
BigActors - A Model for Structure-aware Computation ∗

Eloi Pereira
Systems Engineering

UC Berkeley, CA, USA
eloi@berkeley.edu

Christoph M. Kirsch
Dept. of Computer Sciences

Univ. of Salzburg, Austria
ck@cs.uni-salzburg.at

Raja Sengupta
Systems Engineering

UC Berkeley, CA, USA
sengupta@ce.berkeley.edu

João Borges de Sousa
School of Engineering
Univ. of Porto, Portugal

jtasso@fe.up.pt

ABSTRACT
This paper describes a model of computation for structure-
aware computing called the BigActor model. The model is
a hybrid. It combines the Actor model [1] and the Bigraph
model [10]. The contributions of this paper are an opera-
tional semantics, an example illustrating how the model sup-
ports the concise programming of a mobile agent working in
a ubiquitous computing world, a query language enabling a
bigActor to observe the world around it, and a definition
giving semantics to the feedback loop in control theory in
the context of this model. This is followed by three theo-
rems showing how the operational semantics supports the
programming of concurrent mobile agents in the semantics
of feedback control.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; F.1.1 [Computation by Abstract
Devices]: Models of Computation—Relations between mod-
els, Self-modifying machines

1. INTRODUCTION
This paper describes a model of computation for structure-

aware computing. The model is a hybrid. It combines the
Actor model [1] and the Bigraph model [10]. Hence the
name BigActor model. In this model, computation is mod-
elled using the Actor model, enriched by three new semantics
rules (Figure 8) to make it structure-aware. Structure is a
bigraph. The dynamics of the structure is modelled as a Bi-
graph Reactive System [9]. The three extra semantic rules

∗Research supported in part by the National Science Foun-
dation (CNS1136141), by the Fundação para a Ciência
e Tecnologia (SFRH/BD/43596/2008), by the Portuguese
MoD - project PITVANT, and by the National Research
Network RiSE on Rigorous Systems Engineering (Austrian
Science Fund S11404-N23)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCPS ’13, April 08 - 11 2013, Philadelphia, PA, USA
Copyright 2013 ACM 978-1-4503-1996-6/13/04 $15.00.

provide means for an actor to observe and control a bigraph,
and migrate from one host to another. Hence it is called a
bigActor. When the structure models a physical world as in
Example 3 of Section 4, bigActors become a cyber entities
in a physical world.

The contributions of this paper are an operational seman-
tics for the BigActor model stated in Section 4.1. BigAc-
tors are linked to a model of the structure (bigprah) by
a hosting relation. Without a structure (or context as in
context-aware computing), a bigActor is just an actor. But
when a bigActor is hosted in a bigraph it can leverage the
three new semantic rules enabling it to observe the bigraph,
control it, and migrate in it. The set of observations a bi-
gActor can make in the bigraph hosting it, is formalized as a
query language. Section 5 formalizes one possible query lan-
guage. The operational semantics is well defined for a class
of query languages as expressed by Equation 1. Section 4.1
includes an example program (Example 3) to illustrate how
this model contributes to the concise programming of a mo-
bile agent (app@sp in Figure 7) computing in a ubiquitous
computing environment (Figure 10).

The BigActor model is defined over a bigraph transition
system. This is formally a sequence of bigraphs generated by
applying Bigraph Reaction Rules [10] to an initial bigraph.
Thus, structure can be dynamic and the three new semantic
rules are designed to program actors that adapt to changing
structure. Context-Aware programming needs a semantics
for the interaction of program and context. In this paper we
borrow the one underpinning control theory (see Figure 1),
because it is widely used. In control theory the system is
separated into plant and controller with the controller being
composed in feedback. It observes, then controls, and the
control generates new observations, repeating the cycle.

Figure 1: BigActors: actors composed as a feedback
loop with a bigraph.

Section 6 shows the BigActor model is able to support
this semantics of adaptation. The controller is restricted to
being a bigActor and the plant a bigraph. Definition 5 is
the semantics of the feedback loop. We define a feedback bi-
gActor analogous to a feedback controller in Definition 11.
Theorem 1 shows that in a system with one bigActor, be-
ing a feedback bigActor is sufficient for the control-theoretic
semantics. This is called correctness for want of a better
term. Theorems 2 and 3 show another sufficient condition is
required for correctness when there are multiple concurrent
bigActors. The additional conditions required to realize the
feedback control semantics are the standard ones used to ex-
clude race conditions in concurrent programming. Theorems
1, 2, and 3 formalize the sense in which the bigActor model
supports the programming of concurrent agents working in
a world with changing structure by adapting to it.

We situate the BigActor model in the Actor and Bigraph
literatures as follows. The contributions of this model to the
Actor literature are to provide the actor with a reflection of
the structure of the system. This approach has been adopted
to reflect back to actor systems low-level properties of the
system. Nielsen, Ren, and Agha [11, 12] provide a real-time
semantics to actor systems using timed graphs to constrain
the execution of actors. Agha introduces locality to actors
semantics [13] for modelling multiple mobile agents. The
location model used by Agha is simply a host relation be-
tween actors and hosts. The location model is flat in the
sense that there is no information of where a host stands
in relation to another host. Moreover, there is no sense of
connectivity between hosts. Using bigraphs in the BigActor
model we provide a richer model of the structure, capable of
modelling nested locality of components, their connectivity
and also the way the structure evolves with time.

From a bigraph research stand-point, the BigActor model
provides means for embedding computation into bigraphs
that model the structure of the world. This is addressed in
the literature by [5, 4] which model the structure of the world
and computation using different Bigraph Reaction Systems
(BRS) which are composed together. It is known that query-
ing bigraphs exclusively using bigraphs reactive systems is
difficult [4]. This is addressed by [4] by introducing three
different BRSs: context, proxy, and agents. Our approach
differs from [5] and [4] in the sense that we model compu-
tation using the actors model, which is coupled from an ob-
servation stand point using a query language. This removes
the burden of modelling queries using BRSs. Moreover, by
combining the Actor model with bigraphs we intent to lever-
age the use of bigraphs together with the large spectrum of
actor languages and frameworks (e.g. Erlang [3], Scala [7],
Cloud Haskell [6], Dart, Akka, etc.).

2. BIGRAPHICAL FRAMEWORK
In this section we introduce Bigraphs. A reader famil-

iar with Bigraphs should be able to skip this section. The
examples, however are used throughout the paper. This ex-
planation follows [10].

As the name suggests a bigraph is a mathematical struc-
ture with two graphs, the place graph - a forest that rep-
resents nested locality of components and a link graph - a
hypergraph that models connectivity between components.
Figure 2 presents an example of a bigraph.

Place graphs are contained inside regions (dashed rectan-
gles) and may also contain holes (dark grey empty rect-

0

(a) Bigraph. (b) Placing and Linking
graphs.

Figure 2: Example of a bigraph and the correspond-
ing place and link graphs.

angles) Regions and holes enable composition of placing
graphs, i.e. a hole of a given bigraph can be replaced by
a region of another bigraph using the composition operator.
We explain composition later.

A link graph may contain hyperedges and inner names
and outer names. Names are graphically represented by a
line connected at one end to a port or an edge and the other
end is left loose. Just as one can fit regions inside holes,
one can also merge inner names and outer names using the
composition operator.

A node can have ports (black dots) which are points for
connections to edges or names. The kinds of nodes and their
number of ports (arity) are the signature of the bigraph.

The signature takes the form (K, ar) where K is a set of
kinds of nodes called controls and ar : K → N assigns an ar-
ity (i.e. a natural number) to each control. Each node in the
bigraph is assigned a control. For example, the bigraph of
Figure 2(a) has the following signature: K = {M : 1, Q : 2}
where mi has kind M with arity 1 and qi has kind Q with
arity 2. By convention we start kind names with upper-case
characters and node names with lower-case characters.

A bigraph B is called concrete when each node and each
edge is assigned a unique identifier (known as support). We
denote the set of node identifiers of B as VB and the set of
edge identifiers as EB (e.g. VB = {m0,m1,m2, q0, q1} and
EB = {e} in the example of Figure 2).

A bigraph without support is called abstract. In abstract
bigraphs, nodes are denoted by their control while edges are
kept anonymous. Abstract bigraphs are defined using an
algebra. In this paper we almost exclusively use concrete
bigraphs and thus we devote this section to present them
formally. For a formal introduction to abstract bigraphs see
[10], Chapter 3.

In order to define bigraphs formally we need to introduce
the concept of a bigraph interface. An interface is a pair
〈n,X〉 where n in the interface denotes the set {0, 1, . . . , n−
1} of holes (or regions) and X denotes the set of inner names
(or outer names). Holes and inner names are collectively
called an inner face while regions and outer names are called
an outer face.

Definition 1. A bigraph is a 5-tuple of the form:

(V,E, ctrl, prnt, link) : 〈m,X〉 → 〈n, Y 〉

where V is a set of nodes, E is the set of hyperedges, ctrl :
V → K is a control map that assigns controls to nodes,

prnt : m] V → V] n1 is the parent map and defines the
nested place structure, link : X] P → E] Y is the link
map and defines the link structure. P denotes the set of
ports of the bigraph and is formalized as P = {(v, i) | i ∈
{0, 1, . . . , ar(ctrl(v))− 1}}. For convenience we introduce a
map Pts : VB → P(N) that takes a node and returns the set
of ports of that node. 〈m,X〉 → 〈n, Y 〉 provides the inner
face and outer face of the bigraph, i.e. 〈m,X〉 is the inner
face and 〈n, Y 〉 is the outer face.

The composition of bigraphs is defined by matching inter-
faces. Like function composition, a bigraph A : I → J com-
posed with a bigraph B : K → I is a bigraph C : K → J .

Definition 2. Let A : 〈ma, Xa〉 → 〈na, Ya〉 and
B : 〈mb, Xb〉 → 〈nb, Yb〉. The composition of bigraphs
A and B, denoted by A ◦ B, is a bigraph C : 〈mb, Xb〉 →
〈na, Ya〉 where VC = VA] VB , EC = EA] EB , ctrlC =
ctrlA] ctrlB . prntC is obtained by “filling” the holes of A
with regions of B while linkC is obtained by “merging” the
inner names of A with the outer names of B. By convention,
the regions are matched to holes with the same indices and
inner names are matched with outer names with the same
name. For a formal definition of prntC and linkC see [10],
page 17. The composition A ◦B is well defined iff the outer
face of B is equal to the inner face of A, i.e. 〈nb, Yb〉 =
〈ma, Xa〉.

Example 1. Consider the bigraphs of Figure 3. The bi-

Figure 3: Composition of the bigraph streetMap with
the bigraph networkInf .

graph streetMap : 〈6, ∅〉 → 〈1, ∅〉models a street map where
the grey nodes represent streets and links represent physi-
cal adjacency between street nodes. Bigraph networkInf :
〈6, ∅〉 → 〈6, ∅〉 models a network infrastructure where the
blue nodes model wireless hotspots and links represent con-
nectivity which is linked to the edge network modelling a
network. The bigraph resulting from the composition of
both bigraphs is streetMap ◦ networkInf : 〈6, ∅〉 → 〈1, ∅〉.
Note that since the networkInf keeps the holes inside street
nodes one could compose streetMap ◦ networkInf with
other features (e.g. cars, pedestrians, utilities network, etc.).
The signature for this example and subsequent ones in this

1The symbol] denotes the exclusive union operator for sets.

Figure 4: Abstract BBRs MOVE that moves a Comp

node from one street to another, and CONNECT that
connects the Comp node to the network infrastruc-
ture.

paper is K = {Street : 1, Wlan : 1, Comp : 1, Feat : 0}. In
Figure 3, streeti are of kind Street, and wlani are of kind
Wlan. The kinds Street and Wlan denote respectively streets
on a city and locations with wireless connectivity. The kinds
Comp and Feat are going to be used in examples later and
represent, respectively computational devices and features
of the world to be observed.

2.1 Dynamics of bigraphs
Milner defines Bigraph Reaction Rules (BRR) to create

dynamics on bigraphs [10] .
A bigraph reaction rule is a tuple (R,R′, η) where R and

R′ are bigraphs called respectively redex2 and reactum. The
redex is the portion of the bigraph to be matched and the
reactum is the bigraph that replaces the matched portion.
η is called the instantiation map and indicates how holes in
R correspond to holes in R′. If η is the identity map, then
we represent the rule as R → R′. For the reminder of the
paper we always assume η is the identity map, i.e. hole i
in R matches with hole i in R′ for all i ∈ N. If R and R′

are abstract bigraphs, then R → R′ is an abstract BRR.
If R and R′ are concrete then the BRR is concrete. It is
often convenient to define BBRs to be abstract even when
working with concrete bigraphs. This defines rules that can
be applied to several contexts.

Let r = R → R′ be a BRR and B a bigraph. In order to
perform the reaction r in B we need first to decompose B
into C◦R◦d where C represents the context and d represents
the parameters inside the holes of R. Assuming that η is the
identity map, we compose C with the reactum R′ and with
d to get the resulting B′, i.e. B = C ◦ R ◦ d ⇒ B′ =
C ◦R′ ◦d. This application of BRRs works both for abstract
and concrete BRRs.

Example 2. Consider the two abstract BRR of Figure 4.
The first rule, MOVE, models a computational device (e.g.
a user with a smartphone) denoted by a star with kind
Comp) moving from one street to another. The second rule,
CONNECT, models computational device to move inside a hotspot
with network connectivity (denoted by a node with kind
Wlan) and connecting to the network. Note that the rules
are parametric, i.e. they can be applied regardless the nodes
inside the street nodes. For example, this rule allows mod-
elling a computational device to move with or without other
users in a street. Figure 5 shows an example of the ap-
plication of BRR MOVE. The bigraphs in this example are
concrete. Thus, we need to first concretize MOVE. Since we
want to move sp0 of kind Comp from street2 to street3 we

2Redex stands for “reducible expression”.

denote the concrete BRR as MOVE(street2, street3). Fig-
ure 5 depicts the context C, and parameters d where the
rule is applied. Note that the parameters allow the rule to
be applied with sp1 inside street3. The upper part of Fig-

Figure 5: Example of the application of the MOVE

reaction rule.

ure 5 shows the bigraph B transitioning to B′. Under B
and B′ we show the decomposition of each bigraph in the
context C, redex R, reactum R′, and parameters d.

3. ACTOR MODEL
The Actors model of computation is a model for distributed

concurrent computing entities [1, 2]. An actor system is
composed of autonomous objects called actors. Actors com-
municate using asynchronous message passing. Messages
that have been sent but not yet received are queued up in
the receiver actor’s mailbox. The receiver eventually re-
moves the message and processes it. An actor encapsulates
a state and a thread. Each actor has a mail-address used by
other actors to send it messages.

As a response to a message an actor may: compute and
change state; send a message; or create new actors.

The Actor model has been adopted as the concurrency
model in several programming languages such as Erlang [3],
Scala [7], Dart, Could Haskell [6], and in embedded systems
design [8].

Next we present an operational semantics (using the con-
textual style) for the actors model. We follow the opera-
tional semantics approach taken in [11, 2, 13].

The Actor model operational semantics is formalized as a
transition relation over the set of actors configurations.

Definition 3. The Actor model configuration is a tuple
〈α | µ〉 where α is a set of actor names, and µ is the set
of pending messages. An actor a ∈ α can be either busy
or inactive. An actor is busy if it is currently executing.
[E ` R < e =]a denotes a busy actor a, with environment
E (i.e. local state), and reduction context R filled with
expression e which is currently being executed. An actor is
inactive if it is waiting for a message. (E ` b)a denotes an
inactive actor a with environment E and next behaviour b.
When a message arrives, the actor’s behaviour b is applied
to the corresponding message. 〈a ⇐ v〉 denotes a message
to a with content v.

The operational semantics is defined using the five rules3

of Figure 6. The rule 〈fun : a〉models the execution of an ex-

〈fun : a〉
[E ` e]a →λ [E′ ` e′]a

〈α, [E ` p]a | µ〉 → 〈α, [E′ ` p′]a | µ〉
〈new : a,a′〉
〈α, [E ` R < new() =]a | µ〉 → 〈α, [E ` R < nil =]a, (E ` b)a′ | µ〉
〈term : a〉
〈α, [E ` R <=]a | µ〉 → 〈α, (E ` b)a | µ〉
〈rcv : a, 〈a⇐m〉
〈α, (E ` b)a | µ, 〈a⇐ v〉〉 → 〈α, [E[FV (b) 7→ v] ` b < nil =]a | µ〉
〈snd : a, 〈a′ ⇐m〉〉
〈α, [E ` R < send(a′,m) =]a | µ〉 → 〈α, [E ` R < nil =]a | µ, 〈a′ ⇐ v〉〉

Figure 6: Actor operational semantics.

pression e of an actor a. →λ denotes the semantics of a given
language that specifies the local computation of the actor.
Note that the execution of e to e′ can produce side-effects in
the actor’s local environment E. This rule is also responsible
for removing nil and making the actor ready to be termi-
nated by rule term. The rule 〈new : a,a′〉 models the spawn
of a new actor a′ from a. The new actor a′ becomes inactive
after creation. The rule 〈term : a〉 models the termination
of the execution of a command, making the actor changing
from busy to inactive. The rule 〈rcv : a, 〈a⇐ v〉〉 models
an inactive actor a removing a message from its mailbox and
updating its local environment with the contents v. The rule
〈snd : a, 〈a′ ⇐ v〉〉 models an actor a sending a message v

to a′. The new message is included in the set of pending
messages.

4. BIGACTOR MODEL
This section formalizes the BigActor Model. The opera-

tional semantics is presented in Section 4.1. We explain the
semantics by deriving a trace of the program in Example 3.

Example 3. Consider the pseudo-code in Figure 7. The
pseudo-code is in the style of actor languages. The program

app@sp
method start()

control(MOVE(street2,street1));
observe(children.parent.host);

method rcvObs(B_obs: Bigraph)
control(MOVE(street1,street3));
control(CONNECT(wlan0));
send(server@srv,B_obs);

Figure 7: Pseudo-code for the appBA BigActor.

models the following scenario. An app is hosted on a smart-
phone (app@sp) in street2. It wants to photograph the
green boxes (Figure 10) in street1. Hence the smartphone
(bigraph node sp) moves. It specifies the picture to be taken
by a query and waits till the picture is bound to its free vari-
able. In order to send the picture to server@srv the app

3The original semantics includes two more rules for handling
communication with external actors, i.e. actors not defined
in the configuration. External actors are not an essential
feature for bigActors and thus we decided to remove them
for the sake of simplifying the exposition.

moves to one of the blue circles modeling wireless hotspots,
and connects to the hyperlink network. It then sends the
message to the server.

4.1 Operational semantics
The operational semantics is entirely in Figure 8. We use

the same contextual style as the actor semantics in Section
3. A BigActor model executes by transitioning through a
sequence of configurations. Definition 4 defines a configura-
tion.

Definition 4. A BigActor configuration is a tuple 〈α |
µ | η | B〉 where α is a set of bigActors, µ is a set of pend-
ing messages, η is a set of pending requests, and B is a
bigraph. A BigActor in α is of the form a@h, with a an
actor, and h ∈ VB a node in the bigraph B. h is called the
host of a. The set of pending messages µ is as in the actor
semantics in Section 3. A request in the set of requests η is
a tuple (a@h, r) meaning that the operation r is requested
by a@h. The operation r can be any one of the expressions
send(a′@h′, m), observe(q), control(u), migrate(h′). These
are the premises of semantic rule 〈req : a@h, r〉 in Figure 8.
a′@h′ can be any BigActor in α, m any actor message, q a
query resulting in an observation by a BigActor of the bi-
graph B as expressed by Equation 1, u any concrete bigraph
reaction rule as described in Section 2, and h′ another node
in the bigraph B.

The interpretation of a query into an observation of a
given bigraph B relative to a host h is specified by the map:

[[·]]Bh : query→ B (1)

Queries and observations are addressed in Section 5.
Of the four elements in the BigActor configuration, α is as

in the actor model except we write the a@h instead of just
a for the elements of α, µ is exactly as in the actor model,
and η and B are new. Definition 5 defines an execution of
the BigActor model as a sequence of configurations.

Definition 5. A BigActor execution is a sequence c0, c1, c2, . . .

where each ci
λi→ ci+1 and

λi→ is derived by a semantic rule
labelled λi. The permissible λi are those in Figure 8.

The semantics can be understood as follows. A BigActor
can do actor computations. This is asserted by the inclusion
of the rules 〈fun : a@h〉, 〈new : a@h,a′@h〉, 〈term : a@h〉,
and 〈rcv : a@h,m〉. This rules are the same as their actor
counterparts in Figure 6. The augmentation of an actor a
to a@h and the expansion of the configuration to include η
and B has no significance in the rules fun, term and rcv.
In the rule new, the @h is used to assert that a new actor
will have the same host as its creator. Thus to an actor
programmer new has the usual actor semantics, though in
the BigActor model new where the @h has the semantics of
a host, the rule prevents the creation of remote bigActors.
The environment E in Figure 8 is the same as the E in the
actor model in all rules.

In addition to executing expressions by fun, term, new

and rcv as an actor would, a BigActor can also execute
the expressions send(a′@h′, m), observe(q), control(u) and
migrate(h′) as syntactically formalized in Definition 4. The
semantics of these expressions are unique to this model and
given first by the rule 〈req : a@h, r〉 and then by the rules
labelled as snd, obs, ctr and mgrt, respectively. The req

rule asserts that when any of the expressions send(a′@h′, m),
observe(q), control(u) or migrate(h′) execute in a BigAc-
tor program, the program advances exactly as an actor pro-
gram by the rule fun in Figure 6 but with a side-effect. The
side-effect is the addition of the request (a@h, r) to the set η.
This creates a new configuration. When η contains a request
with an expression send(a′@h′, m), observe(q), control(u)
or migrate(h′) a BigActor model can further advance by
application of the rules snd, obs, ctr or mgrt as described
next.

To make the rest comprehensible we analyze an execution
trace of the program in Figure 7 from Example 3.

The control, observe and send instructions have the
syntax and semantics in Figure 8 and Definition 4. These
instructions are encapsulated in two behaviors named the
method start and method rcvObs. The syntax of the method
construct and sequentiality are not formalized. We infor-
mally assume instructions execute in the order in which they
appear in the text and the BigActor app@sp starts with the
method start. The rest follows formally from the semantics
in figure 8. Figure 9 is a formal execution of this program
in the sense of definition 5.

All configurations in Figure 9 follow the notation in Defi-
nition 4, Definition 5, and two short-hands for brevity. The
Figure has 9 lines. Each line has two configurations. Each
line has two transitions except the last one which has only
one. In each configuration the reduction context, denoted
by R in the semantic rules, is abstracted with a .. The
app@sp program instruction executing at each step is ex-
plicitly typed in the square brackets in each configuration.
The environment E in the semantic rules is also abstracted
by . in the configurations in the first 3 lines and the first
configuration in line 4. The environment is a valuation of
the variables of app@sp just as in the actor model. app@sp
has only one variable B obs. This has no valuation in the
first three lines and acquires a value in the second config-
uration in line 4. It is denoted with an E thereafter. B0

through B3 are bigraphs. These are visualized in Figure 10.
This figure visualizes a projection of the trace in Figure 9.
It projects away all transitions representing applications of
fun, term and req. The fun and term transitions advance
the program app@sp just like an actor program and do noth-
ing particular to this model. The req transitions advance
like fun but also have the side-effect of adding a request to
the set η. Then other semantic rules can be applied to con-
sume the elements in η as mentioned earlier to produce the
configurations visualized in Figure 10.

The execution trace in Figure 9 can now be understood
as follows. We assume the BigActor app@sp starts with
the behavior start and advances to the first instruction by
the rule fun. The next transition is by the req rule and puts
control(move(street2, street1)) in η. MOVE(street2, street1)
is a concretization of the abstract BRR MOVE in Figure 4.
This enables use of the rule ctr to change the bigraph B0

to B1. This is visualized in the top row of Figure 10. One
can see the white star move. Everything else in the two bi-
graphs is the same. The second transition in line 2 simply
advances the actor program by rule fun to the instruction
observe(children.parent.host). The first transition in line
3 puts this imperative into η by the rule req. The first be-
havior is now exhausted and the actor become inactive by
application of the rule fun and then term resulting in the
two configurations in line 4. In the second configuration

〈fun : a@h〉, 〈new : a@h,a′@h〉 〈req : a@h, r〉

〈term : a@h〉, 〈rcv : a@h,m〉
r ∈ {send(a′@h′, m), observe(q), control(u), migrate(h′)}

〈α, [E ` R < r =]a@h | µ | η | B〉 → 〈α, [E ` R < nil =]a@h | µ | η, (a@h, r) | B〉

〈obs : a@h,q,o〉
Bobs = [[q]]Bh q ∈ Qa E′ = E[FV (b) 7→ Bobs]

〈α, (E ` b)a@h | µ | η, (a@h, observe(q)) | B〉 → 〈α,E′ ` b < nil =]a@h | µ | η | B〉

〈ctr : a@h,u〉 〈mgrt : a@h,h′〉
u = (R→ R′)h ∈ VR ∩ VR′ B = C ◦R ◦ dB′ = C ◦R′ ◦ d
〈α | µ | η, (a@h, control(u)) | B〉 → 〈α | µ | η | B′〉

h′ ∈ VB ∃pt ∈ Pts(h).∃pt′ ∈ Pts(h′).link(pt) = link(pt′)

〈α, a@h | µ | η, (a@h, migrate(h′)) | B〉 → 〈α, a@h′ | µ | η | B〉

〈snd : a@h, 〈a′@h′ ⇐m〉〉
∃pt ∈ Pts(h).∃pt′ ∈ Pts(h′).link(pt) = link(pt′) ∨ (h = h′)

〈α | µ | η, (a@h, send(a′@h′, m)) | B〉 → 〈α | µ,m | η | B〉

Figure 8: BigActors operational semantics.

〈[· ` · < start() =]app@h | ∅ | ∅ | B0〉
〈fun:app@sp〉→ 〈[· ` · < control(MOVE(street2, street1)) =]app@h | ∅ | ∅ | B0〉

〈req:app@sp,MOVE(·,·)〉→

〈[· ` · < nil =]app@h | ∅ | (app@sp, MOVE(street2, street1)) | B0〉
〈ctr:app@sp,MOVE(·,·)〉→ 〈[· ` · < nil =]app@h | ∅ | ∅ | B1〉

〈fun:app@sp〉→

〈[· ` · < observe(q) =]app@h | ∅ | ∅ | B1〉
〈req:app@sp,observe(q)〉→ 〈[· ` · < nil =]app@h | ∅ | (app@sp, observe(q)) | B1〉

〈fun:app@sp〉→

〈[· ` · <=]app@h | ∅ | (app@sp, observe(q)) | B1〉
〈term:app@sp〉→ 〈(E ` rcvObs)app@h | ∅ | (app@sp, observe(q)) | B1〉

〈obs:app@sp,q,Bobs〉→

〈[E[FV (rcvObs) 7→ Bobs] ` rcvObs]app@h | ∅ | ∅ | B1〉
〈fun:app@sp〉→ 〈[E ` · < control(MOVE(street1, street3)) =]app@h | ∅ | ∅ | B1〉

〈req:app@sp,MOVE(·,·)〉→

〈[E ` · < nil =]app@h | ∅ | (app@sp, MOVE(street1, street3)) | B1〉
〈ctr:app@sp,MOVE(·,·)〉→ 〈[E ` · < nil =]app@h | ∅ | ∅ | B2〉

〈fun:app@sp〉→

〈[E ` · < control(CONN.(wlan0)) =]app@h | ∅ | ∅ | B2〉
〈req:app@sp,CONN.(·)〉→ 〈[E ` · < nil =]app@h | ∅ | (app@sp, CONN.(wlan0)) | B2〉

〈ctr:app@sp,CONN.(·)〉→

〈[E ` · < nil =]app@h | ∅ | ∅ | B3〉
〈fun:app@sp〉→ 〈[E ` · < send(server@srv, B obs) =]app@h | ∅ | ∅ | B3〉

〈req:app@sp,send(·)〉→

〈[E ` · < nil =]app@h | ∅ | (app@sp, send(server@srv, B obs)) | B3〉
〈snd:app@h,m〉→ 〈[E ` · < nil =]app@h | 〈server@srv⇒ B obs〉 | ∅ | B3〉

Figure 9: Execution of BigActor program from Example 3.

in line 4 the BigActor app@sp has advanced to the second
behavior called rcvObs in Figure 7.

The observe(q) imperative is still present in η which al-
lows us to apply the rule obs taking us to the first config-
uration in line 5. The query q in the program is children.
parent.host and is interpreted on bigraph B1 with respect
to sp. This transition is visualized in Figure 10 as the tran-
sition from the top row to the middle one. Since the host
node of app is sp denoted by the white star, its parent is
street1 and the children are the green nodes and sp itself.
The interpretation of queries is formalized in Section 5. The
application of rule obs produces the bigraph enclosed by
the dashed region in the left-hand figure of the middle row
of Figure 10. The transmission of the observed bigraph to
the BigActor in the rule obs is handled much like an actor
receives a message. The inactive actor become busy and the
observation is bound to one of its free variables, FV(rcvObs)
in line 5 of Figure 9. The behavior has only one free variable
named B obs in Figure 7. The environment E is now the ob-
served bigraph being the valuation of B obs. η once again
becomes empty. The rest of line 5, lines 6 and 7 in Figure 9
are derived like the prior lines. The rule CONNECT(wlan0) is
a concretization of the abstract BRR in Figure 4.

Lines 8 and 9 illustrate the semantics of the BigActor
send. In the second configuration in line 8 the BigActor is
busy at the expression send(server@srv, B obs). Like the
actor model server@srv is intended to denote another Bi-

gActor supposed to receive the message. The message is the
value of B obs. The actor semantics would put this message
in µ. We put the expression in η just like the other requests
and then apply the snd rule to complete message delivery.
We do this because the premises of the snd rule requires a
link in the bigraph between the hosts of the sending and re-
ceiving bigActors. If the existence of this link can be proven,
the message is transferred from η to µ. It can in this case
due to prior execution of the expression connect(wlan0) as
illustrated by the transition connecting the middle and last
rows of Figure 10, It would then be received by the other
actor by application of the rule rcv exactly as in the actor
model.

The BigActor rule snd is the counterpart of the actor rule
with the same name, and the BigActor expression send(a′@h′, m)
the counterpart of the actor send(a′, m). However, the se-
mantics is different since it requires the existence of a link
between two hosts in the bigraph. This means a BigActor
sending a message to a correct mailbox address could fail to
communicate. This is a violation of actor semantics but not
of BigActor semantics. A good analogy might be accessing
a webpage in the internet, it is not sufficient to know the
URL, one must also be connected to the internet by some
means (e.g. wireless connection, 3G, etc.).

The example does not illustrate the rule mgrt for the
expression migrate. This rule behaves much like the oth-
ers. A BigActor can request a migration by the expression

Figure 10: A projection of the execution trace of the
BigActor app@sp.

migrate(h′) where h′ is a node in the bigraph. If the host of
the BigActor and h′ are connected by a link in the bigraph,
the request can be consumed by the rule mgrt and the host
of the BigActor will be changed. Note the bigraph remains
unchanged. There is only a change in the hosting relation-
ship between the actors and the bigraph. Once again, we
are thinking of the link as the physical network required for
the flow of a nomadic program.

We conclude this section with a few remarks.

Remark 1. The program in Figure 7 is precise in the Bi-
gActor model. We see the conciseness of the program as a
contribution of the model.

Remark 2. We see the relationship between BigActor and
bigraph like the relationship between a program and its ma-
chine. Actor programs are concurrent programs and so the
machine can be a distributed one. The actors model the pro-
grams and the bigraph a shared distributed machine. The
programs can observe the machine (rule obs) and change the
machine (rule ctr). Control can move, add, or remove nodes
and do the same with connections (links). The hosting rela-
tionship is the distribution of the program over the machine.
The programs can change their distribution (rule mgrt). The
programs can exchange messages (rules snd, rcv) but only
up to the machine (bigraph links). The programs can com-
pute (rules fun, term) and create new programs (rule new)
and locate them in the machine (locally). They could mi-
grate thereafter.

Remark 3. In this semantics the coupling of BigActor and
bigraph is asynchronous. Program execution puts requests
in η. The requests affect the bigraph, hosting relationship,
or observations at a later instant of model time. This means
a BigActor can make requests executable in the bigraph at

request time but unexecutable at the later time. Section 6
addresses this issue.

Remark 4. Control is local. If a BigActor seeks to re-
place component R of a bigraph with R′ then the rule ctr

requires the BigActor to be located (hosted) in R. We show
in Section 5 that observation is also local.

Remark 5. In the actor model state is local. The memory
of an actor influences another only up to the messages flow-
ing between them. In the BigActor model the Bigraph is a
shared structure, and some might argue this globalizes state.
For example, one may communicate between bigActors by
placing and removing nodes in the bigraph and never send
any inter-actor messages at all. We would consider this mis-
use of the model, but have nevertheless elected to provide
the bigraph as a shared structure to keep the model expres-
sive. The BigActor formalism is a model for actors operating
in the physical world, which may in many applications be a
shared space to the actors.

Thus the bigraph can be used as a back-channel for com-
munication between actors. There are two ways to close this
channel. The first is rather trivial. One may simply make
the bigraph into an actor. Then all req, obs, ctr, and mgrt

actions would appear as the flow of messages between actors
and the entire physical world would become the local state
of one actor. This solves the problem but does not really
address any of the fundamental difficulties of coordinating
observing and changing a shared physical machine. There-
fore we have presented a semantics in which the bigraph is
not an actor, because by making the coordination difficulties
visible in the model, the programmer gets the opportunity
to program for them.

However, the model does support a sufficient condition,
derived from its semantics closing the bigraph as a backchan-
nel for communication. Basically, one requires two bigActors
never control and observe the same region of the bigraph.
The semantics of a BigActor permits us to derive the area
of influence of a BigActor as expressed in Definition 6.

Definition 6. Let a@h be a BigActor and Ra = {R0 →
R′0, R1 → R′1, . . . , Rn → R′n} the set of all concrete BRRs
used by it. The area of influence of a@h over a bigraph
B is the set of nodes A such that v ∈ A⇒ ∃i.B = C ◦ Ri ◦
d ∧ v, h ∈ VRi .

Example 4. Consider Example 3 where the host of the
app BigActor is inside street2 (bigraph B0 of Figure 10).
The area of influence under the current bigraph is:

AappBA = {street0, street1, street2, street3, street4}

Note that due to the current location of the host the only
rule that can be applied is MOVE.

Let c0 → c1 → . . . be an execution trace where ci = 〈αi |
µi | ηi | Bi〉 is a BigActor configuration and → is given by
the BigActor semantics. Let Aa@hi be the area of influence
of a@h over the bigraph Bi and Ba@hobsj

be an observation
of a@h over the bigraph Bj . If for any two bigActors a@h
and a′@h′, Aa@hi and V

Ba′@h′
obsj

never overlap for any time

i < j then the bigActors cannot use the bigraph as a back
channel for communication, e.g. a@h might place a node in
the bigraph but a′@h′ would not observe it because the sets
Aa@hi and V

Ba′@h′
obsj

would be disjoint.

5. QUERY LANGUAGE AND OBSERVATIONS
In this section we introduce a query language for querying

the bigraph for local observations.
The query language syntax is specified by the following

grammar:

query ::= node|children.node|linkedTo.node

node ::= host|parent.node

Observations are local with respect to the host node of
the BigActor that is querying. We think of “local” in terms
of the placing graph (parents and children of a given node)
and in terms of the linking graph (nodes linked to a given
node). Our intention is to introduce a query language that
is expressive enough for the examples in the paper and that
entails the property of providing observations that are local
with respect to a given host. Our aim is not to introduce a
general purpose query language for Bigraphs.

The interpretation of a query q over a bigraph B with
respect to a host h is defined such that a given observation
Bobs = [[q]]Bh is composable with the remaining context of
B, i.e. there exists a context C and parameters d such that
B = C ◦Bobs ◦ d.

Example 5. Figure 11 presents an example of querying the
bigraph B0 of Figure 10 with respect to sp. On the right-
hand side of Figure 11 one can see the interpretation of the
queries host, parent.host, children.parent.parent.host.

Figure 11: BigActor observing the street map using
query children.parent.parent.host.

LetB be given by (VB , EB , ctrlB , prntB , linkB) : 〈mB , XB〉
→ 〈nB , YB〉. The interpretation of the query language goes
as follows.

[[host]]Bh 7→ ({h}, ∅, ctrlh, prnth, linkh) : 〈1, ∅〉 → 〈1, Yh〉

where ctrlh(h) = ctrlB(h),

prnth(v) =

(
0 if v = h

h if v = 0

linkh(pt) =

(
linkB(pt) if linkB(pt) ∈ YB
ye if e = linkB(pt) ∈ EB

Yh ={ye | ∀pt.e = linkh(pt) ∧ e ∈ EB}]
{y | ∀pt.y = linkh(pt) ∧ y ∈ YB}

Edges are abstracted by unique names to make the compo-
sition B = C ◦Bobs ◦ d valid. The edges are included in the

context and are also connected to the same names. Com-
position would bind the names in the context and in the
observation restoring the edges. Also note that the contents
of node h are abstracted with a hole 0.

Let the interpretation of [[node]]Bh be denoted as the bi-
graph Bn. Note that Bn only has one node which we denote
as n, i.e. VBn = {n}. The interpretation if parent.node is
given by:

[[parent.node]]Bh 7→({p}, ∅, ctrlp, prntp, linkp) :

〈1, ∅〉 → 〈1, Y 〉

where p = prntB(n). The remainder of the bigraph defi-
nition is provided by replacing p for h in the definition of
[[host]].

The interpretation of children.node is given by:

[[children.node]]Bh 7→(VC , ∅, ctrlC , prntC , linkC) :

〈| VC |, ∅〉 → 〈1, YC〉

where VC = {v | v ∈ VB , n = prntB(v)} and

prntC(v) =

(
0 if v ∈ VC
v′ if v = holeOf(v′)

holeOf : VC → N is a function that assigns to each chil-
dren node a unique hole to abstract its contents. ctrlC ,
linkC , and the set of external names YC are given as before
although now ranging over the set of children nodes and
respective ports.

Finally, the interpretation of linkedTo is given by:

[[linkedTo.node]]Bh 7→(VL, ∅, ctrlL, prntL, linkL) :

〈| VL |, ∅〉 → 〈| VL |, Y 〉

where VL = {v | ∃pt ∈ ports(v).∃pt′ ∈ ports(n).linkB(pt) =
linkB(pt′)},

prnth(v) =

(
regionOf(v) if v ∈ VL
v′ if v = holeOf(v′)

Note that for each node in VL we create a unique region
using the function regionOf : VL → N. By putting each
node in a unique region we can restore the parenthood by
composing again with the context. The remainder of the
bigraph definition is as per the prior cases.

In this paper we use the query language query to define
bigraphs which are local under a given bigraph and with
respect to a host node.

Definition 7. Given two bigraphs B and B′ and a host
node h. B′ is local with respect to h if there exists a q such
that [[q.h]]Bh = B′ or [[q.h]]Bh = C ◦ B′ ◦ d for an arbitrary
context C and parameters d. In other words, B′ is local with
respect to h if one can find a query with an interpretation
containing B′.

An observationBobs obtained by a BigActor a@h querying
a bigraph B using the local query language is, by Definition
7, a local bigraph over B with respect to h ([[q.h]]Bh = C ◦
Bobs ◦ d where C and d are empty).

6. CORRECT EXECUTION
In this section we address the correctness of bigActors

executions. Correctness is stated as a safety property over

configurations. In this section we assume that requests are
served as per a First-Come First-Served (FCFS) scheduling
semantics.

Definition 8. Let c = 〈α | µ | η | B〉 be a BigActor con-
figuration. c is terminal if µ = ∅, η = ∅, and all bigActors
in α are inactive.

Definition 9. Let c = 〈α | µ | η | B〉 be a BigActor con-

figuration. c is correct if ∃λ.c λ→ c′ or c is terminal.

Let Λ denote the set of labels as per the semantics stated
in Figure 8. Let Λη denote the set of request labels and Λπ
denote the set of obs, ctr, mgrt, and snd labels. Consider
a function schdt : Λπ → Λη where, for a given execution

t = c0
λ0→ c1

λ1→ . . ., schdt(λπ) returns the request served by
λπ. Let ≺t⊆ Λ× Λ be a total order induced by the index i
of λi in t.

Definition 10. An execution t = c0
λ0→ c1

λ1→ . . . follows a
First-Come First-Served (FCFS) discipline if:

λi ≺t λj ⇒ schd(λi) ≺t schd(λj)

where λi, λj ∈ Λπ.

In other words, FCFS discipline requests that requests are
served in the order that are requested.

6.1 Correctness of a single bigActor
The first step towards correctness is to require that a sin-

gle bigActor itself never requests operations that will lead
to an incorrect configuration.

Definition 11. Let t = c0
λ0→ c1

λ1→ . . . be a bigActor ex-
ecution. For each λi the operational semantics identifies a
unique actor a@h. For clarity we augment λi to λa@hi . a@h
is called feedback for all r and r′ that are either control,
migrate, or send the following are true:

1. ∀j.λj = 〈req : a@h, r〉 ⇒ ∃i < j.λi = 〈obs : a@h, q, Bobs〉

2. ∀i.∀k > i.λi = 〈req : a@h, r〉 ∧ λk = 〈req : a@h, r′〉 ⇒
∃j.i < j < k ∧ λj = 〈obs : a@h, q, Bobs〉

3. For any λi let Ba@h,λi
obs denote the last observation of

a@h preceding λi. ∀i.λi = 〈req : a@h, r〉 ⇒ ∃µ.∃B.〈α |
∅ | {r} | Ba@h,λi

obs 〉 (a@h,r)→ 〈α | µ | ∅ | B〉

The first requirement states that before any request r by
a@h that is not an observation, there must be an observation
by a@h. The second requirement states that between two
requests r and r′ by a@h that are not observations there
must be an observation by a@h. The last requirement states
that, given a configuration with Ba@h,λi

obs as the bigraph and
one request r then there is a new configuration obtained
by consuming r. This means that r is does not make a
configuration with the observed bigraph incorrect.

Theorem 1. Consider a BigActor execution t = c0
λ0→

c1
λ1→ . . .

λn→ cn that follows a FCFS discipline (Assumption
1.1). Assume that αi contains a single BigActor a@h for all
i and a@h is a feedback BigActor (Assumption 1.2). Assume
that η and µ are empty at c0 (Assumption 1.3). Then cn is
correct.

Proof. By mathematical induction in the the number of
transitions.

Base case Given c0
λ0→ c1, c1 is correct.

By Assumption 1.3 a@h must be busy otherwise c0 is ter-

minal (Definition 8) and
λ→ can not be triggered. If a@h is

busy then it can trigger any of the following rules leading
to c1: fun, new, term, and req. Since the overall execution
is assumed to have only one bigActor new is excluded. By
Assumption 1.3, the rules ctr, mgrt, obs, snd can not be
executed since η is still empty. fun, and term are internal to
the actor and can not generate a transition to an incorrect
configuration. By Definition 11 item 1, the rule req can only
request an observation because a control, migrate, or a send
request require previous observations.

Inductive step Give ci−1
λi−1→ ci where ci is correct then

ci
λi→ ci+1 and ci+1 is correct. Since ci is correct then λi can

be given by one of the following rules: fun, rcv, term, req,
ctr, mgrt, obs, and snd (new is excluded by Assumption 2).

By the semantics definition of Figure 8, the rules fun, rcv,
and term are internal to the bigActor and do not produce
nor consume requests that can put the configuration in an
incorrect state. The rule req can produce a new request,
i.e. ηi+1 = ηi ∪ {r}. If r corresponds to an observation then
ci+1 is correct since the observations do not change the bi-
graph. If r is either a control, a migration or a send request
then it must produce a correct configuration under Ba@h,robs .
By Definition 11, a@h alternates between observation and
control/migrate/send then the bigraph Bi at configuration

ci can be decomposed as Bi = C ◦Ba@h,robs ◦ d where Ba@h,robs

is the last observation prior to r. By Definition 11 item 3, r
can by applied to Ba@h,robs . Since Bi = C ◦ Ba@h,robs ◦ d r also
produces a correct configuration under Bi. The rules ctr,
mgrt, and obs consume one request r out of ηi. By Assump-
tion 1.1, all requests of a@h are served in order. Since all
requests in ηi were generated by a (single) feedback BigAc-
tor, then ηi+1 = ηi \ {r} do not make ci+1 incorrect.

6.2 Correctness of concurrent bigActors
In the multiple bigActor case, the feedback property is

necessary but not sufficient for correctness. A bigActor can
request an operation executable at request time by the op-
erational semantics, but not executable when the request is
served. This is a consequence of the fact that in the bigActor
operational semantics (Figure 8) the time which a request
is generated is necessarily different from the time which the
request is served. We take two strategies to avoid these con-
currency issues and ensure a correct execution of multiple
bigActors: prevent undesired interleaving (time strategy);
and/or prevent shared resources (spatial strategy). These
lead to theorems 2 and 3.

6.2.1 Atomic read-write semantics

Definition 12. Let Λθ denote the set of all ctr, mgrt, and
snd labels and let Λa@hθ be the subset of labels from Λθ
produced by serving requests from a@h. An execution t =

c0
λ0→ c1

λ1→ . . . follows an atomic read-write semantics if
for any λi = 〈obs : a@h, ·〉 for which there exists a λi+k ∈
Λa@hθ then λi+j 6∈ Λa

′@h′
θ , j ∈ {1, . . . , k̂ − 1} where k̂ =

min{k|λi+k ∈ Λa@hθ } and a@h 6= a′@h′.

In other words, an atomic read-write semantics requires that
between any obs from a@h and subsequent ctr, mgrt, or

snd from the same bigActor, no other ctr, mgrt, or snd can
occur from another bigActor a′@h′.

Theorem 2. Consider a BigActor execution t = c0
λ0→

c1
λ1→ . . .

λn→ cn that follows a FCFS discipline (Assumption
2.1) and the execution follows an atomic read-write seman-
tics (Assumption 2.2). Assume that all bigActors are feed-
back (Assumption 2.3). Assume that η and µ are empty at
c0 (Assumption 2.4). Then cn is correct.

Proof. By Assumption 2.3 all bigActors are feedback.
Since the feedback property is only sufficient for correct ex-
ecutions of single bigActor configurations we can, without
loss of generality, assume that the configurations at execu-
tion t contains only two bigActors a@h and a′@h′. By As-
sumption 2.1 and Assumption 2.2 the execution has no in-
terleaving between observations and ctr/mgrt/send of two
different bigActors. Thus, one can partition the sequence t

into subsequences ta@h0 , ta
′@h′

0 , ta@h1 , ta
′@h′

1 . . . where each
ta@hk denotes the execution of a single BigActor a@h (and
possibly labels regarding rules fun, term, new and rcv which
are internal to bigActors and thus do not make the config-
uration incorrect). Since each bigActor a@h is feedback, by
Theorem 1, each ta@hk = c → . . . → c′, c′ is correct. Thus,
cn is also correct.

6.2.2 Partitioning semantics

Definition 13. Consider an execution t = c0
λ0→ c1

λ1→
Let Aa@hi denote the area of influence of a@h at ci. An
execution follows a partitioning semantics if for every two
bigActors a@h and a′@h′

1. ∀i.∀j.Aa@hi ∩Aa
′@h′
j = ∅

2. ∀i.∀j.∀v ∈ Aa@hi .∀v′ ∈ Aa
′@h′
j .Lks(v) ∩ Lks(v′) = ∅

where Lks : VB → P(EB] YB) is a function that returns
the set of links connected to ports of a given node.

In other words, partitioning semantics requires the areas of
influence of any two bigActors and their links be disjoint at
every time.

Theorem 3. Consider a BigActor execution t = c0
λ0→

c1
λ1→ . . .

λn→ cn that follows a FCFS discipline (Assump-
tion 3.1) and the execution follows a partitioning semantics
(Assumption 3.2). Assume that all bigActors are feedback
(Assumption 3.3). Assume that η and µ are empty at c0
(Assumption 3.4). Then cn is correct.

Proof. Without loss of generality assume the execution
of two bigActors a@h and a′@h′. By Definition 13, the areas
of influence and corresponding links are disjoint throughout

the overall trace t = c0
λ0→ c1

λ1→ . . .
λn−1→ cn then for each

Bi at configuration ci can be decomposed into Bi = Ba@hi ◦
Ba
′@h′
i where Ba@hi and Ba

′@h′
i are in two different bigraph

regions without sharing any edges nor names. Thus, each
configuration ci = 〈{a@h, a′@h′} | µi | ηi | Bi〉 can be
decomposed into two configurations ca@hi = 〈{a@h} | µa@hi |
ηa@hi | Ba@hi 〉 and ca

′@h′
i = 〈{a′@h′} | µa

′@h′
i | ηa

′@h′
i |

Ba
′@h′
i 〉 where µi = µa@hi ∪ µa

′@h′
i and ηi = ηa@hi ∪ ηa

′@h′
i .

Since a@h and a′@h′ are feedback, then by Theorem 1, there

exists two traces where ca@h0 → . . . → ca@hn and ca
′@h′

0 →
. . .→ ca

′@h′
n where ca@hn and ca

′@h′
n are correct. Thus, cn is

correct.

7. CONCLUSIONS
In this paper we introduce the BigActor model for mod-

elling structure-aware computation. The model combines
the Actor model [1] and the Bigraph model [10]. We intro-
duce an operational semantics for the BigActor model as an
augmentation of the Actor model semantics. The semantics
is enriched with three rules that provide means for bigActors
to migrate and to observe and control the bigraph. We intro-
duce a query language and introduce means for preventing
concurrent issues that arise due to the fact that bigActors
operate in a shared bigraph.

BigActor model provide means for defining agents that
observe, control, and migrate over a structure of the world
modelled as a bigraph. The BigActor model also introduces
a model of reflection of the structure in for actor system. Bi-
gActors can also be used to embedded actors into bigraphs.

As per the future work, we are aiming at developing a
theory of controllability and observability for bigActors in a
control theory stand-point. We are also interested in imple-
menting a prototype for a bigActor domain specific language
for autonomous vehicles.

8. REFERENCES
[1] G. Agha. Actors: a model of concurrent computation

in distributed systems. MIT Press, Cambridge, MA,
USA, 1986.

[2] G. Agha, I. Mason, S. Smith, and C. Talcott. A
foundation for actor computation. Journal of
Functional Programming, 7(1):1–72, 1997.

[3] J. Armstrong, R. Virding, C. Wikstr, M. Williams,
et al. Concurrent programming in erlang. 1996.

[4] L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt,
and H. Niss. Bigraphical models of context-aware
systems. In Foundations of software science and
computation structures, pages 187–201. Springer, 2006.

[5] S. Debois. Computation in the informatic jungle. To
appear. Draft available at http: // www. itu. dk/
people/ debois/ pubs/ computation. pdf , 2010.

[6] J. Epstein, A. Black, and S. Peyton-Jones. Towards
haskell in the cloud. In Proceedings of the 4th ACM
symposium on Haskell, pages 118–129. ACM, 2011.

[7] P. Haller and M. Odersky. Scala actors: Unifying
thread-based and event-based programming.
Theoretical Computer Science, 410(2-3):202–220, 2009.

[8] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin.
Actor-oriented design of embedded hardware and
software systems. Journal of Circuits, Systems, and
Computers, 2002.

[9] R. Milner. Bigraphical reactive systems. CONCUR
2001 - Concurrency Theory, pages 16–35, 2001.

[10] R. Milner. The Space and Motion of Communicating
Agents. Cambridge University Press, 2009.

[11] B. Nielsen and G. Agha. Semantics for an actor-based
real-time language. Proceedings of the 4th
International Workshop on Parallel and Distributed
Real-Time Systems, pages 223–228, 1996.

[12] B. Nielsen, S. Ren, and G. Agha. Specification of
real-time interaction constraints. Proc. of First Int.
Symposium on Object-Oriented Real-Time Computing,
IEEE Computer Society, 1998.

[13] G. Weiss. Multiagent systems: a modern approach to
distributed artificial intelligence. The MIT press, 1999.

