
Avoiding Unbounded Priority Inversion in Barrier Protocols
Using Gang Priority Management

Harald Röck
University of Salzburg

hroeck@cs.uni-salzburg.at

Joshua Auerbach
IBM Research

josh@us.ibm.com

David F. Bacon
IBM Research

dfb@watson.ibm.com
Christoph M. Kirsch∗

University of Salzburg
ck@cs.uni-salzburg.at

ABSTRACT
Large real-time software systems such as real-time Java virtual ma-
chines often use barrier protocols, which work for a dynamically
varying number of threads without using centralized locking. Such
barrier protocols, however, still suffer from priority inversion simi-
lar to centralized locking. We introduce gang priority management
as a generic solution for avoiding unbounded priority inversion in
barrier protocols. Our approach is either kernel-assisted (for effi-
ciency) or library-based (for portability) but involves cooperation
from the protocol designer (for generality). We implemented gang
priority management in the Linux kernel and rewrote the garbage
collection safe-point barrier protocol in IBM’s WebSphere Real
Time Java Virtual Machine to exploit it. We run experiments on
an 8-way SMP machine in a multi-user and multi-process environ-
ment, and show that by avoiding unbounded priority inversion, the
maximum latency to reach a barrier point is reduced by a factor of
5.3 and the application jitter is reduced by a factor of 1.5.

1. INTRODUCTION
The execution of multi-threaded programs is often separated into
phases in which the computation differs in some important way. At
the entry of each phase, a barrier ensures that a set of threads has
completed a phase before continuing to the next. In other words,
a barrier ensures that no thread advances beyond a certain point
before all other threads in the set have arrived at that point. A
barrier protocol determines which threads participate in a barrier
and coordinates their progress.

Barrier protocols have not received a lot of attention in the real-
time literature. However, recently developed real-time Java VMs,
e.g. [18], use barrier protocols to coordinate the execution of ap-
plication threads and system functionality such as garbage collec-
tion, logging, and software loading. A Java program executing in

∗Supported by a 2007 IBM Faculty Award, the EU ArtistDesign
Network of Excellence on Embedded Systems Design, and the
Austrian Science Fund No. P18913-N15.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’09, September 23-25, 2009 Madrid, Spain
Copyright 2009 ACM 978-1-60558-732-5/09/09$10.00.

a Java VM, for example, switches regularly between a phase of
running application threads that potentially allocate memory, and
a garbage collection phase that frees memory not referenced any-
more. The transition between these phases is managed by a barrier,
which guarantees that no application thread is allocating memory
while the garbage collector is running. If the Java program uses
threads with real-time deadlines, the VM has to make sure that the
garbage collection phase and barrier protocol is not interfering with
the timely execution of the application threads.

In addition to real-time Java VMs, there is a trend towards the use
of middleware to support real-time programming [25, 31]. Such
real-time middleware systems include real-time CORBA imple-
mentations [28, 27] and real-time CLI environments [12]. More
recently, even real-time frameworks and middleware systems are
implemented on top of Java [26, 24]. In addition to managing appli-
cation threads with real-time deadlines, middleware software pro-
vides system functions that usually impose some invariant on the
application threads, which could involve a barrier protocol.

The logic and actual implementation of a barrier protocol is usu-
ally application-dependent, but barrier protocols follow a certain
pattern. A barrier uses some shared state, which is visible to all
participating threads. The initiating thread, which could be a signal
handler or an asynchronous alarm thread, sets an indication in the
shared state that a barrier is active. The next time a thread reaches a
barrier point and notices that the barrier is active, it marks itself to
be at the barrier point and then blocks on the barrier’s resumption
condition. Additionally, the last thread reaching the barrier marks
the barrier state as completed, and posts a completion condition
before it blocks.

Application-dependent aspects of barrier protocols include at least
the following. First, there can be arbitrary logic linking the comple-
tion and resumption conditions. In the simplest case these are the
same, meaning that the arrival of the last thread immediately re-
leases all threads. In other cases, the completion condition releases
a different set of threads than those blocked on the resumption con-
dition and it is up to this second set of threads to release the origi-
nal ones that remain blocked on the resumption condition. Second,
there are numerous ways in which the set of threads that participate
in each execution of the barrier can be determined. In the sim-
plest case, this set is statically determined, but in other cases the
membership can only be determined dynamically at runtime when
the barrier commences. Hence, threads participating in the barrier
have to cooperate.

time

wait for TL

TL arrives

TM arrives TM finishes

TH reaches barrier:

TL reaches barrierTL continuespreempted by TM

barrier commences

TH continues

barrier completes continue

priority

TM

TL

TH

1 5 10

barrier thread

unrelated thread

barrier thread

Figure 1: Priority Inversion in Barriers

A priority inversion occurs if the threads participating in the bar-
rier protocol have different priorities (high and low) and additional
unrelated threads with a medium priority are running on the same
system. Figure 1 depicts a scenario with three threads running at
different priorities: a high-priority thread TH , a medium-priority
thread TM , and a low-priority thread TL. The threads TH and TL are
participating in the barrier protocol, whereas TM is not. First, the
high-priority thread TH runs. At time instant 1 the barrier is started,
which TH recognizes at time instant 2. Now, TL is scheduled, but
then preempted by thread TM at time instant 3 before it notices that
a barrier protocol is in progress. The medium-priority thread TM
delays TL until time instant 8. At time instant 9, TL reaches the bar-
rier, and signals its completion. Now, a system method is running
that releases the threads blocked in the barrier at time instant 10,
at which point TH is rescheduled and continues. In this scenario,
TM delays the completion of the barrier and, as a consequence, the
execution of the high-priority thread TH by 5 time units. More-
over, the delay introduced by threads not participating in the barrier
protocol is unbounded and therefore, barrier protocols suffer from
unbounded priority inversion. Section 7 analyzes different barrier
algorithms found in the literature.

While it might seem attractive to provide a single barrier proto-
col implementation that avoids unbounded priority inversion, the
application-dependent aspects of barrier protocols would limit the
usefulness of such a solution, and it would also fail to generalize
to somewhat different protocols like Query Suspend and Resume.
Instead, we propose a general mechanism called gang priority man-
agement (GPM) to boost priorities of a set of threads (a gang) tem-
porarily and for the boosted threads to subsequently revert their
priorities and inform a master thread that they have done so. With
GPM it is possible to modify an existing barrier implementation or
other coordination protocols to avoid unbounded priority inversion.

Figure 2 shows the barrier and GPM software stack. On top is the
application that uses barriers. The barrier protocol is implemented
as part of the thread management below and uses the GPM API to
control the priorities of threads participating in barriers. Note that
the GPM system is not aware of the barrier protocol. The GPM sys-
tem is either implemented as a library on top of an operating system
that supports dynamic priority adjustments, or is incorporated into
the OS kernel.

The first contribution of this paper is the GPM system (Section 2).
The key property of the system is that the time from boosting a
gang’s priority until the priority is reverted (e.g. to signal a barrier’s

OS Kernel

Application

Implementation

Implementation

Gang Priority Management API
T

hread
M

anagem
ent

GPM

GPM

Barrier Protocol

Figure 2: Barrier and GPM Software Stack

completion) is determined by the gang and any threads with higher
priorities than the gang, but not by threads with lower priorities.
The second contribution is the integration of a generic barrier proto-
col into the GPM system (Section 3). Based on the above property,
our GPM-enabled barrier protocol guarantees that the time from
initiating a barrier until the barrier’s completion is determined by
the threads participating in the barrier and any threads with higher
priorities than the participating threads, but again not by threads
with lower priorities. The third contribution is a kernel-space (K-
GPM) and an alternative library-based (L-GPM) implementation of
the GPM system (Section 4). The fourth contribution is a detailed
case study of the integration of our GPM-enabled barrier proto-
col into the garbage collection safe-point barrier protocol of IBM’s
WebSphere Real Time Java Virtual Machine (Section 5). The fifth
contribution is a set of experiments with the code from the case
study, which demonstrate that the time from initiating a barrier until
the barrier’s completion is indeed independent from lower-priority
threads resulting in substantially improved application responsive-
ness (Section 6).

Related and future work are in Sections 7 and 8, respectively. Con-
clusions are in Section 9.

2. GANG PRIORITY MANAGEMENT
GPM allows a set of threads to have their priorities temporarily
boosted, and for the boosted threads to revert to their previous pri-
orities subsequently and explicitly, as well as to inform a master
thread that they have done so. The GPM API is listed in List-
ing 1. There are calls to allocate and deallocate a gang structure,
three calls that manage a thread’s passive membership in the gang,
and three calls that provide a priority management mechanism. A
thread’s active membership in a gang (assuming the thread is a pas-
sive member) is managed without any call overhead using a control
word shared by the thread and the GPM system. The priority boost-
ing is performed only on the active members of a gang. The priority
to which the active members are boosted is calculated by consider-
ing all members of the gang, including the passive members since
any passive member can change to active membership at any time.

A gang is created by invoking gang_create, which takes a pointer
to the gang attributes as its argument and returns a new gang identi-
fier. Participation of individual threads is enabled using gang_insert.
Such threads will become passive members of the gang. The argu-
ments of gang_insert are the gang identifier, the process identifier
of the thread to be inserted, and a pointer to a 32-bit control word
that is unique to the thread. The control word jointly represents

1 /* allocate gang structure */
2 long gang_create(struct gang_attributes *)
3 void gang_close(long gang)
4

5 /* membership API */
6 long gang_insert(long gang , pid_t thread ,
7 uint32_t *controlWord)
8 long gang_remove(pid_t thread)
9 int gang_get(pid_t thread)

10

11 /* priority API */
12 long gang_run(long gang , unsigned long mask)
13 long gang_wait(long gang ,
14 struct timespec *timeout)
15 long gang_notify()

Listing 1: Gang Priority Management API

the thread’s membership status in the gang (passive or active, in
the lower 28 bits) and the priority inheritance status of the thread
(in the upper four bits). Usage scenarios are presented below. The
motivation of the control word is to avoid system call overhead as
threads dynamically change their membership status from passive
to active and back.

The membership of a thread in the gang is canceled by invoking
gang_remove. When a thread terminates, it is automatically re-
moved from its gang. A thread can be a member of at most one
gang. The identifier of this gang (if any) is returned by gang_get.
The gang_close operation indicates that the gang structures should
be destroyed when the gang has no more members.

The gang_run operation is invoked by an application-determined
thread (not necessarily a gang member) or signal handler. It atom-
ically boosts the priorities of the active members of the gang and
marks the priority change in the members’ control word. A thread,
which may or may not be the one that issued gang_run, can then
use gang_wait to wait for all active members of the gang to invoke
gang_notify as described below.

The arguments of gang_run are the gang identifier and a bitmask,
which determines the active members among the members of the
gang. A thread is an active member of the gang if the bitwise and
of the bitmask and the thread’s control word is non-zero. Thus it
is possible to exclude a thread from the effects of the gang_run
operation without the overhead of executing a system call. Us-
ing atomic compare-and-swap a thread can simultaneously set the
bits in its control word and learn its membership status as well as
whether a gang_run is already in progress.

An invocation of gang_notify atomically restores the original pri-
ority of the calling thread, modifies the control word to reflect the
new state, and discounts the thread for implementing gang_wait.
It is safe to call gang_notify even if the thread was not an active
member of the gang at the time instant gang_run was invoked.
Moreover, the thread will be correctly accounted for regardless
of whether it invoked gang_notify before or after the supervis-
ing thread’s invocation of gang_wait. Removing a thread with
gang_remove does the equivalent of gang_notify if the thread
was an active member of the gang.

The gang_wait operation has a timeout argument, and returns upon
an invocation as soon as all active gang members have invoked

gang_notify, or the timeout, if specified, elapsed.

2.1 Gang Priority Inheritance
The gang_run operation determines the priority of a gang and tem-
porarily boosts the effective priorities of the active members of a
gang. The effective priority of a thread is the priority a scheduler
applies when scheduling the thread. A gang’s priority is the max-
imum of the user priorities of all passive and active members of
the gang. The user priority of a thread is the priority provided by
the thread’s application program. For compatibility with the prior-
ity inheritance protocol for locking in the Linux kernel, gang_run
sets the effective priority of each active member to the maximum
of the member’s lock-inherited priorities and the gang’s priority.
The lock-inherited priorities of a thread are the priorities the thread
temporarily inherited from other threads due to priority inheritance.
Note that, in the priority inheritance protocol for locking, the effec-
tive priority of a thread requesting a lock (i.e., not its user priority)
is inherited to the thread holding the lock, also if the effective pri-
ority is a gang’s priority. Moreover, the effective priority of an
active member of a gang releasing a lock is reverted to the maxi-
mum of the member’s remaining lock-inherited priorities, if there
are any, and the gang’s priority. The gang_notify operation re-
verts the effective priority of the invoking thread to the maximum
of the thread’s lock-inherited priorities, if there are any, and the
thread’s user priority. The following invariant holds for the GPM
system on the Linux kernel.

INVARIANT 1. Between the time instants when gang_run is
invoked on a gang and when a thread that is an active member of
the gang invokes gang_notify the thread’s effective priority is
the maximum of its lock-inherited priorities and the gang’s priority.
At any other time, the thread’s effective priority is the maximum of
its user priority and its lock-inherited priorities.

From the invariant immediately follows the following property of
the GPM system when using a scheduler that always executes the
thread with the highest effective priority.

PROPERTY 1. The duration from an invocation of gang_run
on a gang until a subsequent invocation of gang_wait on the
gang returns is bounded by the sum of the uninterrupted ex-
ecution time each active member of the gang needs to invoke
gang_notify, and any interference from threads with equal or
higher effective priority than the gang’s priority.

Note that any invocation of gang_run on a gang after a previous
invocation of gang_run on the gang but before all active members
of the gang have invoked gang_notify will fail and not modify the
gang’s priority.

3. BARRIER AND GPM INTEGRATION
Consider a background system service that examines the call stacks
of some threads in the system, e.g., a garbage collector. As an in-
variant, the service requires for examining the stacks that all threads
are at a consistent state and are not modifying their stacks. Before
starting the system service, a signal handler initiates a barrier by
setting a bit that will be visible to each thread. It then starts the ser-
vice thread, which immediately blocks on the barrier’s completion
condition. As each thread reaches a place where it is safe to pause

execution, i.e., its next barrier point, it checks the bit, notices that
a barrier is in progress, and blocks on the barrier’s resumption con-
dition. Furthermore, when the last thread reaches its barrier point,
it posts the completion-condition, which starts the service thread.
When the service thread is done, it restarts all blocked threads by
posting the resumption condition.

The GPM system avoids unbounded priority inversion when start-
ing the system service as follows. All threads that are potentially
examined by the system service are inserted into a gang G, and
removed from G on termination. The signal handler initiates the
barrier as described above, but also invokes gang_run on G be-
fore starting the system service thread. When the system service
thread starts executing it first invokes gang_wait on G to wait for
the completion of the barrier. When a thread that is actually (as
opposed to potentially) participating in the barrier notices that a
barrier is in progress it invokes gang_notify just before it blocks
on the resumption condition. The difference between actually and
potentially participating threads is usually application-dependent.
An example is explained below. When the last thread invokes
gang_notify, the service thread’s gang_wait returns and the bar-
rier is completed. Note that the GPM mechanism replaces the bar-
rier’s completion condition. Using the GPM mechanism as a re-
placement for the barrier’s completion condition is sound as long
as the active gang membership accurately reflects the set of threads
that are actually (as opposed to potentially) participating in the bar-
rier.

The barrier for the system service is complicated by the fact that
some threads may be sleeping or blocked in I/O waits and hence
not in a position to notice a barrier’s inception. Such threads are
therefore only potentially participating in a barrier. This compli-
cation can be turned to an advantage, though, because threads that
are waiting are not executing and it is safe to examine their stacks.
Thus, such threads withdraw their active membership before wait-
ing and regain it just after their wait is complete, but before doing
anything that would modify their stack. To maintain correctness,
any thread resuming execution must first check if a barrier is in
progress and block on the resumption condition if necessary. Any
thread that is about to do a sleep or perform I/O must withdraw its
active gang membership using an atomic compare-and-swap oper-
ation on its control word. If it discovers that a gang_run was initi-
ated while it was still a member, it issues gang_notify (to ensure
correct counting) even though it withdraws voluntarily.

Our implementation of the described GPM-enabled barrier proto-
col has the following property, which immediately follows from
Property 1.

PROPERTY 2. The duration from the initialization of a barrier
until the completion of the barrier is bounded by the sum of the
uninterrupted execution time each thread actually participating in
the barrier needs to reach its next barrier point, and any interfer-
ence from threads with an equal or higher effective priority than
the highest user priority of any thread potentially participating in
the barrier.

Note that this property bounds the time to reach the completion
condition, not the resumption condition (unless they are the same).
The barrier is considered complete when its completion condition
is signaled.

4. GPM IMPLEMENTATION
We have implemented two GPM versions: a kernel patch applied
to the Linux kernel (K-GPM) and a Linux user library that executes
entirely in user space (L-GPM).

4.1 Kernel-based GPM Implementation
We implemented K-GPM as a patch to a recent real-time version
of the Linux kernel [22]. In K-GPM, the gang identifier is a file
descriptor because file descriptors are valid process-wide, as are
gangs, and because the kernel provides a well-defined and efficient
interface to create, find, and manage file descriptors. Like any other
file descriptor, a gang file descriptor should be closed with close,
which releases the file descriptor associated with the gang. Clos-
ing the file descriptor will not deallocate or destroy the gang data
structures inside the kernel until all threads are removed from the
gang. Additionally, the gang file descriptor supports the standard
polling interface poll, select, and epoll. Using poll, the gang
file descriptor returns the event POLLIN (data ready to read) if an
invocation of gang_wait would immediately return.

Another feature of K-GPM is its integration into other priority boost-
ing mechanisms of the Linux kernel. The K-GPM priority boosting
implementation follows the pattern established by already existing
priority boosting mechanisms such as RCU priority boosting or tra-
ditional priority inheritance protocols for locking. More precisely,
the calculation of effective priorities by the Linux scheduler is ad-
justed to include the gang’s priority if the thread is an active gang
member and a gang_run is in progress. Hence Invariant 1 holds
for the K-GPM implementation.

Furthermore, K-GPM requires only one system call to boost the
priority of all threads that are active members of a gang, whereas a
library implementation such as L-GPM has to execute a system call
for each thread. Using K-GPM requires fewer system calls than L-
GPM to execute a gang_run. However, to manage active and pas-
sive memberships with a naive GPM design, K-GPM would end
up requiring far more system calls than L-GPM because the kernel
needs to know when threads change their membership status. Issu-
ing a system call for each membership change would incur unac-
ceptable overhead. Consequently, our GPM design avoids using a
kernel call for this purpose, in favor of a 32-bit control word in user
memory that can be changed (using atomic compare-and-swap) by
both the application and the kernel.

4.2 Library-based GPM Implementation
The L-GPM version mimics the kernel implementation using the
POSIX thread API. It involves no kernel changes and thus works
on any Linux kernel by modifying the threads’ user priorities us-
ing pthread_setschedparam. However, the standard Linux ker-
nel does not provide an interface to change the user priorities of
a set of threads. Hence gang_run in L-GPM iterates through all
threads and invokes pthread_setschedparam once for each ac-
tive member of a gang. Moreover, L-GPM needs to maintain some
additional state. It saves the original user priority of each thread in
order to restore it later. It also needs one lock per thread and one
lock to protect the gang, and uses a condition variable to implement
the gang_wait operation.

Since L-GPM manipulates the user priority of a thread, it is safe to
use it on a Linux system where traditional priority inheritance for
locking is done in the kernel, and as long as no other mechanism
is manipulating user priorities. If any other mechanism manipu-
lates user priorities, the changes have to be synchronized with the

GPM system. In other words, Invariant 1 holds for the L-GPM im-
plementation since priority inheritance for locking is done by the
kernel and not by some user-space threading library.

5. REAL-TIME GARBAGE COLLECTION:
A CASE STUDY

As a case study of priority inversion in barrier protocols we stud-
ied the problem of starting up a garbage collection quantum in
IBM’s WebSphere Real Time Java Virtual Machine (RT-JVM) [18,
1]. We believe this Java middleware system has characteristics that
are likely to be shared by other middleware systems and complex
real-time applications. Furthermore, the RT-JVM used in this case
study has already been adopted to develop new complex real-time
software systems, such as a next-generation U.S. Navy destroyer,
or financial and telecommunication applications.

The RT-JVM employs the Metronome garbage collector [4].
Metronome garbage collections employ “quanta” that should, if
at all possible, not last longer than 500µs. Each quantum begins
by ensuring that every heap-allocating thread has reached a “safe
point” where both its stack and other RT-JVM data structures that
it uses are in a consistent state. Once at a safe point, a thread is
blocked from proceeding further until the quantum ends. There-
fore, the quantum length corresponds to the pause time an applica-
tion experiences when running in the RT-JVM.

Achieving safe points at quantum startup is a barrier protocol as
defined in this paper. The completion condition is achieved when
all threads are at safe points. The resumption condition is the end
of the quantum. If the barrier takes more than 500µs to reach the
completion condition, Metronome has violated its contract. If it
takes a substantial portion of the 500µs to reach completion, then
there will be too little time between the completion condition and
the deadline by which Metronome must post the resumption con-
dition. The RT-JVM will run out of memory because Metronome
will not have had enough time to collect garbage. Therefore, timely
completion of the barrier protocol is of critical importance.

The Metronome safe-point barrier is like the barrier described in
Section 3 in two senses. First, the completion and resumption con-
ditions are separated by a period during which a system service
is performed. Second, threads that are waiting or sleeping need
to be excluded from active participation in the protocol since they
are not in a position to participate. Our introduction of GPM into
this barrier therefore followed the pattern described in Section 3.
However, the specifics of the Java language added some additional
factors. In Java, all waiting happens inside native methods written
in a non-Java language (e.g. C). In general, native methods contain
arbitrary code, so a thread cannot be counted on to notice the incep-
tion of a barrier while executing a native method (even if it is not
actually waiting). By distinguishing between Java and native stack
frames, however, the RT-JVM can also ensure that a (correct and
non-malicious) native method does not modify any RT-JVM data
structures. Native methods written using the Java Native Interface
(JNI) [13] may call back into the JVM to modify Java objects or
to execute Java methods. During such callbacks, the code being
executed is no longer arbitrary so the thread is again in a position
to notice barrier inceptions, although it is also in a position to mod-
ify RT-JVM data structures. The RT-JVM models this situation by
simply declaring that all threads that are in native methods (and
have not called back into the JVM) are at safe points while oth-
ers are not and must actively reach safe points. Consequently, our
introduction of GPM into this barrier generalizes the practice de-

scribed in Section 3. Threads are required to withdraw from the
gang when entering a native method and to rejoin the gang upon
returning from a native method. They rejoin the gang when calling
back into the RT-JVM using the JNI interface, and they withdraw
from the gang when returning from a JNI callback (thus reentering
a native method).

Although all waiting happens in native methods, not all native
methods wait, and even those that do, may do computation in addi-
tion to waiting. Computation performed in native methods is there-
fore one important source of priority inversion because these meth-
ods may have a priority in the range of priorities of the threads
attempting to reach safe points. A second source of priority in-
version comes from processes besides the RT-JVM (or from ad-
ditional instances of the RT-JVM running on the same machine).
If any threads in these processes employ real-time priorities that
are in the same range of priorities of those threads attempting to
reach safe points, threads in the RT-JVM may again experience un-
bounded priority inversion. Since the economics of modern real-
time applications does not always lend itself to the simple model
of one application per machine, running multiple independent real-
time applications on one machine is a use case we want to consider.
In any case, the OS itself and system management entities on the
machine perform tasks that can interfere, at least occasionally.

For the experiments of this paper, we used a slightly modified ver-
sion of the RT-JVM in which the data structure that represents a
thread in the VM (VMthread) was modified to include an additional
word. It should also be noted that the experimental RT-JVM was
built from source in between formal releases of the product and so
does not correspond exactly to any version of the released product.

The extra word in the VMthread was used as the thread’s control
word for the API. As required by the GPM API, all modifications
of this word were done with compare and swap, to ensure atomic-
ity. The first time a thread starts executing Java code, it becomes a
passive gang member by calling gang_insert. Thereafter, when-
ever the thread is executing Java code (or is inside a JNI callback) it
registers itself as an active gang member by atomically modifying
its control word. When it is about to enter a native method or to
return from a JNI callback, it leaves the gang by atomically modi-
fying its control word. As described in Section 3, it first blocks on
the resumption condition whenever it is about to reenter the Java
world while a quantum is in progress. As required by the analysis
of Section 3, a thread performs a gang_notify upon leaving the
gang if its atomic modification of the control word discovers that it
has already been counted in a gang_run operation.

When initiating a quantum, the Metronome scheduling thread sets
the global state to cause threads to wait on the resumption condi-
tion. It then walks through the list of threads and marks the threads
that are not at safe points with a request to reach a safe point as
soon as possible. Then it calls gang_run using a mask that selects
all threads which have not voluntarily left the gang. Eventually
gang_wait is called on the gang to wait until all gang members
reach a safe point and have called gang_notify (all such threads
will then block on the resumption condition). At this point, the
quantum is launched and Metronome can collect garbage, until the
end of the quantum, at which point it posts the resumption condi-
tion to resume the application threads.

Our experimental version of the RT-JVM tests whether the GPM
API is available in the kernel and, if so, uses it. If it is not avail-

able, it executes an alternative implementation of the same design
pattern using the library version of GPM. This allows us to evaluate
both implementations against each other as well as against the case
where there is no attempt to avoid unbounded priority inversion.

6. EXPERIMENTS
The experiments were conducted on a machine with two quad-core
2GHz AMD Opteron CPUs (eight cores per machine). Two dif-
ferent versions of Linux kernel 2.6.24 were employed. Both had
the real-time preemption patches installed and activated. In addi-
tion, one of the kernels had our implementation of the GPM API
installed and activated.

We also employed two different versions of the WebSphere Real
Time Java VM (RT-JVM). Both were generated from the same
source snapshot and both had the additional word added to the
VMthread as described in Section 5. One RT-JVM version (no-
GPM) used the unmodified original safe-point barrier without us-
ing GPM. Thus, in this version, there was no attempt to address
priority inversion (the additional VMthread word was unused). The
other RT-JVM version modified the safe-point barrier to implement
priority inheritance using either K-GPM or L-GPM.

We used the two kernel versions and the two RT-JVM versions to
create three configurations. (1) The no-GPM configuration ran the
non-GPM version of the kernel with the no-GPM version of the
RT-JVM. (2) The L-GPM configuration ran the non-GPM kernel
and the GPM version of the RT-JVM, causing L-GPM to be used.
(3) The K-GPM configuration ran the GPM enabled kernel and the
GPM version of the RT-JVM, causing K-GPM to be used.

The real-time application was a simulation of an unmanned lunar
lander module (available as a sample application with the RT-JVM
release [18]). The lander uses vertical and horizontal thrusters to
adjust its position on the x and y axis. Additionally, it uses a radar
to calculate the module’s position, by measuring the time taken by
the radar pulses to return. This data is used to calculate the adjust-
ments to the lander’s position by firing the thrusters. If the radar
pulse reception is delayed, for example by a GC pause, the lan-
der’s position is not calculated correctly, and the controller makes
wrong adjustments. A more detailed description of the simulation
is available in [14].

We modified the original controller to generate more load on the
machine. The simulation and controller in our experiments use a
shorter period than the original code (6ms instead of 20ms). Addi-
tionally, the controller is implemented as a Java RealtimeThread
instead of a standard Java Thread. Note that we did not introduce
any other Java real-time features like NHRTs [6] or Eventrons [32].
Furthermore, all controller runs are performed in interpreter mode,
to avoid non-deterministic delays introduced by the JIT compiler.
Finally, the controller was modified to run additional allocation
threads that allocate memory and produce garbage at an average
rate of 340MB/s, with the effect that the GC is basically always
active. Although, the lunar lander is a simple real-time applica-
tion, especially for the machine it runs on, the underlying virtual
machine that executes it is a relatively complex software system.
Moreover, the priority inversion occurs inside the virtual machine
and not in the application. Nonetheless, the experiments in this sec-
tion show that the application performance could also be affected
by the priority inversion in the safe-point barrier.

To demonstrate the problem of priority inversion in the safe-point

0 497 1242 1987 2732 3477 4222 4966

5
1 0

5 0
100

500
1000

5000
10000

50000

< 0 >5000

(a) Safe-point barrier duration

1 1148 2868 4589 6309 8029 9750

5
1 0

5 0
100

500
1000

5000
10000

50000

< 0 >12000

(b) Controller event interarrival
times

Figure 3: Single RT-JVM instance performance

barrier, we started an additional instance of the RT-JVM, which
runs one or more unrelated Java real-time threads at medium prior-
ity. The medium priority threads periodically perform some com-
putation for about 5ms and sleep for 20ms. We performed similar
experiments, by running the medium priority threads in the same
virtual machine instance but invoking native methods (using JNI)
that perform the computation. Regardless of whether a separate
RT-JVM instance was used or JNI threads were used, we varied
the number of real-time threads in preliminary experiments. In this
section we present the results with 16 real-time threads. The results
of the JNI experiments and the experiments with different numbers
of interfering threads are similar to the ones shown in this section.

We also performed runs using the no-GPM configuration but with
no interference from any other threads (neither a separate RT-JVM
instance nor any JNI threads). These runs were used to establish
a baseline for how the RT-JVM safe-point barrier performs “nor-
mally” when there is nothing to cause priority inversion.

During all runs we collected trace data using TuningFork [17]. The
Metronome GC in the RT-JVM is instrumented with TuningFork
and provides detailed trace information of its execution. We are in-
terested in the duration of the Metronome safe-point barrier. In ad-
dition, we instrumented the lunar lander application to trace when
the control calculation is done and how long it takes, and to trace
all the calculated data and the actual position of the lander module.

6.1 Results
We first show the results for the baseline, a single, no-GPM RT-
JVM instance with no interfering medium priority threads, thus no
priority inversion. We then show how this behavior changes when
priority inversion is stimulated.

6.1.1 Single RT-JVM instance
Figure 3 depicts the results of the baseline run. The histogram of
the safe-point barrier duration (Figure 3(a)) depicts the distribution
of the duration from the time instant when the GC initiates the safe-
point barrier until the time instant when the threads have reached
a safe point. During this experiment there were 206871 barrier
operations. On average safe-point barrier takes 56µs (median 63µs)
to complete, with a standard deviation of 11µs. There is, however,
one outlier at 933µs. These values suggest that the normal behavior
of the protocol is quite acceptable.

We also analyzed the application performance in terms of its la-
tency and jitter. The application runs a periodic controller com-
putation that should execute every 6ms. Our measure of jitter is
the standard deviation of the interarrival times of controller events.

1 247 738 1230 1721 2213 2704 3196 3687 4179 4670

5

2 0

5 0

200

500

2000

5000

20000

50000

< 0 >5000

(a) no-GPM

0 246 737 1229 1720 2212 2703 3195 3687 4178 4670

5
1 0

5 0
100

500
1000

5000
10000

50000

< 0 >5000

(b) L-GPM

0 246 737 1229 1720 2212 2703 3195 3687 4178 4670

5
1 0

5 0

100

500
1000

5000
10000

50000

< 0 >5000

(c) K-GPM

Figure 4: Safe-point barrier duration

baseline no-GPM L-GPM K-GPM
events 206871 207442 213006 188131
Mean µs 56 214 67 70

StdDev µs 11 272 14 14
Max µs 933 5406 1005 1013
Min µs 31 25 38 39

Table 1: Safe-point barrier duration

Figure 3(b) depicts the distribution of the interarrival times. The
x-axis range is from 0ms to 12ms and the y-axis scale is logarith-
mic. There are 89592 controller events during this run and the
interarrival times are centered around 6ms with a jitter of 261µs.
The symmetry of Figure 3(b) and other interarrival histograms pre-
sented in the next section can be explained by the fact that, when an
event happens later than it should, the interval before the event is
lengthened and the interval after the event is shortened by the same
amount of time. The small bump on the left side in the figure and in
the subsequent interarrival histograms reflect some startup anoma-
lies of the RT-JVM, which occur only during the initialization of
the RT-JVM.

Note that these experiments were run with additional allocation
threads that kept the GC busy by allocating memory at an aver-
age rate of 340MB/s. When this rate is reduced to a more realistic
value of 25MB/s, the jitter of the interarrival time of the controller
event is about 150µs with a maximum outlier of 635µs. These val-
ues are consistent with earlier results that were published about the
RT-JVM [1].

6.1.2 Multiple RT-JVM instances
We now present the results of experiments in which an addi-
tional instance of the RT-JVM was running on the same machine.
The second instance runs 16 independent periodic medium-priority
real-time threads. The period of a thread in the second RT-JVM
instance is 25ms, in which the thread does some computation for
about 5ms.

Figure 4 shows histograms equivalent to that in Figure 3(a), depict-
ing the distribution of the safe-point barrier’s duration. The pre-
sented data is from 9 minute runs, during which time the GC per-
formed about 200000 safe-point barriers. The values of the x-axis
are between 0ms and 5ms. Outliers are shown in the gray shaded
bars on the left and right side of the graphs, and the scale on the
y-axis is logarithmic. Table 1 lists exact numbers of these runs.

These experiments demonstrate that the safe-point barrier suffers

baseline no-GPM L-GPM K-GPM
events 89592 88388 88433 89245

Mean ms 6.0 6.0 6.0 6.0
StdDev ms 0.261 0.390 0.282 0.251

Max ms 7.9 13.0 9.9 12.0

Table 2: Controller event interarrival times

from priority inversion. In the RT-JVM instance that is not using
GPM, the duration of the safe-point barrier is very unpredictable:
on average it takes 214µs with a standard deviation of 272µs. Fur-
thermore, there is even an outlier that needed 5.4ms. In contrast,
in the RT-JVM instances that use GPM, either L-GPM or K-GPM,
the average duration is about 70µs with a standard deviation of only
about 14µs. Moreover, the maximum for both L-GPM and K-GPM
is at 1ms. The improvements over not using GPM are: average
duration of the safe-point barrier 3 times faster, standard deviation
19.4 times smaller, maximum time 5.3 times faster.

As previously mentioned, the controller period is 6ms, and we ana-
lyze the application performance by looking at the interarrival times
of the controller events. Figure 5 shows the distribution of the in-
terarrival time of controller events and Table 2 summarizes the sta-
tistical data. The average in all runs is about 6ms, but the standard
deviation and therefore the jitter, vary between the different con-
figurations. Not using any GPM results in jitter of about 390ms.
The jitter is reduced to 282µs and 251µs when using L-GPM and
K-GPM, respectively. The baseline jitter is 261µs.

The experiments demonstrate that unbounded priority inversion in
barrier protocols can occur, and that a priority inheritance protocol
implemented on top of GPM effectively avoids unbounded priority
inversion. Furthermore, avoiding unbounded priority inversion re-
sults in similar application performance than the baseline, which is
not influenced by any interfering medium priority threads, and thus
not affected by priority inversion.

7. RELATED WORK
The present work extends the recognition of the priority inversion
problem and the priority inheritance solution to a new class of sit-
uations, namely, barrier protocols. Thus, the literature on both bar-
rier protocols and priority inversion is relevant. In addition, the
present work is related to a broader class of protocols that dynam-
ically adjust a real-time schedule, and approaches to integrate it in
general-purpose operating systems.

To incorporate real-time scheduling into general-purpose operat-
ing systems, techniques using proportional-share scheduling have

2 575 1722 2869 4016 5163 6310 7457 8604 9751 10897

5
1 0

5 0

100

500
1000

5000
10000

50000

< 0 >12000

(a) no-GPM

1 574 1721 2868 4015 5162 6309 7456 8603 9750 10896

5

1 0

5 0

100

500
1000

5000
10000

50000

< 0 >12000

(b) L-GPM

1 574 1721 2868 4015 5162 6309 7456 8603 9750 10896

5
1 0

5 0

100

500
1000

5000
10000

50000

< 0 >12000

(c) K-GPM

Figure 5: Controller event interarrival times

been proposed as being more compatible with operating systems
that must mix real-time and non-real-time tasks [33, 10]. Dynamic
adjustment to the shares (weights) has also been studied, includ-
ing in multiprocessor contexts [5]. Brandt et al [7] implemented a
rate-based EDF scheduler in the Linux kernel. It also allows dy-
namic adjustments to both the period and the utilization of tasks.
However, this family of approaches generally does not consider
the needs of groups of real-time tasks acting in concert; instead,
adjustments to share, deadline, and so on are done at the level of
individual tasks.

The first time the priority inversion problem was discussed in the
literature was in relation to monitors and priority scheduling [19].
Later on, a formal definition of the problem and solutions, called
priority inheritance protocols, were presented and were proved to
solve the unbounded delay induced by priority inversion [30]. The
latter paper introduces the priority inheritance protocol and the pri-
ority ceiling protocol, and it shows that both protocols provide an
upper bound on the total delay a high priority thread can encounter
due to priority inversion. Additionally, the authors prove that the
priority ceiling protocol can prevent deadlock.

Four different sources of priority inversion in priority-based real-
time systems are discussed in [9]. First, semaphores and critical
sections, second software queues for data buffering, third Ada task-
ing and rendezvous, and fourth hardware queues on communication
buses. Recently, more different sources of priority inversion were
identified in object request broker middleware [29] and in multi-
processor systems [23]. All these sources, however, can be classi-
fied as resource sharing problems: multiple threads with different
priorities share and access a common resource like a semaphore,
queue or a communication bus. In contrast, the priority inversion
problem discussed in this paper occurs during a synchronization
protocol that does not involve a common resource. A barrier is
merely a synchronization point in time which all threads have to
reach before the program is allowed to advance.

Different barrier algorithms have been proposed in the literature.
Among them are tree-based barriers [34, 21], tournament barri-
ers [20, 16, 15], and multi-stage barriers [11]. These algorithms
are designed for high performance computing and do not con-
sider priorities among the different threads. Mellor-Crummey and
Scott [21] evaluate barriers in terms of critical path length, num-
ber of network transactions, space requirements and the need for
atomic operations. They conclude that a central barrier is the best
choice if the number of threads change from one phase to the next
(as in the RT-JVM safe-point protocol). The internal reorganization
that occurs in the algorithms as computation moves from phase to
phase outweighs any performance advantage in the barrier itself.

Although the RT-JVM safe-point protocol described in this paper is
similar to a traditional central barrier algorithm, it differs in two as-
pects. First, the threads participating in the safe-point protocol are
blocked until another unrelated thread, i.e., the GC, releases them.
Second, threads can have different priorities and not all threads in
the system are involved in the barrier. It is this second property
that makes the protocol vulnerable to priority inversion. We be-
lieve that any barrier protocol would suffer from priority inversion
if it was designed without priorities in mind and is then used in a
multi-process environment with different priorities among the par-
ticipating and non-participating threads in the barrier algorithm. To
the best of our knowledge, there is no barrier algorithm designed
and evaluated for real-time systems that respects priorities among
the threads involved in the barrier. However, we believe that there
will be increased use of general purpose multi-thread software in
contexts where real-time priorities are important (for example, the
emergence of real-time Java VMs).

Priority inversion can occur in other protocols such as the “Query
Suspend and Resume” protocol for database management sys-
tems [8]. In the Query Suspend and Resume protocol high-priority
transactions (e.g. real-time decision-making queries) should be
able to suspend low-priority transactions by scheduling a suspend
event in the low-priority transaction thread. The low-priority trans-
action thread has to process the suspend event successfully, be-
fore the high-priority transaction can continue. However, an un-
related medium-priority thread on the same machine could prevent
the low-priority transaction thread from making progress, which
again leads to priority inversion.

The tax-and-spend scheduling policy relies on a new incremental
and concurrent GC architecture [2]. The new GC is not stopping
mutator threads and hence does not depend on a barrier protocol.
However, the authors identified other sources of priority inversion
that would prevent the GC from making progress. Their solution
uses manual priority setting instead of the GPM mechanism, be-
cause the authors would not accept a solution that involves changes
to the underlying operating system kernel. Furthermore a bug in
the Linux kernel prevented the use of LGPM.

8. FUTURE WORK
We provide 28 bits for the application to use in matching masks to
gang-control words, which we hope will provide flexibility when an
application uses multiple barrier protocol types involving different
subsets of the threads. However, our case study in this paper used
only one bit, and so the question of how to best handle these more
complex cases is still open. Future investigations of using GPM
to avoid unbounded priority inversion should study a wider set of

barrier protocol use cases, and would begin by surveying practices
in other general-purpose real-time systems to find more use cases.
Such an investigation would reveal whether the GPM should be
changed to support a more flexible notion of gang membership.

Controlling higher-level priority inversion is not the only case we
know of where control over priorities by the application is needed
and where the standard kernel semantics may be insufficient. The
original motivations for GPM included use cases beyond priority
inversion that we have not yet explored. For example, the Exotasks
system [3], supports pluggable real-time schedulers. At present, the
design of such schedulers is limited by the need to run the schedul-
ing threads at particular priorities and scheduling policies offered
by the operating system. For example, it would be infeasible at
present to implement a true EDF scheduler in the Exotasks sys-
tem using only the kernel facilities in standard Linux. Whether the
GPM API can be used as-is to support such efforts is uncertain, but
future work can reveal what additions will be needed. In the end,
the goal is a flexible interface to priority management that covers
the majority of known use cases and assigns the optimal roles to
both the kernel and the application.

9. CONCLUSIONS
We have introduced gang priority management (GPM) as a generic
solution for avoiding unbounded priority inversion in barrier proto-
cols. We have implemented GPM in the Linux kernel and in a user-
space library, and rewrote the garbage collection safe-point barrier
protocol in IBM’s WebSphere Real Time Java Virtual Machine to
exploit it. We provided empirical results, which confirm that the
GPM-enabled safe-point barrier protocol successfully avoids un-
bounded priority inversion resulting in substantially improved ap-
plication responsiveness.

10. REFERENCES
[1] AUERBACH, J., BACON, D. F., BLAINEY, B., CHENG, P.,

DAWSON, M., FULTON, M., GROVE, D., HART, D., AND
STOODLEY, M. Design and implementation of a
comprehensive real-time Java virtual machine. In Proc.
EMSOFT (2007).

[2] AUERBACH, J., BACON, D. F., CHENG, P., GROVE, D.,
BIRON, B., GRACIE, C., MCCLOSKEY, B., MICIC, A.,
AND SCIAMPACONE, R. Tax-and-spend: democratic
scheduling for real-time garbage collection. In Proc.
EMSOFT (2008).

[3] AUERBACH, J., BACON, D. F., IERCAN, D. T., KIRSCH,
C. M., RAJAN, V. T., ROECK, H., AND TRUMMER, R. Java
takes flight: time-portable real-time programming with
exotasks. In Proc. LCTES (2007).

[4] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time
garbage collector with low overhead and consistent
utilization. In Proc. POPL (2003), pp. 285–298.

[5] BLOCK, A., AND ANDERSON, J. H. Task reweighting on
multiprocessors: Efficiency versus accuracy. In Proc. IPDPS
(2005).

[6] BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P.,
FURR, S., HARDIN, D., AND TURNBULL, M. The
Real-Time Specification for Java. The Java Series.
Addison-Wesley, 2000.

[7] BRANDT, S. A., BANACHOWSKI, S. A., LIN, C., AND
BISSON, T. Dynamic integrated scheduling of hard
real-time, soft real-time and non-real-time processes. In
Proc. RTSS (2003).

[8] CHANDRAMOULI, B., BOND, C. N., BABU, S., AND
YANG, J. Query suspend and resume. In Proc. SIGMOD
(2007).

[9] DAVARI, S., AND SHA, L. Sources of unbounded priority
inversions in real-time systems and a comparative study of
possible solutions. SIGOPS Oper. Syst. Rev. 26, 2 (1992),
110–120.

[10] DUDA, K. J., AND CHERITON, D. R.
Borrowed-virtual-time (bvt) scheduling: supporting
latency-sensitive threads in a general-purpose scheduler. In
Proc. SOSP (1999).

[11] EUGENE D. BROOKS, I. The butterfly barrier. Int. J. Parallel
Program. 15, 4 (1986), 295–307.

[12] GOH, O., LEE, Y.-H., KAAKANI, Z., AND RACHLIN, E.
Schedulable garbage collection in cli virtual execution
system. Real-Time Syst. 36, 1-2 (2007), 47–74.

[13] GOSLING, J., JOY, B., AND STEELE, G. L. The Java
Language Specification. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[14] GOUGH, C., HALL, A., MASTERS, H., AND STEVENS, A.
Real-Time Java, Part 5: Writing and deploying real-time Java
applications.
http://www.ibm.com/developerworks/java/library/

j-rtj5/index.html.
[15] GRUNWALD, D., AND VAJRACHARYA, S. Efficient barriers

for distributed shared memory computers. In Proc. IPPS
(1994).

[16] HENSGEN, D., FINKEL, R., AND MANBER, U. Two
algorithms for barrier synchronization. Int. J. Parallel
Program. 17, 1 (1988), 1–17.

[17] IBM CORP. TuningFork Visualization Tool for Real-Time
Systems. www.alphaworks.ibm.com/tech/tuningfork.

[18] IBM CORP. WebSphere Real-Time User’s Guide, first ed.,
2006.

[19] LAMPSON, B. W., AND REDELL, D. D. Experience with
processes and monitors in mesa. Commun. ACM 23, 2
(1980), 105–117.

[20] LUBACHEVSKY, B. D. Synchronization barrier and related
tools for shared memory parallel programming. Int. J.
Parallel Program. 19, 3 (1990), 225–250.

[21] MELLOR-CRUMMEY, J. M., AND SCOTT, M. L.
Algorithms for scalable synchronization on shared-memory
multiprocessors. ACM Trans. Comput. Syst. 9, 1 (1991),
21–65.

[22] MOLNAR, I., AND GLEIXNER, T. The rt-preempt patch set
for Linux. http://rt.wiki.kernel.org.

[23] NAESER, G. Priority inversion in multi processor systems
due to protected actions. Ada Lett. XXV, 1 (2005), 43–47.

[24] PLSEK, A., LOIRET, F., SEINTURIER, L., AND MERLE, P.
A component framework for java-based real-time embedded
systems. In Middleware (2008).

[25] POLZE, A., PLAKOSH, D., AND WALLNAU, K. Corba in
real-time settings: A problem from the manufacturing
domain. In Proc. ISORC (1998).

[26] RAMAN, K., ZHANG, Y., PANAHI, M., COLMENARES,
J. A., KLEFSTAD, R., AND HARMON, T. Rtzen: Highly
predictable, real-time java middleware for distributed and
embedded systems. In Middleware (2005).

[27] SCHMIDT, D. C. Middleware for real-time and embedded
systems. Commun. ACM 45, 6 (2002), 43–48.

[28] SCHMIDT, D. C., AND KUHNS, F. An overview of the
real-time corba specification. Computer 33, 6 (2000), 56–63.

[29] SCHMIDT, D. C., MUNGEE, S., FLORES-GAITAN, S., AND
GOKHALE, A. Software architectures for reducing priority
inversion and non-determinism in real-time object request
brokers. Real-Time Syst. 21, 1-2 (2001), 77–125.

[30] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Comput. 39, 9 (1990),
1175–1185.

[31] SHANKARAN, N., SCHMIDT, D. C., KOUTSOUKOS, X. D.,
CHEN, Y., AND LU, C. Design and performance evaluation
of configurable component middleware for end-to-end
adaptation of distributed real-time embedded systems. In
Proc. ISORC (2007).

[32] SPOONHOWER, D., AUERBACH, J., BACON, D. F.,
CHENG, P., AND GROVE, D. Eventrons: a safe
programming construct for high-frequency hard real-time
applications. In Proc. PLDI (2006).

[33] STOICA, I., ABDEL-WAHAB, H., JEFFAY, K., BARUAH,
S. K., GEHRKE, J. E., AND PLAXTON, C. G. A
proportional share resource allocation algorithm for
real-time, time-shared systems. In Proc. RTSS (1996).

[34] YEW, P.-C., TZENG, N.-F., AND LAWRIE, D. H.
Distributing hot-spot addressing in large-scale
multiprocessors. IEEE Trans. Comput. 36, 4 (1987),
388–395.

