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Abstract—Thread-local allocation buffers (TLABs) are
widely used in memory allocators of garbage-collected systems
to speed up the fast-path (thread-local allocation) and reduce
global heap contention yet at the expense of increased memory
fragmentation. Larger TLABs generally improve performance
and scalability but only up to the point where more frequent
garbage collection triggered by increased memory fragmen-
tation begins dominating the overall memory management
overhead. Smaller TLABs decrease memory fragmentation
but increase the frequency of executing the slow-path (global
allocation) and thus may reduce performance and scalability.
In the Hotspot JVM a complex, TLAB-growing strategy imple-
mented in several thousand lines of code determines the TLAB
size based on heuristics. We introduce hierarchical allocation
buffers (HABs) and present a three-level HAB implementation
with processor- and core-local allocation buffers (PLABs,
CLABs) in between the global heap and TLABs. PLABs
and CLABs require low-overhead OS-provided information on
which processor or core a thread executes. HABs may speed
up the slow-path of TLABs in many cases and thus allow using
smaller TLABs decreasing memory fragmentation and garbage
collection frequency while providing the performance and scal-
ability of otherwise larger TLABs. Our implementation works
with or without the TLAB-growing strategy and requires two
orders of magnitude less code. We evaluate our implementation
in the Hotspot JVM and show improved performance for a
memory-allocation-intensive benchmark.
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I. INTRODUCTION

Memory management in runtime systems like Java vir-
tual machines (JVMs) may be a scalability bottleneck in
applications with multiple threads accessing the global heap
frequently. Thread-local allocation buffers (TLABs) reduce
global heap contention by preallocating large pieces of
memory from the global heap. The preallocated memory is
stored thread-locally to handle allocation requests of a given
thread. This approach does not only reduce contention on
the global heap but also allows a fast-path for memory allo-
cation that does not require any synchronization or atomic
operations since the TLAB of a thread is not shared with any
other threads. However, larger TLABs introduce additional
memory fragmentation that depends linearly on the number
of threads since large blocks of memory are committed to
thread-local use only. High memory fragmentation may re-
sult in more frequent garbage collection which may decrease
application throughput. To trade-off scalability and memory
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Figure 1. Hierarchical allocation buffers (HABs) with three levels: on the
highest level is the global heap, in the middle are the PLABs or CLABs
P1 and P2, and on the lowest level are the TLABs T 1−T 4.

fragmentation in modern JVMs complex TLAB-growing
strategies incorporate different factors like allocation rate,
number of threads, heap size and feedback from the garbage
collector to determine TLAB sizes for all threads. The
implementation of such a strategy in the garbage collector
of the Hotspot JVM [7] requires several thousand lines of
code and thus significantly contributes to its complexity.

We introduce hierarchical allocation buffers (HABs),
which consist of multiple levels of allocation buffers where
an allocation buffer on a given level preallocates memory
out of an allocation buffer on the next higher level. The
traditional approach with TLABs is thus a two-level HAB
system with the global heap on top and TLABs below.
For recent multi-core architectures with several cores per
CPU and several CPUs per machine we propose to use a
three-level HAB system with one more level in between as
depicted in Figure 1. In our implementation this level uses
processor- or core-local allocation buffers (PLABs, CLABs)
which require low-overhead OS-provided information on
which processor or core a thread executes. PLABs and
CLABs speed up the slow-path of TLABs in many cases and
thus allow using smaller TLABs decreasing memory frag-
mentation and garbage collection frequency while providing
the performance and scalability of otherwise larger TLABs.
We show in experiments that a statically configured HAB
system may provide similar performance as a TLAB-only
system using a TLAB-growing strategy.

Our three-level HAB implementation reflects the under-



lying processor architecture of a server machine with four
Intel Xeon E7 processors where each processor comes with
ten cores and two hardware threads per core. The allocation
buffers of the middle level can be configured to be PLABs
or CLABs. The TLABs on the lowest level allocate from
the PLABs or CLABs associated with the processor or
core on which the allocating thread is currently running
on. We evaluate the performance of our three-level HAB
implementation integrated into the Hotspot JVM and show
performance improvements due to better cache utilization
and less contention on the global heap.

We summarize the contributions of this paper: (1) the
notion of hierarchical allocation buffers (HABs), (2) the
three-level HAB implementation with processor- or core-
local allocation buffers (PLABs, CLABs), and (3) an exper-
imental evalulation of HABs in the Hotspot JVM.

In Section II, we present the design of HABs. In Sec-
tion III, we discuss the implementation of HABs in the
Hotspot JVM and the required operating system support.
Related work is discussed in Section IV, our experiments are
presented in Section V, and conclusions are in Section VI.

II. PLABS, CLABS, TLABS

TLABs are an architecture-independent concept for im-
plementing allocation buffers. Each thread maintains its
private allocation buffer for fast allocation of memory.
However, allocation buffers may also be implemented in
an architecture-dependent fashion. For example, allocation
buffers can be assigned to processors, i.e., a thread run-
ning on a processor may use the allocation buffer of the
processor for its allocation requests [3]. We study the use
of processor-local allocation buffers (PLABs) as well as
core-local allocation buffers (CLABs) situated in between
TLABs and the global heap. A PLAB is assigned to a given
processor which may comprise of multiple cores. Threads
running on different cores but on the same processor share
the same PLAB. A CLAB is assigned to a given core.
Threads running on the same core share the same CLAB.
Using PLABs may increase parallelism and cache utilization
and thus reduce contention. On multicore machines using
CLABs over PLABs may increase parallelism and cache
utilization even further. Note that the size of PLABs and
CLABs should be multiples of the TLAB size to avoid
additional internal memory fragmentation.

Access to PLABs and CLABs is done in two steps. First,
the processor or core on which a given thread currently
runs is determined (selection). Then, the actual allocation
in the selected PLAB or CLAB is performed atomically
(allocation). Selection and allocation is done non-atomically
for better performance and scalability. Thus a thread may
migrate to another processor or core in between selection
and allocation resulting in what we call a foreign allocation.
Note that the probability of foreign allocations is low and we

show in experiments that foreign allocations indeed rarely
happen.

III. IMPLEMENTATION

In this section, we discuss the implementation of HABs
in the Hotspot JVM and present simplified pseudo-code of
the core algorithm. Garbage-collection-specific details were
removed for simplicity. We modified the heap implementa-
tion of Hotspot’s parallel garbage collector for the upcoming
JDK7. The modifications are limited to the code path of
allocating new and refilling existing TLABs. Additionally,
we disallow direct inlined access to the global heap. In
our benchmarks we did not observe any slow down when
removing inlined access to the global heap.

Listing 1 shows the method for allocating a TLAB of a
given size. If a thread’s TLAB is full the thread invokes
this method to allocate a new memory region for its TLAB.
TLABs larger than PLAB size are directly allocated from
the global heap. For smaller TLABs, we try to allocate
them in a PLAB with preference to the PLAB of the current
processor. We iterate over all PLABs starting at the PLAB
of the current processor and try to allocate a new TLAB. As
soon as a TLAB is successfully allocated it is returned to
the caller. If a TLAB could not be allocated in any PLAB,
we fall back to allocate memory from the global heap. If
this also fails the method returns NULL, and eventually a
GC cycle will be triggered.

Listing 2 shows the method for allocating a TLAB of
a given size on a dedicated processor (or core), and if the
PLAB is full how it is refilled. If an allocation request cannot
be handled the method returns NULL. The implementation
uses an optimistic non-blocking approach to avoid expensive
locking. The access to a PLAB is synchronized using the
PLAB’s top variable. The top variable indicates where the
free memory in the PLAB starts or whether the PLAB is
currently being refilled. If a thread detects that the PLAB is
currently being refilled by another thread it returns NULL
indicating to the caller that no allocations are currently
possible in this PLAB. The top variable is always modified
using a compare-and-swap operation.

If top is a valid pointer, the thread attempts to allo-
cate the new TLAB in the PLAB. The allocation in the
PLAB advances the top pointer by the size of the new
TLAB using a compare-and-swap retry cycle. If the new
TLAB does not fit into the PLAB it returns NULL, and
the protocol to refill the PLAB with a new memory re-
gion is started. The refill protocol starts by setting top
to PLAB REFILL IN PROGRESS. The succeeding thread
allocates a new memory region from the global heap and
reinitializes the PLAB with the new memory region. If the
allocation fails at any step, for example, when trying to set
top to PLAB REFILL IN PROGRESS or when trying to
allocate a new PLAB, the method returns NULL. As men-
tioned in the previous section we tolerate context switches in



1 HeapWord* allocate_new_tlab(size_t size) {
2 if (size <= PLAB_SIZE) {
3 int hw_id = get_hw_id();
4 for (int i = 0; i < PLABS; i++) {
5 HeapWord* tlab = allocate_on_processor(size , (hw_id + i) % PLABS);
6 if (tlab != NULL) {
7 return tlab;
8 }
9 }

10 }
11 return allocate_in_global(size);
12 }

Listing 1. TLAB allocation

1 HeapWord* allocate_on_processor(size_t size , int id) {
2 HeapWord* top = plabs_[id].top();
3 if (top == PLAB_REFILL_IN_PROGRESS) {
4 return NULL;
5 }
6 HeapWord* tlab = plabs_[id].allocate(size);
7 if (tlab == NULL) {
8 HeapWord* result = cmpxchg(plabs_[id].top_addr(), top, PLAB_REFILL_IN_PROGRESS);
9 if (result == NULL) {

10 return NULL;
11 }
12 tlab = allocate_in_global(PLAB_SIZE);
13 if (tlab == NULL) {
14 plabs_[id].reset();
15 return NULL;
16 }
17 plabs_[id].init(tlab , size);
18 }
19 return tlab;
20 }

Listing 2. TLAB allocation on a given processor (or core)

between reading the processor ID and performing the actual
allocation, which may result in foreign allocations. More-
over, a foreign allocation may also be performed by a thread
that encounters that the PLAB REFILL IN PROGRESS
flag has been set. Note that this is a completely lock-free
implementation for avoiding lock-related complications with
system invariants in the stop-the-world garbage collector.

A. Operating System Support

Our current implementation requires that the underlying
operating system provides a mechanism for threads to look
up the processor and core they are running on. In recent
Linux kernels the getcpu() system call is optimized to
provide a low-overhead mechanism for determining the CPU
on which the invoking thread runs. However, it is not
guaranteed that the thread is still executing on the CPU
after the call returns. Therefore, allocation in PLABs and
CLABs have to be synchronized and could even result in
foreign allocations where a thread on processor A allocates
memory assigned to processor B.

In order to reduce the additional overhead when accessing
PLABs or CLABs or even allow unsynchronized access to
CLABs we would require additional support of the OS.
For instance, a notification when the thread is preempted
would suffice to detect possible migrations and context
switches. If a thread detects that it was preempted in between
determining the current processor and the actual allocation
in the PLAB it could restart the operation. In [2] the authors
introduce multi-processor restartable critical sections (MB-
RCS) for SPARC Solaris, which provide a mechanism for
user-level threads to know on which processor they are
executing and to safely manipulate CPU-specific data.

IV. RELATED WORK

Several JVMs already provide specific support for differ-
ent processor architectures. For example, the latest version
of the Hotspot JVM already supports NUMA architectures
where the heap is divided into dedicated parts for each
NUMA node.

PLABs were previously discussed in [3]. The imple-
mentation is based on a special mechanism called multi-



processor restartable critical section which allows to manip-
ulate processor-local data consistently and guarantees that a
thread always uses the PLAB of the processor it is running
on. In our implementation we do not provide that guarantee.
If there is a context switch between determining processor
and PLAB operation and the thread is scheduled after that on
a different processor we tolerate that. Moreover, just using
PLABs eliminates the fast-path provided by TLABs. In our
work we combine the benefits of both PLABs and CLABs
with TLABs.

Thread- and processor-local data is not only relevant in
allocators of JVMs but also in explicit memory management
systems. Multi-processor restartable critical sections are
used in [2] to implement a memory allocator that holds
allocator-specific metadata processor-locally to take advan-
tage of the cache and to reduce contention. McRT-Malloc [4]
is a non-blocking memory management algorithm, which
avoids atomic operations on typical code paths by accessing
thread-local data only. Hoard [1] is a memory allocator that
combines, in more recent versions, thread-local with non-
thread-local allocation buffers.

V. EXPERIMENTS

For our experimental evaluation we used a server machine
with four Intel Xeon E7 processors where each processor
comes with ten cores and two hardware threads per core,
24MB shared L3-cache, and 128GB of memory running
Linux 2.6.39. We ran the SPECjvm2008 memory-allocation-
intensive javac benchmark [5] with 80 threads on the Hotspot
JVM in server mode [6]. Each benchmark run was config-
ured to last six minutes with two minutes of warm-up time in
the beginning. We repeated each experiment seven times and
measured the performed operations per minute. The default
generational garbage collector of the JVM is configured with
a maximum heap size of 30GB and a new generation size
of 10GB. Parallel garbage collection is performed in the old
and new generation.

For the data in Figure 2 we removed the maximum and
minimum from the seven runs and calculated the average
of the remaining five runs. On the x-axis are TLAB sizes
of increasing but fixed size, except where it says “growing”
indicating that the TLAB-growing strategy of the unmodified
Hotspot JVM is used. Note that with the TLAB-growing
strategy the TLAB size settles at around 2MB. On the y-
axis the speedup over the corresponding TLAB-only con-
figurations of the unmodified Hotspot JVM (baselines) is
depicted. In Figure 2(a) the results using HABs with PLABs
and in Figure 2(b) the results using HABs with CLABs
are depicted. For smaller TLABs a higher speedup can be
achieved since the slow-path is triggered more often. How-
ever, performance also improves with the TLAB-growing
strategy. In the presented results CLABs perform on average
slightly better then PLABs.

  0

  0.5

  1

  1.5

  2

  2.5

1KB
4KB

16KB
64KB

128KB

512KB

growing

S
p

ee
d

u
p

TLAB size

8MB PLAB

32MB PLAB

64MB PLAB

128MB PLAB

baseline

(a) PLABs

  0

  0.5

  1

  1.5

  2

  2.5

1KB
4KB

16KB
64KB

128KB

growing
S

p
ee

d
u
p

TLAB size

512KB CLAB

1MB CLAB

8MB CLAB

16MB CLAB

baseline

(b) CLABs

Figure 2. Speedup of using HABs with different TLAB and PLAB/CLAB
configurations over the corresponding TLAB-only configurations of the
unmodified Hotspot JVM.
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Figure 3. The data of Figure 2 but using the unmodified Hotspot JVM
with the TLAB-growing strategy as common baseline.



PLAB
TLAB 4MB 8MB 16MB 32MB 64MB

No 0.32% 0.33% 0.51% 0.94% 1.93%
1KB 0.11% 0.06% 0.09% 0.05% 0.15%
4KB 0.11% 0.06% 0.06% 0.06% 0.19%
8KB 0.13% 0.10% 0.08% 0.10% 0.29%

16KB 0.10% 0.08% 0.11% 0.08% 0.12%
32KB 0.11% 0.08% 0.08% 0.11% 0.30%
64KB 0.22% 0.15% 0.16% 0.29% 0.45%

128KB 0.52% 0.47% 0.63% 1.31% 2.60%
growing 0.55% 0.47% 0.64% 1.10% 2.23%

Table I
PERCENTAGE OF FOREIGN ALLOCATIONS WITH DIFFERENT PLAB AND

TLAB CONFIGURATIONS.

CLAB
TLAB 512KB 1MB 8MB 16MB

1KB 0.00% 0.01% 0.05% 0.07%
4KB 0.01% 0.01% 0.06% 0.15%

16KB 0.01% 0.02% 0.07% 0.13%
64KB 0.03% 0.03% 0.10% 0.17%

128KB 0.06% 0.05% 0.15% 0.26%
growing - - 1.42% 2.81%

Table II
PERCENTAGE OF FOREIGN ALLOCATIONS WITH DIFFERENT CLAB AND

TLAB CONFIGURATIONS.

Figure 3 is based on the same data as presented in
Figure 2 but the y-axis depicts the speedup over the TLAB-
only configuration of the unmodified Hotspot JVM using
the TLAB-growing strategy, which is the default setting of
the JVM. The results confirm that for smaller TLAB sizes
than with the TLAB-growing strategy (around 2MB) similar
or even better performance can be achieved. Figure 3(a)
shows the results using HABs with PLABs and Figure 3(b)
shows the results using HABs with CLABs. In particular,
the results show that HABs with a small TLAB size provide
similar performance as the original TLAB-growing strategy
of the Hotspot JVM. In this case, a statically configured
HAB implementation may thus replace a significantly more
complex implementation of a TLAB-growing strategy.

In Table I and Table II, the amount of foreign alloca-
tions using different PLAB and CLAB configurations with
different TLAB sizes are presented. The amount of foreign
allocations increases with increasing PLAB or CLAB size.
Overall, however, the amount of foreign allocations is low,
which shows that allowing allocations in PLABs or CLABs
that do not match the current processor or core the thread
is running on can be tolerated here. For the 512KB and
1MB CLAB sizes the TLAB-growing strategy immediately
determines to use TLABs larger then the given CLAB
size, so CLABs are not used at all. Evaluating different
synchronization strategies and allocations policies remains
future work.

VI. CONCLUSION

We introduced hierarchical allocation buffers (HABs) for
improving performance and scalability of memory manage-
ment on state-of-the-art multiprocessor and multicore server
machines. We implemented and evaluated three-level HABs
in the Hotspot JVM and showed performance improvements
in a memory-allocation-intensive benchmark due to better
cache utilization and less contention on the global heap.
The results show that taking the underlying hardware ar-
chitecture of general purpose machines into account even
more than before may require significantly less complex
code than architecture-oblivious solutions without a loss in
performance. The concept of HABs is just a first step. In the
future we plan to consider a cooperative thread scheduling
mechanism for executing threads that share a significant
amount of data on the same processor to further benefit from
caching. Moreover, we plan to integrate the HABs architec-
ture into the TLAB-growing strategy of the Hotspot JVM
for tuning not only TLAB sizes but also PLAB or CLAB
sizes automatically. Considering other HABs configurations
may also be beneficial, e.g., a four-level system with TLABs,
CLABs, PLABs, and the global heap.
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