address
fragmentation can be tolerated because of on-demand
paging and the sheer number of virtual addresses available.
For example, when allocating 1-byte objects only, scalloc
in its default configuration may still allocate up to 256GB
of physical memory in 32TB of virtual memory (16KB
real spans in 2MB virtual spans). As on-demand paging
does not map unused virtual memory, defragmentation
is only done (simply through unmapping) when resizing
empty real spans. Virtual spans enable uniform treatment
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of a large range of object sizes (1-byte to 1MB objects
in default scalloc) only leaving huge objects (>1MB) to
the operating system. In particular, virtual spans enable
the use of a single global data structure for collecting and
reusing empty spans called the span-pool. However, that
data structure still needs to scale in performance.

• Lock-freedom improves performance and scalability but
it may not always be necessary for overall performance
and scalability. The span-pool is a so-called distributed
stack [11] of lock-free Treiber stacks [29] (stacks rather
than queues for spatial locality). In default scalloc there
are as many Treiber stacks in the span-pool as there are
cores on the machine. Access to the span-pool works by
first identifying one of the Treiber stacks, which is fast,
and then operating on that, possibly in parallel with as
many threads as there are cores. The key insight here is
that a span-pool with only one Treiber stack does not
scale anymore but, most interestingly, results in slightly
lower memory consumption because threads find empty
spans even faster. Moreover, replacing Treiber stacks with
lock-based stacks results in loss of performance and limits
scalability [15]. In a different part of scalloc we neverthe-
less use locks to synchronize access to an uncontended
double-ended queue. Here, locking significantly reduces
code complexity while not harming overall performance
and scalability.

• Constant-time deallocation is not only possible and ob-
viously good for robustness but can also be done to save
memory. Allocating objects thread-locally without syn-
chronization is fast and standard practice. Deallocating
objects, however, is more difficult as it may happen con-
currently in the same span. Encouraged by the perfor-
mance and scalability of the span-pool, a technical inno-
vation in scalloc is that spans are eagerly inserted into the
span-pool as soon as they get empty, replacing possibly
non-constant-time cleanup later. It turns out that doing
so reduces memory consumption further, again without
harming performance and scalability.

On top of the design choices, a careful implementation
of all concepts is necessary for competitive performance.
We note that when comparing with other allocators, the
implementations (and not necessarily the design choices)
are being compared. Even a great concept may not perform
when poorly implemented.

3. Virtual Spans, Span-Pool, and Frontend
This section explains on conceptual level how virtual spans,
the span-pool, and the frontend work, and how they are
integrated in scalloc.

3.1 Real Spans and Size Classes
Like many other allocators, scalloc uses the well-known
concept of size classes. A (real) span in scalloc is a contiguous
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Figure 1: Structure of arena, virtual spans, and real spans

portion of memory partitioned into same-sized blocks. The
size of blocks in a span determines the size class of the span.
All spans in a given size class have the same number of
blocks. In scalloc, there are 29 size classes but only 9 distinct
real-span sizes which are all multiples of 4KB (the size of a
system page).

The first 16 size classes, with block sizes ranging from
16 bytes to 256 bytes in increments of 16 bytes, are taken
from TCMalloc [10]. These 16 size classes all have the same
real-span size. Size classes for larger blocks range from 512
bytes to 1MB, in increments that are powers of two. These
size classes may have different real-span size, explaining
the difference between 29 size classes and 9 distinct real-
span sizes. The design of size-classes limits block internal
fragmentation for sizes larger than 16 bytes to less than 50%.

Objects of size larger than any size class are not managed
by spans, but rather allocated directly from the operating
system using mmap.

3.2 Virtual Spans
A virtual span is a span allocated in a very large portion of
virtual memory (32TB) which we call arena. All virtual spans
have the same fixed size of 2MB and are 2MB-aligned in the
arena. Each virtual span contains a real span, of one of the
available size classes. Wa say “size class of the virtual span”
for the size class of the contained real span. Typically, the real
span is (much) smaller than the virtual span that contains it.
The maximal real-span size is limited by the size of the virtual
span. This is why virtual spans are suitable for big objects
as well as for small ones. The structure of the arena, virtual
spans, and real spans is shown in Figure 1. The advantages
of using virtual spans are:

1. Virtual memory outside of real spans does not cause
fragmentation of physical memory, as it is not used and
therefore not mapped (because of on-demand paging of
the operating system);

2. Uniform treatment of small and big objects;
3. No repeated system calls upon every span allocation since

the arena is mmapped only once.

Note that since virtual spans are of the same size and
aligned in virtual memory, getting a new virtual span from
the arena is simply incrementing a bump pointer. When a
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virtual span gets empty, it is inserted into the free-list of
virtual spans, i.e., the span-pool discussed in the next section.
The disadvantages of using virtual spans are:

1. Current kernels and hardware only provide a 48-bit, in-
stead of a 64-bit, address space. As a result, not all of
virtual memory can be utilized (see below);

2. Returning a virtual span to the span-pool may be costly
in one scenario: a virtual span with a real span of a
given size greater than a given threshold becomes empty
and is inserted into the span pool. Then, in order to
limit physical-memory fragmentation, we use madvise1

to inform the kernel that the remaining virtual (and thus
mapped physical) memory is no longer needed.

Note that the design of the span-pool minimizes the
chances that a virtual span changes its real-span size.

Mmapping virtual memory in a single call at this order
of magnitude (32TB) is a new idea first developed for scal-
loc. Upon initialization, scalloc mmaps 245 virtual memory
addresses, the upper limit for a single mmap call on Linux.
This call does not introduce any significant overhead as the
memory is not mapped by the operating system. It is still
possible to allocate additional virtual memory using mmap,
e.g. for other memory allocation or memory-mapped I/O. The
virtual address space still left is 248 − 245 bytes, i.e., 224TB.

In the worst case of the current configuration with 2MB
virtual spans, if real spans are the smallest possible (16KB),
the physical memory addressable with scalloc is (245/221) ⋅
214 bytes = 238 bytes = 256GB.

We have also experimented with configurations of up to
128MB for virtual spans resulting in unchanged temporal and
spatial performance for the benchmarks that were not running
out of arena space. Enhancing the Linux kernel to support
larger arenas is future work. On current hardware, with up to
48 bits for virtual addresses, this would enable up to 256TB
arena space and 2TB addressable physical memory (in the
worst case, with 2MB virtual spans and 16KB real spans).

Note that in scalloc virtual spans do not restrict the pos-
sibility of observing segmentation faults because unmapped
memory that is not used by a real-span is still protected
against access using the mprotect system call.

3.3 Backend: Span-Pool
The span-pool is a global concurrent data structure that
logically corresponds to an array of real-span-size-segregated
“stack-like” pools. The span-pool implements put and get
methods; no values are lost nor invented from thin air; it
neither provides a linearizable emptiness check, nor any order
guarantees. However, each pool within the span-pool is a
locally linearizable [12] “stack-like” pool. It is “stack-like”
since in a single-threaded scenario it is actually a stack.

1 madvise is used to inform the kernel that a a range of virtual memory is
not needed and the corresponding page frames can be unmapped.
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Figure 2: Span-pool layout

Figure 2 illustrates that the segregation by real-span size is
implemented as pre-allocated array where each index in the
array refers to a given real-span size. Consequently, all size
classes that have the same real-span size refer to the same
index. Each array entry then holds another pre-allocated array,
the pool array, this time of lock-free Treiber stacks [29]. The
pool array has size equal to the number of cores (determined
at run-time during the initialization phase of the allocator).
As a result a stack in any of the pools of the span-pool is
identified by a real-span index and a core index. A Treiber
stack is a pointer to the top of a singly-linked list of elements;
pushing and popping is done lock-free by atomic compare-
and-swap operations on the top pointer.

The design is inspired by distributed queues [11]. We use
stacks rather than queues for the following reasons: spatial
locality, especially on thread-local workloads; lower latency
of push and pop compared to enqueue and dequeue; and
stacks can be implemented without sentinel nodes, i.e., no
additional memory is needed for the data structure. Thereby,
we utilize the memory of the elements inserted into the pool
to construct the stacks, avoiding any dynamic allocation
of administrative data structures. Distributed stacks are, to
our knowledge, among the fastest scalable pools. To make
the occurrence of the ABA problem [16] unlikely we use
16-bit ABA counters that are embedded into link pointers2.
Completely avoiding the ABA problem is a non-trivial task,
which can be solved using e.g. hazard pointers [24].

Listing 1 shows the pseudo code of the span-pool. Upon re-
turning a span to the span-pool, a thread performing a put call
first determines the real-span index for a given span (line 21)
and the core index as thread identifier modulo the number of
cores (line 22). Before actually inserting (line 25) the given
span into the corresponding stack the thread may return the
span’s underlying memory to the operating system using the
madvise system call with advice MADV_DONTNEED (line 24),
effectively freeing the affected memory. This is the expensive
case, only performed on spans with large real-span size deter-
mined by a threshold, as unused spans with large physically
mapped real-spans result in noticeable physical fragmentation
and the madvise system call may anyway be necessary upon
later reuse, e.g. when a span is to be reused in a size class with

2 Currently a 64-bit address space is limited to 48 bits of address, enabling
the other 16 bits to be used as ABA counter.
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Listing 1: Span-pool pseudo code
1 Int num_cores (); // Returns the number of cores.
2 Int thread_id (); // Returns this thread ’s id
3 // (0-based).
4

5 // Utility functions to map spans and real -span
6 // sizes to distinct indexes.
7 Int real_span_idx(Span span);
8 Int real_span_idx(Int real_span_size);
9

10 // Returns the real span size of a given span.
11 Int real_span_size(Span span);
12

13 // Madvise all but a span’s first page with
14 // MADV_DONTNEED.
15 void madvise_span(Span span);
16

17 SpanPool {
18 Stack spans[MAX_REAL_SPAN_IDX ][ num_cores ()];
19

20 void put(Span span):
21 Int rs_idx = real_span_idx(span);
22 Int core_idx = thread_id () mod num_cores ();
23 i f real_span_size(span) >= MADVISE_THRESHOLD:
24 madvise_span(span);
25 spans[rs_idx ][ core_idx ].put(span);
26

27 Span get(Int size_class):
28 Int rs_idx = real_span_idx(size_class);
29 Int core_idx = thread_id () mod num_cores ();
30 // Fast path.
31 spans[rs_idx ][ core_idx ].get();
32 i f span == NULL:
33 // Try to reuse some other span.
34 f o r rs_idx in range(0, MAX_REAL_SPAN_IDX):
35 f o r core_idx in range(0, num_cores ()):
36 spans_[rs_idx ][ core_idx ].Get();
37 i f span != NULL:
38 re turn span;
39 // If everything fails , just return a span from
40 // the arena.
41 re turn arena.allocate_virtual_span ();
42 }

a smaller real-span size. The MADVISE_THRESHOLD (line 23)
is set to 32KB, which is the boundary between real-span sizes
of size classes that are incremented by 16 bytes and those
that are incremented in powers of two. Note that lowering
the threshold does not substantially improve the observed
memory consumption in our experiments while it noticeably
decreases performance. Furthermore, for scenarios where
physical fragmentation is an issue, one can add a compaction
call that traverses and madvises particular spans.

Upon retrieving a span from the span pool, for a given
size class, a thread performing a get call first determines the
real-span index of the size class (line 28) and the core index
as thread identifier modulo the number of cores (line 29). In
the fast path for span retrieval the thread then tries to retrieve
a span from this identified stack (line 31). Note that this
fast path implements the match to the put call, effectively
maximizing locality for consecutively inserted) and retrieved
spans of equal real-span sizes. If no span is found in the
fast path, the thread searches all real-span size indexes and
core indexes for a span to use (lines 34–38). Note that this
motivates the design of the real-span sizes: For reuse, a span
of a large real-span size has anyway been madvised whereas

free

hot

floating

reusable

expected
Arena (RSS = 0)

Backend (RSS compacted)

Frontend (RSS = real span size)

malloc()
free()

Figure 3: Life cycle of a span

all other spans have the same real-span size; Reusing a span
in the same real-span size (even if the size class changes)
amounts only to changing the header. Only when the search
for an empty virtual span fails, the thread gets a new virtual
span from the arena (as for initial allocation; line 41). Note
that the search through the span-pool may fail even if there
are spans in it due to the global use of the arrays (and the
nonlinearizable emptiness check).

3.4 Frontend: Allocation and Deallocation
We now explain the mutator-facing frontend of scalloc, i.e.,
the part of the allocator that handles allocation and dealloca-
tion requests from the mutator.

We distinguish several states in which a span can be,
illustrated in Figure 3. A span can be in a state: expected,
free, hot, floating, or reusable. A span is expected if it is
still in the arena, i.e., it is completely unused. Note that in
this state its memory footprint is 0 bytes. Spans contained in
the span-pool are free. A span can be in some of the other
states only when it is in the frontend, i.e., it is assigned a
specific size class. Spans that are hot are used for allocating
new blocks. For spans that are not hot we distinguish between
floating and reusable based on a threshold of the number of
free blocks. Spans with less than or equal free blocks than
the specified threshold are floating, spans with more free
blocks than specified by the threshold are reusable. We refer
to this threshold as reusability threshold. It is possible to only
have spans that are floating, i.e., no reuse of nonempty spans,
at the expense of increased fragmentation. Throughout its
life in the frontend, a span is always assigned to exactly one
local-allocation buffer (LAB), the so-called owning LAB. By
default LABs are TLABs in scalloc, i.e., each LAB has a
owner thread. Alternatively, scalloc can also be configured
to use core-local allocation buffers (CLABs), i.e., one LAB
per core where threads with equal identifiers modulo number
of cores share the same LAB. Either way, in each LAB and
for each size class there is a unique hot span. Furthermore,
each LAB contains for each size class a set of reusable spans.
More details about this set are given in Section 5.

A consequence of the concept of ownership is that deal-
location of a block may happen in spans that are not owned
by a thread. We refer to such deallocation as remote free,
whereas deallocation in a span owned by a thread is a local
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free. All allocations in scalloc are done locally, performed in
the corresponding hot span. A common problem in allocator
design is handling remote frees in a scalable way. Having
no mechanism for handling remote frees results in so-called
blowup fragmentation [3], i.e., any memory freed through
remote frees cannot be reused again. Similar to other span-
based allocators [23, 27], scalloc provides two free lists of
blocks in each span, a local free list and a remote free list.
The local free list is only accessed by an owning thread, while
the remote free list can be accessed concurrently by multiple
(not owning) threads at the same time.

Allocation. Upon allocation of a block in a given size class, a
thread checks its LAB’s size class for a hot span. If a hot span
exists the thread tries to find a block in the local free list of the
hot span. If a block is found, the thread allocates in this block
(this is the allocation fast path). The following situations can
also occur (for implementation details see Section 5):

(a) No hot span exists in the given size class. The thread then
tries to assign a new hot span by trying to reuse one from
the set of reusable spans. If no span is found there, the
thread falls back to retrieving a span from the span-pool.

(b) There is a hot span, but its local free list is empty. The
idea now is to use a remotely freed block. However, it
is not a wise option to allocate in the remote free list, as
that would make allocation interfere with remote frees,
destroying the performance of allocation. Therefore, this
is a point of choice: If there are enough blocks (in terms of
the reusability threshold) in the remote free list, the thread
moves them all to its local free list and continues with
fast-path allocation. Otherwise, if there are not enough
blocks in the remote free list, the thread gets a new hot
span like in (a).

Deallocation. Upon deallocation, a thread returns the block
to be freed to the corresponding free list, which is the local
free list in case where the thread owns the span, and the
remote free list otherwise. Depending on the state of the span
where the block is allocated, the thread then performs the
following actions (for implementation details see Section 5):

(a) The span is floating. If the number of free blocks in this
span is now larger than the reusability threshold, the span’s
state changes to reusable and the span is inserted into the
set of reusable spans of the owning LAB.

(b) The span is reusable. If the free was the last free in the
span, i.e., all blocks have been freed, the span is removed
from the set of reusable spans of the owning LAB and
returned to the span-pool.

If the span is hot, no additional action is taken.
Note that a new contribution of scalloc is that a span is

freed upon the deallocation of the last object in the span. All
other span-based allocators postpone freeing of a span until
the next allocation which triggers a cleanup.

4. Properties

Span-internal Fragmentation. Span-internal fragmentation
is a global property and refers to memory assigned to a real-
span of a given size class that is currently free (unused by the
mutator) but cannot be reused for serving allocation requests
in other size classes by any LAB.

Let f be the current global span-internal fragmentation.
Let s refer to the span on which the next operation happens.
Let size be the size class of s and u be the size of the payload
(memory usable for blocks) of s. At initialization f = 0.

Then, for an allocation of a block in s

f = { f + u − size if no usable span (1)

f − size otherwise (2)

where no usable spans means no hot span and no reusable
spans are present (1). Note that a span might already be
reusable (with respect to the threshold) but not yet present
in the set of reusable spans. This case is still covered by (1)
and is a result of the fact that freeing an object and further
processing it (reusable sets, or span-pool) are operations
performed non-atomically.

Furthermore, for a deallocation of a block in s

f = { f − u if last block (3)

f + size otherwise (4)

where last block (3) refers to the last free of a block in a
given span. Note that to achieve this fragmentation property
on a free call an allocator, such as scalloc, has to return an
empty span to a global backend immediately. A regular free
not emptying the span increases fragmentation by the size of
the block as this span cannot be reused globally (4).

Operation Complexity. An allocation operation only con-
siders hot spans and reusable spans and does not need to
clean up empty spans. The operation is constant-time as in
the uncontended case either a hot span is present and can
be used for allocating a block or a reusable span is made
hot again before allocating a block in it. In the contended
case more than one reusable span may need to be considered
because of concurrent deallocation operations. At least one
of the operations will make progress in constant time.

A deallocation operation only considers the affected span,
i.e., the span containing the block that is freed. Local dealloca-
tions are constant-time and remote deallocations are constant-
time modulo synchronization (insertion into the remote free-
list which is lock-free). Spans that get reusable are made
reusable in constant-time modulo synchronization (insertion
into the set of reusable spans which is lock-based). Spans that
get empty are handled in the span-pool.

Span-pool put and get operations are constant-time mod-
ulo synchronization (the span-pool is lock-free).
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Figure 4: Real span layout

5. Implementation Details
We now explain the implementation details of scalloc, i.e.,
the encoding of fields in headers and the concrete algorithms
used for allocation, deallocation, and thread termination.

The real-span header layout is shown in Figure 4. A link
field is used to link up spans when necessary, i.e., it is used
to link spans in the span-pool as well as in the set of reusable
spans. The epoch field is used to uniquely identify a span’s
state within its life cycle (see below). The local and remote
free list contained in a span are encoded in the fields local
f-list and remote f-list, respectively. A span’s owning
LAB is encoded in the owner field.

The fields of a LAB are: an owner field that uniquely
identifies a LAB; for each size class a field that refers to
the hot span, called hot_span; and per size class the set of
reusable spans kept in a field reusable_span.
Owner encoding. The owner field consists of two parts, an
actual identifier (16 bits) of the owning LAB and a reference
(48 bits) to the owning LAB. The whole field fits in a single
word and can be updated atomically using compare-and-swap
instructions. Note that upon termination of the last thread
that is assigned to a LAB, the owner is set to TERMINATED.
Subsequent reuses of the LAB (upon assigning newly created
threads to it) result in a different owner, i.e., the actual
identifier is different while the reference to the LAB stays
the same. Also note that due to thread termination a span’s
owning LAB might have a different owner than the span’s
owner field indicates.
Epoch encoding. The epoch field is a single word that
encodes a span’s state and an ABA counter. The states hot,
free, reusable, and floating are encoded in the upper parts
(bitwise) of the word. The ABA counter (encoded in the
rest of the word) is needed for versioning spans as the state
alone is not enough to uniquely encode a state throughout a
span’s life cycle. E.g., one thread can observe a reusable span
that after the last free is empty. Since freeing the object and
transitioning the span into the state is not an atomic operation,
another thread can now observe this span as empty (because
it has been delayed after an earlier free operation) and put it
into the span-pool. This span can now be reused by the same
thread in the same size class ultimately ending up in the state
reusable, but not completely empty. At this point the thread
that initially freed the last block in the previous round needs
to be prevented from transitioning it into state free.
Remote f-list encoding. We use a Treiber stack [29] to
implement the remote free list in a span. The top pointer
of the stack is stored in its own cache line in the span header.

Listing 2: Auxiliary structures and methods
43 // Constant indicating terminated LABs.
44 Int TERMINATED;
45

46 LAB get_lab(Int owner);
47 Bool is_orphan(Span span);
48

49 Span { /* Free list implementations omitted. */
50 Int epoch;
51 Int owner;
52 Int size_class;
53

54 Bool try_mark_hot(Int old_epoch);
55 Bool try_mark_floating(Int old_epoch);
56 Bool try_mark_reusable(Int old_epoch);
57 Bool try_mark_free(Int old_epoch);
58

59 Bool try_refill_from_remotes ();
60 Bool try_adopt(Int new_owner);
61 }
62

63 Set { /* Set implementation omitted. */
64 Int owner;
65

66 void open(Int owner);
67 void close(); // Sets owner to TERMINATED;
68

69 Span get();
70 Bool put(Int old_owner , Span span);
71 Bool try_remove(Int old_owner , Span span);
72 }

Furthermore, we keep the number of blocks in the stack’s
top pointer. This number is increased on each put operation.
A single call is used to retrieve all blocks from this free list by
atomically setting the stack’s top pointer to NULL (implicitly
setting the block count to 0). Note that generating a new
state (putting and retrieving all blocks) only requires the top
pointer. As a result special ABA handling is not needed (ABA
can occur, but is not a problem) 3.

Listing 2 provides an overview of auxiliary methods on
spans and sets for reusable spans.

Recall that an owner field embeds a reference
to the corresponding LAB, which can be retrieved
using get_lab (line 46). Furthermore, the function
is_oprhan (line 47) is used to check whether the given span
is an orphan, i.e., all threads assigned to its owning LAB have
terminated before all blocks have been returned.

A span then contains the previously mentioned epoch
and owner fields (lines 50–51). The methods that try to
mark a span as being in a specific state (lines 54–57) all
take an epoch value and try to atomically change it to a
new value that has the corresponding state bits set and
the ABA counter increased. These calls are then used in
the actual algorithm for allocation and deallocation to tran-
sition a span from one state into another. The method
try_refill_from_remotes (line 59) is used to move re-
mote blocks (if there are more available then reusability
threshold) from the remote free list to the local one. The

3 For detailed explanations of the ABA problem see [24].

457



method try_adopt (line 60) is used to adopt orphaned spans,
i.e., atomically change their owning LAB.

Maintaining reusable spans should not have a notice-
able performance impact (latency of allocation and deallo-
cation) — which of course suggests using fast and scalable
rather than non-scalable and slow data structures. Our design
provides constant time put, get, and remove of arbitrary
spans (lines 69–71). Furthermore, reusable spans are cleaned
upon termination of the last thread assigned to a LAB, requir-
ing open and close methods (lines 66–67) that effectively
prohibit put and remove methods accessing a set when no
owner (i.e. TERMINATED) is present or the owner is different
than the one provided as parameter. For details on thread ter-
mination see below. Contention on sets of reusable spans is
low as the sets are segregated by size class and LABs. For the
implementation of reusable sets of spans in scalloc we use a
lock-based deque. We are aware of lock-free implementations
of deques [7] that can be enhanced to be usable in scalloc.
However, the process of cleaning up the set at thread termina-
tion (see below) requires wait-freedom as other threads may
still be accessing the data structure. Helping approaches can
be used to (even efficiently [19]) solve this problem. Exper-
iments suggest that contention on these sets is low and we
thus keep the implementation simple.

Listing 3 illustrates the main parts of scalloc’s frontend.
For simplicity we omit error handling, e.g. returning out of
memory. Recall that each LAB is assigned an owner and
holds for each size class a reference to the hot_span and the
reusable_spans (lines 74–76).

The method get_span (line 80) is used to retrieve new
spans, either from the reusable spans (lines 82–87), or from
the span-pool (line 88). The calls to try_mark_hot on
line 85 and line 89 represent the transitions free → hot and
reusable→ hot, respectively. Note that the transition free→
hot does not compete with any other threads.

The method allocate (line 92) is used to allocate a
single block in a hot span. If no hot span is present a
new one is obtained using get_span (line 94). The hot
span is then used to retrieve a block from the local free
list of a span (line 95). If this attempt fails because the
local free list is empty, the remote free list is inspected. If
enough (with respect to reusability threshold represented
as REUSABILITY_THRESHOLD) remotely freed blocks are
available, they are moved to the local free list (line 98),
just before actually allocating a new block (line 99). If
not enough remotely freed blocks are available the current
hot span is marked as floating (line 101), i.e., the hot span
takes the transition hot → floating, and a new hot span is
retrieved (line 102). The block is then allocated in the new
hot span (line 103).

The method deallocate (line 106) is used to free
a single block. Since freeing a block and transitioning
spans through states are non-atomic operations, the owner
and epoch values of a span are stored before freeing the

Listing 3: Frontend: Allocation, deallocation, and thread
termination and initialization
73 LAB {
74 Span hot_span[NUM_SIZE_CLASSES ];
75 Set reuseable_spans[NUM_SIZE_CLASSES ];
76 Int owner;
77

78 // Retrieve a span from the set of reusable spans
79 // or the span -pool.
80 Span get_span(Int size_class):
81 Span span;
82 do:
83 span = reuseable_spans[size_class ].get();
84 i f span != NULL &&
85 span.try_mark_hot(span.epoch):
86 re turn span;
87 u n t i l span == NULL;
88 span = span_pool.get(size_class);
89 span.try_mark_hot(span.epoch);// always succeeds
90 re turn span;
91

92 Block allocate(Int sc /* size class */):
93 i f hot_span[sc] == NULL:
94 hot_span[sc] = get_span(sc);
95 Block block = hot_span[sc]. allocate_block ();
96 i f block == NULL:
97 // Case of empty local free list.
98 i f hot_span[sc]. try_refill_from_remotes ():
99 block = hot_span[sc]. allocate_block ();

100 re turn block;
101 hot_span[sc]. try_mark_floating(span.epoch);
102 hot_span[sc] = get_span(sc);
103 block = hot_span[sc]. allocate_block ();
104 re turn block;
105

106 void deallocate(Block block):
107 Span span = span_from_block(block);
108 Int sc = span.size_class;
109 Int old_owner = span.owner;
110 Int old_epoch = span.epoch;
111 span.free(block , owner);
112 i f span.is_orphan ():
113 span.try_adopt(owner);
114 i f span.free_blocks () > REUSABILITY_THRESHOLD:
115 i f span.try_mark_reusable(old_epoch):
116 old_owner.reuseable_spans[sc].put(
117 old_owner , span);
118 i f span.is_full ():
119 i f span.try_mark_free(old_epoch):
120 old_owner.reuseable_spans[sc]. try_remove(
121 old_owner , span);
122 span_pool.put(span);
123

124 void terminate ():
125 f o r sc in size_classes:
126 reuseable_spans[sc].close ();
127 hot_span[sc]. try_mark_floating(
128 hot_span[sc].epoch);
129 hot_span[sc] = NULL;
130 Span span;
131 do:
132 span = reuseable_spans[sc].get();
133 span.try_mark_floating(span.epoch);
134 u n t i l span == NULL;
135 owner = TERMINATED;
136

137 void init(Int new_owner):
138 owner = new_owner;
139 f o r sc in size_classes:
140 reuseable_spans[sc].open(new_owner);
141 }

block (lines 109–110). The span’s free call (line 111) then
puts the block into the corresponding free list (local or remote,
depending on the owner of the span). If after this free, the

458



number of free blocks is larger than the reusability thresh-
old (line 114), the span is put into state reusable (floating
→ reusable). Similar to other state transitions, this action is
serialized through try_mark_reusable (line 115). The suc-
ceeding thread then also tries to insert the span into the set of
reusable spans for this size class (line 117). Note that this call
takes the old owner as parameter to prohibit inserting into a
reusable set of a LAB that has either no owner or an owner
that is different from the old owner. Similarly, making the
transition reusable→ free requires marking it as free through
try_mark_free (line 119). Note that marking a span as free
competes with reusing it in get_span. After successfully
marking it as free the span can be removed (if needed) from
the set of reusable spans (line 121). Finally, the span is put
into the span-pool (line 122).

Thread Termination. Similar to others [17], we refer to
spans that have not yet been transitioned into the state free (be-
cause they contain live blocks) while all threads assigned to
their owning LAB have terminated as orphaned spans. Since
LABs do not necessarily have references to all owned spans
(there exist no references to floating spans) a span cannot
be declared as orphaned by setting a flag. Instead, orphaned
spans can be detected by comparing a span’s owner against
the owner that is set in the owning LAB. Owner fields that dif-
fer or a LAB owner set to TERMINATED indicates an orphaned
span. Orphaned spans are always floating and adopted by
threads upon freeing a block in these spans (lines 112–113).
LAB cleanup happens in terminate (line 124) where for
each size class (lines 125–134) the reusable spans set is
closed (line 126), and all spans (hot and reusable) are transi-
tioned into state floating (line 128 and line 133). For reusable
spans this transition competes with reusable→ free (line 119),
where a potential last free of a block in a span triggers putting
the span into the span-pool. Finally, the LAB is marked as
terminated and consequently all spans that are not free can
be observed as orphaned. Reusing a LAB later on requires
setting a new unique owner (line 140).

Handling Large Objects. Scalloc provides span-based allo-
cation of blocks of size less than or equal to 1MB and relies
on conventional mmap for all other objects. For allocation this
means that the frontend just forwards the allocation request
to an allocator that just mmaps the block and adds a header
containing the required size. Deallocation requires checking
whether a block has been allocated in a span or not. However,
since spans are contained in a single large arena this check is
cheap (xor-ing against aligned arena boundary). Depending
on whether the block has been allocated in a span or not, the
request is just forwarded appropriately.

Unwritten Rules. The illustrated concepts yield a design that
provides scalability on a multi-core system while keeping
memory compact with respect to to a reusability threshold.
To this end we would like to note that being competitive in
absolute terms requires an implementation that forces strict
inlining of code, careful layout of thread-local storage, and

intercepting thread creation and termination. Without those
techniques absolute performance suffers from overheads of
function calls as well as cache misses (for unnecessarily
checking conditions related to thread-local storage).

6. Related Work
We first discuss related work on concurrent data structures
and then on existing concurrent memory allocators.

Concurrent data structures in the fast path of the frontend
as well as the backend of scalloc are lock-free [16]. A
recent trend towards semantically relaxed concurrent data
structures [1, 15] opens doors for new design ideas and
even greater performance and scalability so that hierarchies
of spans (buffers in general) can be avoided and may be
utilized globally across the whole system. The concurrent
data structures in scalloc are pools, allowing in principle
every data structure with pool semantics to be used. However,
unlike segment queues [1] and k-Stacks [15], Distributed
Queues [11] with Treiber stacks [29], as used in scalloc, do
not require dynamically allocated administrative memory
(such as sentinel nodes), which is important for building
efficient memory allocators. The data structures for reusable
spans within a TLAB are implemented using locks but could
in principle be replaced with wait-free sets, which nowadays
can be implemented almost as efficiently as their lock-free
counterparts [19].

Many concepts underlying scalloc such as size classes,
hierarchical allocation (local allocation buffers, spans), and
local memory caching in so-called private heaps (span owner-
ship) have already been introduced and studied in thread-local
variants [3, 30]. Scalloc borrows from some of these concepts
and integrates them with lock-free concurrent data structures,
and introduces new ideas like virtual spans.

In our experiments we compare scalloc to some of the
best and most popular concurrent memory allocators: Hoard
(git-13c7e75), jemalloc (3.6.0), llalloc (1.4), ptmalloc24 (libc
2.19), Streamflow (git-41aa80d), SuperMalloc (git-bd7096f),
Intel TBB allocator (4.3), and TCMalloc (googleperftools
2.1). McRT-Malloc [17] is left out of our comparison because
of a missing implementation. For Michael’s allocator [25]
there exists no reference implementation — an implemen-
tation for x86-64 by the Streamflow authors crashes for all
our benchmarks; we have received another implementation5

which unfortunately does not perform and scale as we ex-
pect from the original paper. We thus decided to leave the
Michael allocator out of our comparisons. ptmalloc2 [9] ex-
tends Doug Lea’s malloc [22] (dlmalloc; 2.7.x) and is part
of the GNU libc library. jemalloc [8] is the default allocator
in FreeBSD and NetBSD and has been integrated into prod-

4 Since ptmalloc3 performs worse than ptmalloc2, we exclude ptmalloc3
from our experimental evaluation.
5 In a private correspondence we received pointers to the Amino Concur-
rent Building Blocks (http://amino-cbbs.sourceforge.net/) malloc
implementation.
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ucts of Mozilla (like Firefox) and Facebook. TCMalloc [10]
is Google’s counter-part to jemalloc, also aiming at perfor-
mance and scalability. TBB [18] is maintained by Intel as
part of their thread building block library which aims at easy
creation of fast and scalable multi-threaded programs. llal-
loc [23] is an allocator developed by Lockless Inc. Hoard [3]
and Streamflow [27] are both academic allocators known to
perform well. SuperMalloc [20] is another recently developed
academic allocator introducing, to our knowledge indepen-
dently, after scalloc’s virtual spans, the idea of segmenting
virtual address space for uniform treatment of different-sized
objects. Note that the concept of virtual spans may readily be
used in other allocators and is orthogonal to the actual alloca-
tor design. Moreover, mapping virtual memory in a scalable
fashion, e.g. as in RadixVM [6], does not solve the problem
of designing a competitive allocator. Memory fragmentation
and system-call overhead still need to be managed.

All mentioned allocators create private heaps in one way
or another. This design has proven to reduce contention and
(partially) avoid false sharing. Scalloc is no different in this
aspect as it also creates private heaps (span ownership) and
exchanges space between threads (through the span-pool).

Another aspect all allocators have in common are heaps
segregated by size classes for spatial locality. It makes ob-
ject headers obsolete (except for coalescing which is why
ptmalloc2 uses them).

Allocators implementing private heaps without returning
remotely freed objects to the allocating threads suffer from un-
bounded blowup fragmentation in producer-consumer work-
loads [3]. Hence, it is necessary to transfer remotely freed
memory back to the heap it was allocated on.

ptmalloc2 solves the blowup fragmentation problem by
globally locking and then deallocating the block where it
has been allocated. TCMalloc and jemalloc both maintain
caches of remotely freed objects which are only returned to
a global heap when reaching certain thresholds. Hoard allo-
cates objects in superblocks which are similar to the spans in
scalloc. Unlike scalloc, Hoard returns remotely freed objects
in a hierarchical fashion, first by deallocating the objects in
the superblocks in which they were allocated, then by trans-
ferring superblocks between private heaps, and eventually by
transferring superblocks from private heaps to a global heap.
For this purpose, Hoard locks the involved superblocks, pri-
vate heaps, and the global heap. llalloc, Streamflow, and TBB
maintain a private and a public free-list per thread and size
class. The public free lists are implemented using lock-free
algorithms. Scalloc does exactly the same.

To this end we would like to note that the frontends of
llalloc and Streamflow are to some extent similar to scalloc’s
frontend. However, both allocators require cleaning up empty
spans in allocation calls, and use different strategies for large
objects and backends.

Another common practice in many allocators is to handle
small and big objects, whatever the threshold between small

and big is, in separate sub-allocators which are typically based
on entirely different data structures and algorithms. jemalloc,
llalloc, ptmalloc2, and TCMalloc are such hybrid allocators,
whereas Hoard, scalloc, Streamflow, SuperMalloc, and TBB
are not. ptmalloc2 manages big objects in best-fit free-lists,
jemalloc and TCMalloc round the size of big objects up
to page multiples and allocate them from the global heap,
and llalloc maintains a binary tree of big objects (c.f. binary
buddy system) in a large portion of memory obtained from the
operating system. Huge objects, again whatever the threshold
between big and huge is, are handled by the operating system
in all considered allocators including scalloc. The principle
challenge is to determine the thresholds between small and
big, for hybrid allocators, as well as between big and huge,
for all allocators. Scalloc addresses that challenge, through
virtual spans, by removing the threshold between small and
big objects and by making the threshold between big and
huge so large that it is likely to be irrelevant in the foreseeable
future for most existing applications.

A concept related to virtual spans called spaces appears
in the Memory Management Toolkit (MMTk) for managed
languages [5]. We note that the generally poor performance
of SuperMalloc for concurrent workloads shows that virtual
spans alone do not suffice for achieving competitive tem-
poral and spatial performance and scalability. Virtual spans
alone only simplify allocator design as they enable uniform
treatment of small and big objects, and reduce memory con-
sumption. As shown in our experimental evaluation, the com-
bination of virtual spans with a scalable backend and a high-
performance frontend is crucial for achieving competitive
performance and scalability.

7. Experimental Evaluation
In our experiments we compare scalloc with other allocators
and with other scalloc configurations on synthetic and real
workloads. Our evaluation is structured in two parts. The first
part of the evaluation covers well known allocator workloads
from the literature (threadtest, shbench, larson) [3, 21, 26]
as well as the single-threaded allocation intensive workload
483.xalancbmk from the SPEC CPU2006 suite [14] that are
known to perform interesting usage patterns, e.g. threadtest
provides a completely thread-local workload for batched
allocation and deallocation of objects. Furthermore, the
evaluation also employs workloads generated with ACDC [2],
a benchmarking tool that can be configured to emulate
virtually any relevant workload characteristic not covered
by existing benchmarks, e.g. producer-consumer patterns,
varying object sizes, and different object access patterns. The
second part of the evaluation focuses on our design decisions
implemented in scalloc. In particular, we show the impact of
effectively disabling key features of scalloc like virtual spans.

We have also experimented with application benchmarks
and generally found that scalloc either performs as other com-
petitive allocators or better. However, in our and others’ [25]
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experience most concurrent applications either use custom
allocation or tailor their behavior so that very few threads
allocate concurrently, as is the case in e.g. the Chrome web
browser. We see our work as a step towards providing an
infrastructure that changes this practice.

A summary of all benchmarks can be found in Table 1. A
detailed description of each experiment is presented in the
corresponding subsection.

All experiments ran on a UMA machine with four 10-
core 2GHz Intel Xeon E7-4850 processors supporting two
hardware threads per core, 32KB 8-way associative L1 data
cache and 32KB 4-way associative L1 instruction cache per
core, 256KB unified 8-way associative L2 cache per core,
24MB unified 24-way associative L3 cache per processor,
128GB of main memory, and Linux kernel version 3.8.0.

Note that recent Linux kernels provide the ability to
use transparent huge pages6 as backing store for regular
pages, i.e., huge pages can be used by the kernel as physical
page frames for regular pages. Since this feature interferes
with any mechanism relying on on-demand paging, e.g.
calling madvise to return memory, we have disabled it in
all experiments except one where we use it to disable virtual
spans intentionally. Transparent huge pages also impact other
allocators, e.g. jemalloc.

There are two configurable parameters in scalloc,
MADVISE_THRESHOLD and REUSABILITY_THRESHOLD. We
choose MADVISE_THRESHOLD to be 32KB which is the small-
est real-span size. In principle one can set the threshold as low
as the system page size, effectively trading performance for
lower memory consumption, but as spans are subject to reuse
at all times this is not necessary. Furthermore we choose
REUSABILITY_THRESHOLD to be 80%, i.e., spans may be
reused as soon as 80% of their blocks are free. Span reuse
is useful in workloads that exhibit irregular allocation and
deallocation patterns. Since span reuse optimizes memory
consumption with negligible overhead we have also consid-
ered a configuration that does not reuse spans and discuss the
results but do not show the data for clarity.

Unless explicitly stated we report the arithmetic mean of
10 sample runs including the 95% confidence interval based
on the corrected sample standard deviation. For memory
consumption we always report the resident set size (RSS).
The sampling frequency varies among experiments and has
been chosen high enough to not miss peaks in memory
consumption between samples. Since most benchmarks do
not report memory consumption we employ an additional
process for measuring the RSS. As a result, benchmarks like
threadtest, larson, and shbench only scale until 39 threads.
We still report the 40 threads ticks to illustrate this behavior.

6 See https://www.kernel.org/doc/Documentation/vm/
transhuge.txt

Table 1: Summary of benchmarks

BENCHMARK OBJECT SIZE LOCAL REMOTE THREAD
[BYTES] FREES FREES TERM.

SINGLE-THREADED
483.xalancbmk 1-2M 100% 0% no

MULTI-THREADED
Threadtest 64 100% 0% no
Shbench 1-8 100% 0% no
Larson 7-8 ≥ 99% < 1% yes
Prod.-Cons. 16-512 see Section 7.3 no
False Sharing 8 see Section 7.4 no
Object Sizes 16-4M 100% 0% no
Spatial Locality 16-32 100% 0% no

DESIGN DECISIONS
Virtual Spans 16-4M 100% 0% no
Span-Pool 256 100% 0% no
Frontend 64 100% 0% no

7.1 Single-Threaded Workload: 483.xalancbmk
We compare different allocators on the 483.xalancbmk work-
load of the SPEC CPU2006 suite which is known to be an
allocation intense single-threaded workload [28].

Figure 5 reports a benchmark score called ratio where a
higher ratio means a lower benchmark running time. The
results omit data for Streamflow because it crashes. Scalloc
(among others) provides a significant improvement compared
to ptmalloc2 but the differences among the best performing
allocators including scalloc are small. Nevertheless, the
results demonstrate competitive single-threaded temporal
performance of scalloc. Note that the SPEC suite does not
provide metrics for memory consumption.

7.2 Thread-Local Workloads
We evaluate the performance of allocators in workloads that
only consist of thread-local allocations and deallocations.
Recall that scalloc only allocates blocks in a hot span of
a given size class. Hence, workloads that perform more
consecutive allocations in a single size class than a span can
hold blocks (i.e. the working set is larger than the real-span
size) result in benchmarking the span-pool.

7.2.1 Threadtest
Threadtest [3] allocates and deallocates objects of the same
size in a configurable number of threads and may perform a
configurable amount of work in between allocations and deal-
locations. For a variable number of threads t, the benchmark
is configured to perform 104 rounds per thread of allocating
and deallocating 105

t
objects of 64 bytes. For temporal perfor-

mance we show the speedup with respect to single-threaded
ptmalloc2 performance.

In scalloc, objects of 64 bytes are allocated in 64-byte
blocks in spans with a real-span size of 32KB. Since alloca-
tions and deallocations are performed in rounds reusing of
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Figure 5: Single-threaded temporal performance: SPEC
CPU2006 483.xalancbmk

spans has no effect on memory consumption. The overhead of
adding and removing spans to the reusable set is negligible.

Figure 6a illustrates temporal performance where all
allocators but jemalloc scale until 39 threads with only the
absolute performance being different for most allocators.
Since the working set for a single round of a thread is roughly
6.4MB, allocators are forced to interact with their backend.
The results suggest that the span-pool with its strategy of
distributing contention provides the fastest backend of all
considered allocators. The memory consumption shown in
Figure 6b suggests that threads do not exhibit a lock-step
behavior, i.e., they run out of sync with respect to their
local rounds, which ultimately manifests in lower memory
consumption for a larger number of threads. The span-pool
supports this behavior by providing a local fast path with a
fall back to scalable global sharing of spans.

7.2.2 Shbench
Similar to threadtest, shbench [26] exhibits a thread-local
behavior where objects are allocated and deallocated in
rounds. Unlike threadtest though, the lifetime of objects is not
exactly one round but varies throughout the benchmark. For
a variable number of threads t, the benchmark is configured
to perform 106 rounds per thread of objects between 1 and 8
bytes in size. We exclude Streamflow from this experiment
because it crashes for more than 1 thread in the shbench
workload. For temporal performance we show the speedup
with respect to single-threaded ptmalloc2.

Figure 7a shows the performance results. As objects
survive rounds of allocations the contention on the span-pool
is not as high as in threadtest. The memory consumption
in Figure 7b indicates that the absolute performance is
determined by span sizes (or other local buffers). Allocators
that keep memory compact in this benchmark also suffer from
degrading absolute performance. Scalloc performs better than

all other allocators except for llalloc which consumes more
memory. Note that reusing spans in this benchmark has an
impact on memory consumption. Scalloc is configured to
reuse at 80% free blocks in a span. Disabling reusing of spans
results for 20 threads in a memory consumption increase of
14.7% (while having no noticeable impact on performance).
This suggests that reusing spans in scalloc is important in
non-cyclic workloads. Note that the decrease of memory
consumption at 6 threads is a workload artifact. In contrast,
the peak in memory consumption for llalloc at 20 threads
(which is repeatable) suggests an allocator artifact.

7.2.3 Larson (Thread Termination)
The larson benchmark [21] simulates a multi-threaded server
application responding to client requests. A thread in larson
receives a set of objects, randomly performs deallocations
and allocations on this set for a given number of rounds, then
passes the set of objects on to the next thread, and finally
terminates. The benchmark captures robustness of allocators
for unusual allocation patterns including terminating threads.
Unlike results reported elsewhere [27] we do not observe a
ratio of 100% remote deallocations as larson also exhibits
thread-local allocation and deallocation in rounds. For a vari-
able number of threads t, the benchmark is configured to last
10 seconds, for objects of 7 bytes (smallest size class for all
allocators), with 103 objects per thread, and 104 rounds per
slot of memory per thread. Unlike the other experiments, the
larson benchmark runs for a fixed amount of time and pro-
vides a throughput metric of memory management operations
per second. We exclude Streamflow from this experiment as
it crashes under the larson workload.

Figure 8a illustrates temporal performance where all con-
sidered allocators scale but provide different speedups. Simi-
lar to shbench, the rate at which spans get empty varies. The
memory consumption in Figure 8b illustrates that better abso-
lute performance comes at the expense of increased memory
consumption. Furthermore, terminating threads impose the
challenge of reassigning spans in scalloc (and likely also im-
pose a challenge in other allocators that rely on thread-local
data structures). Similar to shbench, reusing spans before they
get empty results in better memory consumption. Disabling
span reuse increases memory consumption by 7.6% at 20
threads while reducing performance by 2.7%.

7.3 Producer-Consumer Workload
This experiment evaluates the temporal and spatial perfor-
mance of a producer-consumer workload to study the cost
of remote frees and possible blowup fragmentation for an
increasing number of producers and consumers. For that pur-
pose we configure ACDC such that each thread shares all
allocated objects with all other threads, accesses all local
and shared objects, and eventually the last (arbitrary) thread
accessing an object frees it. The probability of a remote free
in the presence of n threads is therefore 1 − 1/n, e.g. running
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Figure 6: Thread-local workload: Threadtest benchmark
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Figure 7: Thread-local workload: Shbench benchmark
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Figure 8: Thread-local workload (including thread termination): Larson benchmark
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Figure 9: Temporal and spatial performance for the producer-consumer experiment
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Figure 10: Temporal and spatial performance for the object-size robustness experiment at 40 threads

two threads causes on average 50% remote frees and running
40 threads causes on average 97.5% remote frees.

Figure 9a presents the total time each thread spends in the
allocator for an increasing number of producers/consumers.
Up to 30 threads scalloc and Streamflow provide the best
temporal performance and for more than 30 threads scalloc
outperforms all other allocators.

The average per-thread memory consumption illustrated
in Figure 9b suggests that all allocators deal with blowup
fragmentation, i.e., we do not observe unbounded growth
in memory consumption. However, the absolute differences
among different allocators are significant. Scalloc provides
competitive spatial performance where only jemalloc and
ptmalloc2 require less memory at the expense of higher total
per-thread allocator time.

This experiment demonstrates that the approach of scalloc
to distributing contention across spans with one remote free
list per span works well in a producer-consumer workload
and that using a lock-based implementation for reusing spans
is not a performance bottleneck.

7.4 Robustness against False Sharing
False sharing occurs when objects that are allocated in the
same cache line are read from and written to by different
threads. In cache coherent systems this scenario can lead
to performance degradation as all caches need to be kept
consistent. An allocator is prone to active false sharing [3]
if objects that are allocated by different threads (without
communication) end up in the same cache line. It is prone
to passive false sharing [3] if objects that are remotely
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deallocated by a thread are immediately usable for allocation
by this thread again.

We have conducted the false sharing avoidance evaluation
benchmark from Berger et. al. [3] (including active-false and
passive-false benchmarks) to validate scalloc’s design. The
results we have obtained suggest that most allocators avoid
active and passive false sharing. However, SuperMalloc and
TCMalloc suffer from both active and passive false sharing,
whereas Hoard is prone to passive false sharing only. We
omit the graphs because they only show binary results (either
false sharing occurs or not). Scalloc’s design ensures that
in the cases covered by the active-false and passive-false
benchmarks no false sharing appears, as spans need to be
freed to be reused by other threads for allocation. Only in
case of thread termination (not covered by the active-false
and passive-false benchmarks) threads may adopt spans in
which other threads still have blocks, potentially causing false
sharing. We have not encountered false sharing with scalloc
in any of our experiments.

7.5 Robustness for Varying Object Sizes
We configure the ACDC allocator benchmark [2] to allocate,
access, and deallocate increasingly larger thread-local objects
in 40 threads (number of native cores) to study the scalability
of virtual spans and the span pool.

Figure 10a shows the total time spent in the allocator,
i.e., the time spent in malloc and free. The x-axis refers to
intervals [2x,2x+2) of object sizes in bytes with 4 ≤ x ≤ 20
at increments of two. For each object size interval ACDC
allocates 2xKB of new objects, accesses the objects, and
then deallocates previously allocated objects. This cycle is
repeated 30 times. For object sizes smaller than 1MB scalloc
outperforms all other allocators because virtual spans enable
scalloc to rely on efficient size-class allocation. The only
possible bottleneck in this case is accessing the span-pool.
However, even in the presence of 40 threads we do not
observe contention on the span-pool. For objects larger than
1MB scalloc relies on mmap which adds system call latency
to allocation and deallocation operations and is also known
to be a scalability bottleneck [6].

The average memory consumption (illustrated in Fig-
ure 10b) of scalloc allocating small objects is higher (yet still
competitive) because the real-spans for size-classes smaller
than 32KB have the same size and madvise is not enabled
for them. For larger object sizes scalloc causes the smallest
memory overhead comparable to jemalloc and ptmalloc2.

This experiment demonstrates the advantages of trading
virtual address space fragmentation for high throughput and
low physical memory fragmentation.

7.6 Spatial Locality
In order to expose differences in spatial locality, we configure
ACDC to access allocated objects (between 16 and 32 bytes)
increasingly in allocation order (rather than out-of-allocation
order). For this purpose, ACDC organizes allocated objects
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Figure 11: Memory access time for the locality experiment

either in trees (in depth-first, left-to-right order, representing
out-of-allocation order) or in lists (representing allocation
order). ACDC then accesses the objects from the tree in
depth-first, right-to-left order and from the list in FIFO order.
We measure the total memory access time for an increasing
ratio of lists, starting at 0% (only trees), going up to 100%
(only lists), as an indicator of spatial locality. ACDC provides
a simple mutator-aware allocator called compact to serve as
optimal (yet without further knowledge of mutator behavior
unreachable) baseline. Compact stores the lists and trees
of allocated objects without space overhead in contiguous
memory for optimal locality.

Figure 11 shows the total memory access time for an
increasing ratio of object accesses in allocation order. Only
jemalloc and llalloc provide a memory layout that can be
accessed slightly faster than the memory layout provided by
scalloc. Note that scalloc does not require object headers
and reinitializes span free-lists upon retrieval from the span-
pool. For a larger ratio of object accesses in allocation
order, the other allocators improve as well but not as much
as llalloc, scalloc, Streamflow, and TBB which approach
the memory access performance of the compact baseline
allocator. Note also that we can improve memory access time
with scalloc even more by setting its reusability threshold
to 100%. In this case spans are only reused once they get
completely empty and reinitialized through the span-pool at
the expense of higher memory consumption. We omit this
data for consistency reasons.

To explain the differences in memory access time we pick
the data points for ptmalloc2 and scalloc at x=60% where
the difference in memory access time is most significant and
compare the number of all hardware events obtainable using
perf7. While most numbers are similar we identify two events
where the numbers differ significantly. First, the L1 cache
miss rate with ptmalloc2 is 20.8% while scalloc causes a

7 See https://perf.wiki.kernel.org
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Figure 12: Temporal and spatial performance for the virtual span evaluation

L1 miss rate of 15.2% at almost the same number of total
L1 cache loads. We account this behavior to more effective
cache line prefetching because we observe 272.2M L1 cache
prefetches with scalloc and only 119.8M L1 cache prefetches
with ptmalloc2. Second, and related to the L1 miss rate, we
observe 408.5M last-level cache loads with ptmalloc2 but
only 190.2M last-level cache loads with scalloc because every
L1 cache miss causes a cache load on the next level. The
last-level cache miss rate is negligible with both allocators
suggesting that the working set (by design) fits into the last-
level cache. Note that last-level cache events in perf include
L2 and L3 cache events on our hardware.

7.7 Design Decisions
We now evaluate scalloc’s design and how the three main
contributions, virtual spans, the scalable backend, and the
constant-time frontend influence temporal and spatial perfor-
mance. To do so, we provide several different configurations
of scalloc and the benchmarking environment and compare
them against each other in isolated settings in best-effort man-
ner. By best-effort we mean that we design our experiments
so that they highlight the contribution of an isolated compo-
nent to overall performance. Still, frontened evaluations will
also include the backend and vice versa, and disabling virtual
spans is implicit via disabling a kernel feature.

7.7.1 Virtual Spans
Virtual spans enable uniform treatment of objects across a
large range of different sizes while avoiding physical mem-
ory fragmentation through on-demand paging and explicit
madvise calls. The following experiment aims at illustrat-

ing the benefits, cost, and limitations of virtual spans and
ultimately the role played by the paging mechanism of the
operating system.

We compare four scalloc configurations on the same work-
load as in Section 7.5, see Figure 10a and Figure 10b. The
first configuration, scalloc, is the default configuration used in
all previous experiments. The second configuration, scalloc-
no-madvise, only differs in the policy for returning memory
to the operating system by disabling all madvise calls. Both
configurations are executed with transparent huge pages dis-
abled in the Linux kernel, i.e., virtual memory is mapped to
4KB pages only. The third and fourth configuration are the
same as scalloc and scalloc-no-madvise but with transparent
huge pages enabled, i.e., the kernel may switch from 4KB
pages to 2MB pages, effectively disabling the advantages of
virtual spans. Therefore we suffix those configurations with
no-virtual-spans.

Figure 12a shows the total allocator time for an increasing
range of object sizes. The difference between scalloc and
scalloc-no-madvise is explained by the cost and consequences
of calling madvise which causes consecutive page faults
requiring the operating system to zero pages. However, the
memory consumption of scalloc, illustrated in Figure 12b,
improves almost proportionaly to the cost of calling madvise.
For small objects up to 256 bytes there are no differences
because madvise is only called on spans of larger size classes.
For huge objects (larger than 1MB) there are no differences
because scalloc allocates huge objects directly through mmap.

Enabling transparent huge pages (for scalloc-no-virtual-
spans and scalloc-no-madvise-no-virtual-spans) allows the
kernel to allocate 2MB pages instead of 4KB pages. Since
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the cost of zeroing 2MB pages is significantly higher than
that of 4KB pages the cost of allocating spans goes up,
especially for small size classes (less than 256 bytes) where
the real span size is small compared to the virtual span
size. Figure 12a shows that virtual spans perform better with
4KB pages than with 2MB pages. The memory consumption
in Figure 12b increases dramatically for small size classes
because the whole virtual span size is materialized (but
still unused) in physical memory. For larger objects, calling
madvise causes the kernel to fall back from 2MB pages
to 4KB pages. As a consequence, the scalloc-no-virtual-
spans configuration approaches the small memory footprint
of scalloc. Still the cost of zeroing 2MB pages and eventually
falling back to 4KB pages causes a significant temporal
overhead compared to scalloc. Disabling the advantages
of virtual spans by enabling transparent huge pages and
also disabling madvise calls (scalloc-no-madvise-no-virtual-
spans) causes the highest memory consumption because
unused space in virtual spans is materialized in physical
memory and because the kernel cannot fall back to 4KB
pages. The total allocator time is lower compared to scalloc-
no-virtual-spans because no madvise calls are necessary.

From the results of this experiment we conclude that the
paging mechanism of Linux is sufficient for implementing
virtual spans efficiently if paging happens on a 4KB granular-
ity. We also conclude that calling madvise can trade speed
for memory consumption and choosing either setting depends
on the application of scalloc. However, improving the perfor-
mance of madvise on operating system level would improve
scalloc’s virtual span design even further.

7.7.2 Scalable Backend
A consequence of the design around virtual and real spans is
that, depending on the workload and in particular on object
sizes, the backend may be subject to high levels of contention.
The following experiment evaluates the design of the span-
pool in terms of performance and scalability, i.e., it shows
that multiple stacks per size class are necessary to deal with
workloads that cause high contention on the backend. Note
that for workloads that only utilize small objects, e.g. 8-byte
objects, real spans provide enough buffering only requiring a
single stack per size class in the span-pool. We omit separate
plots for this data. However, for larger objects, real spans
only provide a limited amount of blocks requiring a fast
and scalable backend. For example, for 256-byte objects the
real span size of 32KB amounts to 127 blocks, potentially
resulting in frequent interaction with the span-pool.

The experiment is based on threadtest and configured as in
Section 7.2 with the only difference being that the benchmark
is configured to allocate and deallocate 256-byte objects. We
compare our default scalloc version, which is based on a
span-pool with as many stacks per size class as threads, with
a version that only uses a single stack per size class, called
scalloc-no-span-pool.

Figure 13a illustrates that for an increasing number of
threads, a single stack is unable to deal with contention on
the span-pool, effectively resulting in degraded performance.
However, in terms of memory consumption, Figure 13b
shows that using a single stack results in better memory
utilization as threads synchronize on a single source of empty
spans. Scalloc’s design trades the better performance (up to
2.7x) for slightly worse memory utilization (up to 15%).

7.7.3 Constant-time Frontend
In a similar spirit, we evaluate the performance impact of
a constant-time frontend that returns empty spans to the
backend as soon as possible, i.e., upon freeing the last object
contained in a span.

The experiment is based on threadtest and configured as in
Section 7.2, see Figure 6a and Figure 6b. As the experiment
is configured for small object sizes, returning memory to the
operating system only plays a minor role. We compare our de-
fault scalloc version with a scalloc version that returns empty
spans to the backend at a later point in time in its allocation
slow path, called scalloc-reclaim-span-in-allocation. Note
that threadtest provides no information about per-operation
latency and hence the experiment only shows throughput and
scalability, but since each thread implements a closed system,
throughput is indirectly proportional to latency.

Figure 14a illustrates performance and scalability. Both
scalloc versions provide almost the same speedup but differ
in memory consumption illustrated in Figure 14b. The results
indicate that eagerly returning spans as soon as they get empty
rather than delaying reclamation until the next (slow path)
allocation increases the potential for reusing spans by other
threads effectively reducing memory consumption. At 39
threads the difference in memory consumption is about 25%
between the two scalloc versions.

8. Conclusion
We presented three contributions: (a) virtual spans that enable
uniform treatment of small and big objects; (b) a fast and
scalable backend leveraging newly developed global data
structures; and (c) a constant-time (modulo synchronization)
frontend that eagerly returns empty spans to the backend.
Our experiments show that scalloc is either better (threadtest,
object sizes, producer-consumer) or competitive (shbench,
larson, mutator locality, SPEC) in performance and memory
consumption compared to other allocators.

To conclude, the problem of high-performance and scal-
able memory allocation is complex. There may be different
solutions. Our solution was guided by an initial idea to design
an allocator whose scalability benefits from the scalability
of recently developed concurrent data structures. In order to
make maximal use of global data structures, we developed vir-
tual spans and additionally the constant-time frontend. It may
be interesting to study other applications of global scalable
concurrent data structures.
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Figure 13: Span-Pool evaluation: Threadtest benchmark using 256-byte objects
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Figure 14: Frontend evaluation: Threadtest benchmark using 64-byte objects

Other interesting future work may be (1) integrating virtual
spans and virtual memory management, (2) NUMA-aware
mapping of real spans, and in particular (3) dynamically resiz-
ing real spans to trade off LAB provisioning and performance
based on run-time feedback from mutators, similar in spirit
to just-in-time optimizations in virtual machines.

Acknowledgements
This work has been supported by the National Research
Network RiSE on Rigorous Systems Engineering (Austrian
Science Fund (FWF): S11404-N23, S11411-N23) and a
Google PhD Fellowship.

References

[1] Y. Afek, G. Korland, and E. Yanovsky. Quasi-linearizability:
Relaxed consistency for improved concurrency. In Proc. Con-
ference on Principles of Distributed Systems (OPODIS), pages
395–410. Springer, 2010. doi: 10.1007/978-3-642-17653-1_
29.

[2] M. Aigner and C. Kirsch. ACDC: Towards a universal mutator
for benchmarking heap management systems. In Proc. Inter-
national Symposium on Memory Management (ISMM), pages
75–84. ACM, 2013. doi: 10.1145/2464157.2464161.

468



[3] E. Berger, K. McKinley, R. Blumofe, and P. Wilson. Hoard: a
scalable memory allocator for multithreaded applications. In
Proc. International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 117–128. ACM, 2000. doi: 10.1145/384264.379232.

[4] E. Berger, B. Zorn, and K. McKinley. Reconsidering custom
memory allocation. In Proc. Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), pages 1–12. ACM, 2002. doi: 10.1145/582419.582421.

[5] S. Blackburn, P. Cheng, and K. McKinley. Oil and water?
High performance garbage collection in Java with MMTk.
In Proc. International Conference on Software Engineering
(ICSE). IEEE, 2004. doi: 10.1109/ICSE.2004.1317436.

[6] A. Clements, M. Kaashoek, and N. Zeldovich. RadixVM:
Scalable address spaces for multithreaded applications. In Proc.
ACM European Conference on Computer Systems (EuroSys),
pages 211–224. ACM, 2013. doi: 10.1145/2465351.2465373.

[7] M. Dodds, A. Haas, and C. Kirsch. A scalable, correct
time-stamped stack. In Proc. Symposium on Principles of
Programming Languages (POPL), pages 233–246. ACM, 2015.
doi: 10.1145/2775051.2676963.

[8] J. Evans. A scalable concurrent malloc(3) implementation for
freebsd. In Proc. BSDCan, 2006.

[9] W. Gloger. ptmalloc2 – a multi-thread malloc implementation.
http://malloc.de/en/.

[10] Google Inc. gperftools: Fast, multi-threaded malloc() and nifty
performance analysis tools. http://code.google.com/p/
gperftools/.

[11] A. Haas, T. Henzinger, C. Kirsch, M. Lippautz, H. Payer,
A. Sezgin, and A. Sokolova. Distributed queues in shared
memory—multicore performance and scalability through quan-
titative relaxation. In Proc. International Conference on Com-
puting Frontiers (CF), pages 17:1–17:9. ACM, 2013. doi:
10.1145/2482767.2482789.

[12] A. Haas, T. Henzinger, A. Holzer, C. Kirsch, M. Lippautz,
H. Payer, A. Sezgin, A. Sokolova, and H. Veith. Local
linearizability. CoRR, abs/1502.07118, 2015.

[13] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining
and the synchronization-parallelism tradeoff. In Proc. Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pages
355–364. ACM, 2010. doi: 10.1145/1810479.1810540.

[14] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, 2006. doi:
10.1145/1186736.1186737.

[15] T. Henzinger, C. Kirsch, H. Payer, A. Sezgin, and A. Sokolova.
Quantitative relaxation of concurrent data structures. In Proc.
Symposium on Principles of Programming Languages (POPL),
pages 317–328. ACM, 2013. doi: 10.1145/2429069.2429109.

[16] M. Herlihy and N. Shavit. The Art of Multiprocessor Program-
ming. Morgan Kaufmann Publishers Inc., 2008.

[17] R. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg.
Mcrt-malloc: a scalable transactional memory allocator. In
Proc. International Symposium on Memory Management
(ISMM), pages 74–83. ACM, 2006. doi: 10.1145/1133956.
1133967.

[18] Intel Corporation. Thread building blocks (tbb). http:
//threadingbuildingblocks.org.

[19] A. Kogan and E. Petrank. A methodology for creating fast wait-
free data structures. In Proc. Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 141–150.
ACM, 2012. doi: 10.1145/2145816.2145835.

[20] B. Kuszmaul. Supermalloc: A super fast multithreaded malloc
for 64-bit machines. In Proc. International Symposium on
Memory Management (ISMM), pages 41–55. ACM, 2015. doi:
10.1145/2754169.2754178.

[21] P.-A. Larson and M. Krishnan. Memory allocation for long-
running server applications. In Proc. International Symposium
on Memory Management (ISMM), pages 176–185. ACM, 1998.
doi: 10.1145/286860.286880.

[22] D. Lea. A memory allocator. http://g.oswego.edu/dl/
html/malloc.html.

[23] Lockless Inc. llalloc: Lockless memory allocator. http:
//locklessinc.com/.

[24] M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):
491–504, 2004. doi: 10.1109/TPDS.2004.8.

[25] M. Michael. Scalable lock-free dynamic memory allocation.
In Proc. Conference on Programming Language Design and
Implementation (PLDI), pages 35–46. ACM, 2004. doi: 10.
1145/996893.996848.

[26] MicroQuill Inc. shbench. http://www.microquill.com/.

[27] S. Schneider, C. Antonopoulos, and D. Nikolopoulos. Scalable
locality-conscious multithreaded memory allocation. In Proc.
International Symposium on Memory Management (ISMM),
pages 84–94. ACM, 2006. doi: 10.1145/1133956.1133968.

[28] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Ad-
dresssanitizer: A fast address sanity checker. In Proc. USENIX
Conference on Annual Technical Conference (USENIX ATC),
pages 28–28. USENIX Association, 2012.

[29] R. Treiber. Systems programming: Coping with parallelism.
Technical Report RJ-5118, IBM Research Center, 1986.

[30] P. Wilson, M. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In Proc.
International Workshop on Memory Management (IWMM),
pages 1–116. Springer, 1995. doi: 10.1007/3-540-60368-9_19.

469

http://malloc.de/en/
http://code.google.com/p/gperftools/
http://code.google.com/p/gperftools/
http://threadingbuildingblocks.org
http://threadingbuildingblocks.org
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://locklessinc.com/
http://locklessinc.com/
http://www.microquill.com/

	Introduction
	Experience and Relevance
	Virtual Spans, Span-Pool, and Frontend
	Real Spans and Size Classes
	Virtual Spans
	Backend: Span-Pool
	Frontend: Allocation and Deallocation

	Properties
	Implementation Details
	Related Work
	Experimental Evaluation
	Single-Threaded Workload: 483.xalancbmk
	Thread-Local Workloads
	Threadtest
	Shbench
	Larson (Thread Termination)

	Producer-Consumer Workload
	Robustness against False Sharing
	Robustness for Varying Object Sizes
	Spatial Locality
	Design Decisions
	Virtual Spans
	Scalable Backend
	Constant-time Frontend


	Conclusion

