Event-driven Programming
with Logical Execution Times*

Arkadeb Ghosal, Thomas A. Henzinger, Christoph M. Kirsch, and
Marco A.A. Sanvido

University of California, Berkeley
{arkadeb,tah,cm,msanvido }@eecs.berkeley.edu

Abstract. We present a new high-level programming language, cal@eTTO,

for programming applications with hard real-time constraints. Like its predeces-
sor,XGIOTTO is based on the LET (logical execution time) assumption: the pro-
grammer specifies when the outputs of a task become available, and the compiler
checks if the specification can be implemented on a given platform. However,
while the predecessor languagec®To was purely time-triggeredGIOTTO
accommodates also asynchronous events. Indeed, through a mechanism called
event scoping, events are the main structuring principle of the new language. The
XGIoTTO compiler and run-time system implement event scoping through a tree-
based event filter. The compiler also checks programs for determinism (absence
of race conditions).

1 Introduction

One of the key issues in real-time software is the development of high-level program-
ming languages. On one hand, a real-time programming language should be sufficiently
abstract as to support the automatic verification of programs against mathematical mod-
els such as hybrid automata or Simulink, which are commonly used in practice. On the
other hand, the language should be sufficiently concrete as to support the automatic
compilation of a program into efficient code. While some tools generate code directly
from mathematical models (Real-Time Workshop, dSpace), the resulting code is useful
for rapid prototyping but, especially on distributed platforms, it is neither sufficiently
efficient nor sufficiently reliable to be used in safety-critical products. By contrast, we
envision a future where hard real-time properties are guaranteed by a compiler that
produces code of sufficient quality such that, as with current optimizing compilers for
conventional (non-real-time) programming languages, manual code tweaking is rarely
(if ever) necessary or desirable.

Previous attempts to define real-time languages fall mostly into two categories. The
first approach usegriorities to specify (indirectly) the relative deadlines of software
tasks [1]. This approach supports efficient code generation based on scheduling the-
ory [2]. The resulting run-time behavior of a program, however, is highly nondetermin-
istic; for example, varying execution times of tasks cause race conditions. This makes

* This research is supported by the AFOSR MURI grant F49620-00-1-0327, the DARPA SEC
grant F33615-C-98-3614, the MARCO GSRC grant 98-DT-660, and the NSF grants CCR-
0208875 and CCR-0225610.

program verification difficult. The second approach is based omythehronyassump-

tion [3], which postulates that the execution platform is sufficiently fast as to complete
all computation before the next environment event arrives. This approach leads to deter-
ministic behavior and supports formal verification. It is, however, nontrivial to compile
synchronous programs if either non-negligible execution times or distributed execution
platforms are involved [4, 5]. We submit that the priority-based approach, which sac-
rifices determinacy in order to accommodate varying physical task execution times, is
insufficiently abstract; and that the strictly synchronous approach, which sacrifices non-
negligible task execution times in order to recover determinacy, is insufficiently realistic
about the physical platform.

We propose an intermediate approach, which is based on the LET (logical execu-
tion time) assumption. Using LET, the programmer specifies with every task invocation
the logical execution time of the task, that is, the time (or event) at which the task pro-
vides its outputs. The compiler makes sure that, on a specified platform, the outputs are
computed in time. If the outputs are ready early, then they are made visible only when
the specified logical execution time expires. This buffering of outputs achieves determi-
nacy in both timing (no jitter) and functionality (no race conditions). LET programming,
therefore, trades code efficiency in favor of code predictability when compared with tra-
ditional task scheduling, which makes all outputs visible as soon as they become avail-
able. We have demonstrated, however, that the loss in efficiency is insignificant even
in high-performance control applications, such as helicopter flight control [6]. When
compared with the synchrony assumption, LET programming trades mathematical ex-
pressiveness in favor of computational realities: it accommodates tasks with varying
execution times, but in order to avoid fixpoint issues, all logical execution times are
assumed to be strictly positive.

Previously, we have proposed and implemented a LET-based language for time-
triggered programming, called1GTT0O [7]. In this paper we generalize IGTTO to
accommodate also asynchronous events. Indeed, through a mechanism called event
scoping, events are the main structuring principle of the new language, which is called
XGIoTTO. Event scoping admits a variety of ways for handling events within a hi-
erarchical block structure: an out-of-scope event may either be ignored, or it may be
postponed until the event comes back into scope, or it may cause the current scope to
terminate as soon as all currently active tasks are terminatedx GherTo compiler
and run-time system implement event scoping through a tree-based event filter. The
XGl1oTTO compiler also checks programs for determinism (absence of race conditions
caused by multiple tasks terminating at the same time). Finally, we show how the com-
piler could check for time safety (schedulability within logical execution times). This
has not yet been implemented in the current compiler prototype.

2 The xGiotto Language

XGIOTTO is an event-driven real-time programming language that is built around the
notion of software tasks with logical execution timesLET taskis sequential code
operating on memory that is assigned to the task upon its release and which is not ac-
cessible to any other tasks. The memory holds the input and output as well as possible

release event termination event

. Logical Execution Time (LET) o
Logical \
active
I >
[lewing rreing
Physical T f [
release start preemption resume completion termination

Fig. 1. Logical and physical execution of a task

state information of the task. khGIOTTO, the same task may be instantiated on differ-
ent memory at the same time. This task model is more general tharrG tasks [7],
which consist of both code and memory (i.e., fixed input and output ports).

Figure 1 shows that the logical execution of a LET task begins withealeaseof
the task and ends with therminationof the task. The release as well as the termination
of a LET task are triggered by events such as clock ticks or sensor interrupts. This is
a generalization of ®TTO tasks, which can be released and terminated only at clock
ticks. From the release event to the termination event, the task is ealliee A LET
task istime-safeon some given hardware if the tas@mpletesxecution on that hard-
ware before the termination event occurs. The output of a time-safe LET task is made
accessible to other tasks and to actuators only when the termination event occurs, even
if the task completes its physical execution earlier. Similarly, the input of a LET task is
written into its assigned memory when the release event occurs, not when the task actu-
ally startsexecuting. As a consequence, a LET task always exhibits the same behavior
in the value and time domain on different hardware as long as the task is time-safe.
Note that proving time safety is usually impossible if unconstrained events are used as
release or termination events for LET tasks. For example, an unconstrained event may
occur immediately after a LET task is released. This problem could be solveddxy an
plicit environment assumption on the minimal inter-arrival time between events. With
XGIOTTO, however, we propose a new approach based on the notiereat scoping
which allows us to encode amplicit environment assumption GIOTTO programs.
Event scoping temporarily disables event monitoring for a subset of the observed events.
In this way, the environment assumption is reflected by the control structure of the pro-
gram itself.

XGIoTTO has three important programming constructs. The statereact {b}
until [e] is areaction block with a bodyb of XGIoTTO statements and amitil
evente, which determines when the reaction block, and the tasks that are released
within the block, are terminated. The statementdiare executed logically in zero
time but possibly at different time instants, if the reaction block contains nested reac-
tion blocks. Even if all statements im have been executed, the reaction block waits
for the until evente to occur. During the wait, released tasks may be executed by the
system scheduler. The second type of statenmetgase t(in)(out) first allo-
cates memory for a new instance of the taskhen loads data stored in the liat of

input ports into the allocated memory, and finally reledas&sthe system scheduler for
execution. When the enclosing reaction terminates, the task is assumed to be complete
and its output is made available in the l@it of output ports, which can be used as
input for other tasks. Third, the statemeriien [e] r enables theeactionr , which

is a parallel composition of reaction blocks, to be invoked whemthen evene oc-

curs. If two sequentiakhen statements share the same eerthen the corresponding
reactions are invoked by two different occurrence® off, however, the twowvhen

[e] statements are nested, then the corresponding reactions are invoked by the same
occurrence oé.

A reaction block inxGloTT0 defines the event scope for the statements in its body.
An event scopeonsists of the until event of the reaction block and the when events
of thewhen statements in the body of the reaction block. Upon invoking the reaction
of one of thewhen statements, the current event scope is pushed onto a stack (i.e., it
becomegassivg and a new event scope is created and becomeadties scope. In
general, a reaction is a parallel composition of reaction blocks. If two or more reaction
blocks are invoked in parallel, then the scope of the parent block is pushed onto the
stack and the scopes of all parallel blocks become active. Therefore we have a tree
of scopes with the root of the tree being the initial scope, and the leaves of the tree
being the active scopes. There are two ways for parallel reaction blocks to terminate.
If the parallel reaction blocks are invoked witkait -parallelism, then the until event
of one of the blocks will close the corresponding leaf of the tree. Consequently, the
entire reaction consisting ofiait -parallel reaction blocks terminates once all until
events have occurred, and then the parent scope is resumed. In contrast, if the parallel
reaction blocks are invoked witasap -parallelism, then the until event of any one
of the reaction blocks disables the sibling blocks. Disabling a reaction block does not
cause its immediate termination, but it implies that no new activity (e.g., task releases)
will happen until the until event of the reaction block occurs: all when events are erased
from the disabled event scope, leaving only its until events active.

An event of an active scope either, in the case of a when event, invokes a reaction,
or in the case of an until event, terminates the corresponding scope. If areevkan
active scope can both invoke a reaction as well as terminate the scope, then the termi-
nation action has precedence. An event of a passive scope can be handled in the fol-
lowing three ways: it may be ignored (keywdatget); or it may be postponed until
its scope becomes active again, once all descendent blocks have terminated (keyword
remember); or it may disable all descendent blocks, thus speeding up their termina-
tion (keywordasap). Note that only active until events can terminate active tasks; in
particular, active tasks cannot be prematurely terminated, neither by the termination of
asap -parallel reaction blocks nor by passigeap events.

SincexGIOTTO is a generalization of the IBTTO language [7], consider first the
two GloTTO program fragments on the left of Figure 2. A@3 T0 mode specifies a set
of periodic tasks. The modashown here contains a tatk with a period of 20 ms
and a task2 with a period of 10 ms. The LET of ai@GTT0 task is equal to its period.
At 0 ms, both tasks load input (code not shown here) into their memory and are then
released to execute concurrently. At 10 ms, the result oftiasis made accessible to
actuators and to other tasks. However, tdskmay load new input only at 20 ms, even

mode m() period 20 { react { react {
taskfreq 1 do t1(); release t1()(); whenever [20]
taskfreq 2 do t2(); begin react {
} react release t1()();
release t2()(); } until [20];
mode n() period 60 { } until [10]; } until [60] ||
taskfreq 3 do t1(); react { react {
taskfreq 2 do t2(); release t2()(); whenever [30]
} until [10]; react {
end release t2()();
} until [20]; } until [30];
} until [60];

Fig. 2. GiloTTO andXGIOTTO code fragements

if t1 has not had the chance to start before 10 ms. On the other t2anthw loads
new input such as sensor data, but does not yet have access to the ottpue\dn if
t1 has already completed execution. For ntv,is released to execute a second time,
logically in parallel withtl . At 20 ms, the results of both tasks are made accessible,
possibly to each other, and a new round of modgegins. ThexGioTTO fragment in
the middle of Figure 2 implements exactly the behavior of one round of mo#er
simplicity, we have omitted the input and output ports of tasks. The code is a sequence
of two reaction blocks. Initially the code releases tékkand executes the first inner
block, which releases tadR . We write 10 (resp.20) for the event that recurs every
10 ms (resp. 20 ms). The termination of a task is defined by the until event of the
surrounding reaction block, and therefde andt2 terminate at 20 ms and 10 ms,
respectively. At 10 ms, the second inner block is entered. Now,tfasis released a
second time and terminated at 20 ms.

The right column of Figure 2 implements, ¥GIOTTO, one round of the ®TTO
moden with two nonharmonic tasks: tagt has again a period of 20 ms but task
t2 has now a period of 30 ms. For this, tR€&10TTO program uses a reaction that
consists of two parallel reaction blocks. The first reaction block releases théltask
every 20 ms: thevhenever [20] statement invokes its reaction every 20 ms, i.e., at
0 ms, 20 ms, and 40 ms, respectively. The second reaction block releas2s tdsk
every 30 ms. Both parallel blocks terminate at 60 ms, implementing one round of the
nonharmonic GOTTO moden.

In the middle code fragment of Figure 2, we add an asynchronous asgnt ,
which instantiates a tagka with a LET of 1 ms. This cannot be done in@T10. We
use the hierarchical structure ®8f510TTO to constrain the times at which the asyn-
chronous event may cause the release of a new task instance. First consider the left
column of Figure 3. Since the eveasync is remembered, if it occurs between 0 ms
and 10 ms, during the first inner reaction block, then tasks released at 10 ms and
terminated at 11 ms. Since the evéftis also remembered (by default), the second in-
ner reaction block is invoked at 11 ms, releasing t2sla second time, and terminated
at 20 ms. Ifasync occurs, instead, between 10 ms and 20 ms, thentéask never
released, because until events —i.e., block termination (at 20 ms)— have precedence
over when events. If the eveasync would have been specified &mrget instead
of remember , then taska would never be released, because we assume that no two
unrelated events can happen at exactly the same time ésyq¢ cannot happen at

react { react { react {
when remember [async] release t1()(); when asap [async]
react { begin react {
release ta()(); react { release ta()();
} until [1]; when [async] react { } until [1];
release t1()(); release ta()(); release t1()();
begin } until [1]; begin
react { release t2()(); react {
release t2()(); } until [10]; when [asyncb] react {
} until [10]; react { release th()();
react { when [async] react { } until [1];
release t2()(); release ta()(); release t2()();
} until [10]; } until [1]; } until [10];
end release t2()(); end
} until [20]; } until [10] } until [20];
end
} until [20];

Fig. 3. xGioTTO code fragments with asynchronous event handling

exactly 10 ms). Now consider the middle column of Figure 3. Here, the essmic

may be serviced twice, once between 10 ms and 20 ms, and a second time between
10 ms and 20 ms. While our default specification of an evergrisember , note that

in this case, it does not matteraync is specified asorget or remember. The

third column of Figure 3 shows the use ofasap event. In this example an occurrence

of theasync event between 0 ms and 10 ms disables the reaction astheb event

and releases tagk at 10 ms.

3 Syntax

We refer to the language manual [8] for a full definition of the language. Here we
introduce only the syntax necessary for understanding the most impa@otrTo
concepts:

Program = "program” Ident ’ {" [ConstDecl] [TypeDecl] [PortDecl] [EventDecl]
{ReactionDecl | TaskDecl } ReactionBody '}

ConstDecl = "const" {Ident "=" Number ";" .

TypeDecl = "type" {Typeld (("array" Number "of" Typeld) |
("record" ’ {" {Typeld Ident '} Y }.

PortDecl = “port" {Typeld Ident [InitPort] *;’ }.

EventDecl = "event" {Typeld Ident [*at" Ident] "} 1.

TaskDecl = "task" Ident Pars "output" Pars ['var" Pars] Body.

Body = ' {’ StatSeq ' }.
StatSeq = Statement {";" Statement

Pars = '(" [Typeld Ident {’, Typeld Ident o

ReactionDecl = "react" ldent ReactionBody "until" '[' Typeld Ident .

ReactionBody = ' {’ Triggers Releases [("begin" | "loop") RStatSeq "end" ";"] ’ 1.
Triggers = { [Condition] ("when" | "whenever") Event Reaction ";" }.

Releases = { [Condition] "release" Ident ParsRef ParsRef ";" 1.

RStatSeq = Reaction {";" Reaction }.

Reaction = ReactionBlock { (II' | '&&") ReactionBlock }.

ReactionBlock = "react" ((Ident) | ReactionBody) "until" Event.

ParsRef = '(" [Ident {; Ident oy

Event = ['asap" | "remember" | "forget] T [Number] Ident 7.
Condition = ’(" BoolExpression).

Constant, type, port, and event declarationsConstant declarations allow to associate

a name with a value. Type declarations associate a name with a structured data type.
Each port has a fixed type and can be initialized, if an initial value different from a
type-dependent default value is desired. Similarly, each event has as a fixed type, the
value being assigned by the interrupt generating the event. The ¢weatsandnow

are predefined. The integer eveime is bound to the system clock. The evemiw

is a placeholder for the current event and can be usedhin statements only (not

in whenever anduntil statements). Events are structured hierarchically in a tree,
e.g., the even20 occurs at every other occurrence of the evieht Logically, no two
unrelatedevents (i.e., neither one is a descendent of the other in the event tree) can
happen simultaneously, as they are sequenced by the interrupt handler.

Task declarations.A task header specifies a task name, formal input parameters, formal
output parameters, and local variables. The task body is a standard sequential program
without reference to events (we omit the exact syntax). The input parameters are passed
by value, i.e., they are local ports to which the actual parameters are assigned as initial
values upon release of a task instance. The output parameters are passed by value-
reference, i.e., they are local ports with the actual parameters as initial values, but their
values are instantaneously copied back to the actual parameters at termination of the
task instance.

Reaction block declarations.A header specifies the name of the reaction block and

a formal until-event parameter. The body of the reaction block contains three parts:
(1) conditionalwhen andwhenever statements callettigger statements, (2) condi-

tional release statements, and (3) sequential reaction statements. The trigger state-
ments whose condition is true specify the active events of the reaction block (in addition
to the until event, which is also active) and the corresponding reactions. The occurrence
of an active event is processed in the order in which the trigger statements are de-
clared. The events can be specifiedaget , remember, orasap . A whenever
statement corresponds tondnen statement that reenables itself immediately after its
event occurs, until the surrounding reaction block is terminated. The reenabled active
event will be processed after all the other previously enabled events are processed. The
release statements whose condition is true hand task instances to the system sched-
uler. The sequential reaction statements can be declared either as a one-time sequence
or as aloop of reaction statements. Each reaction statemerassipnparallel (defined

by &&) or await -parallel (defined by|) composition of reaction blocks. Each reac-

tion invocation renders the active events passive. When the until event of the reaction
block is active and arrives, the scope and all tasks released in its scope are terminated,
and control is returned to the invoking reaction block, reenabling its active events. The
trigger andrelease statements are executed instantaneously (in logical zero time),
but time passes between events; in particular, time passes during the execution of a
react statement, between the trigger aetbase statements of the reaction block,

and the until event of the block.

Core-xGIOTTO. The syntax ok GIoTTO given by the above grammar is used in all pro-
gram examples in this paper. However, the corresponding formal semantics is provided
only for a fully expressive fragment called cox&10TT0. EachxGIOTTO program

can be transformed into a cor&s10TTO by replacing each call to a named reaction
block with the code of the reaction block, and by removing from each reaction block
all sequential reaction statements as follows: each one-time sequence of reaction state-
ments is replaced by a setwhen trigger statements; each loop, by a sebEnever

trigger statementxGIOTTO programs with recursive (cyclic) calls of reaction blocks

are considered illegal, because they represent infinite x@GeTTO programs. Note

that in corexGIOTTO, a reaction block consists of a sequence of trigger statements, a
set ofrelease statements, and an until event.

Example of a control program. Figure 4 shows a program for controlling a one-
dimensional system with an actuator a position sensgp, and a velocity sensor.

The controller is a cascaded controller combining a proportional velocity controller in
the inner loop, and a proportional position controller in the outer loop. The proportional
controllers are used for simplicity; more advanced controller algorithms can easily re-
place the task code &fos andVel . The velocity controller updates the actuator every

2 time units, whereas the position controller updates the target velocity every 3 time
units. The target of the position controller is a position point stored in the position ar-
ray p. When the position is reached, the next target position is chosengrdfrthe

last position inp is reached, the system stabilizes at the actual position. The system
will follow the trajectory stored irp until the last point of the trajectory is reached. In
addition to the two periodic tasks, we introduce an asynchronous task, which computes
an array of target position points for a given set of way-points. The asynchronous task
is triggered by an external event, such as an operator input. We limit the number of
asynchronous way-point updates to one every 6 time units.

4 Semantics

The execution of ax GIOTTO program yields a possibly infinite sequence of configu-
rations. Each configuration consists of the values of all program varigies)(and a

tree of scopes. Eactopecorresponds to a reaction block of the program; it contains

a termination event, a trigger queue, and a ready set. The active scopes are the leaves.
The trigger queuecontains the enabled reactions, each associated with an invocation
event: if the invocation event for an enabled reaction of an active scope arrives, then the
first such reaction is invoked, and for each of its parallel reaction blocks, a new scope
is added as a child to the present scope, rendering that scope passikeadhsedf a

scope contains the tasks that have been released in the scope; their termination event is
the termination event of the scope. Eadhen andwhenever statement of a reaction

block adds an event-reaction pair to the trigger queue; egdlehse statement adds

a task to the ready set. The termination event of an active scope removes that scope.

In the following, we make this formal by defining a state-transition graph whose
states are the program configurations, and whose transitions correspond to the occur-
rence of a new event, the termination of a scope, and the invocation of & Goce=TO
reaction. When a new event arrives, firstarent transitiorrecords the event occur-
rence in all scopes, then a sequenceohination transitionsemoves (possibly nested)
scopes that have terminated, and finally a sequenmsacfion transitionsadds (possi-
bly nested) new scopes by invoking enabled reaction blocks. If no more reaction blocks

program CascadedAsyncController {

const Kp = 0.8;

type
waypoint array 10 of real,
points array 100 of real,

port

real p; real v; /*sensor values*/
/* destination values */

points dp; int ip; real dv;

real u; /* actuator */

event
waypoint A,
bool start; bool stop;

task Waypoints2Pos (waypoint wp)
output (points dp, int ip) {
ip = 0; /* reset start point*/
/* compute a spline */

task Vel(real dv, real v)
output (real u) var (real error) {
error = dv - v;
u = Kp*error;

react computePos
release Waypoints2Pos(A)(dp, ip);
} until [int c]

react mode {
whenever remember [6time]
react {
release Vel(dv, v)(u);
whenever [2time]
react
release Vel(dv, v)(u);
} until [2time];
} until [6time]
|| react {
release Pos(dp,ip,p)(ip,dv);
whenever [3time]

dp = spline(wp); react {
release Pos(dp,ip,p)(ip,dv);
} until [3time];

task Pos(points dp, int ip, real p) } until [6time]

output (int newip, real u) || react {

var (real error) { when [A]

if ((error > 1) | (ip == 9)) react computePos until [1time];
newip = ip; } until [6time];

else } until [bool b]

newip = ip+1;
error = dp[newip] - p;
u = Kp*error;

{ whenever [start]
react mode until asap [stop];

Fig. 4. xGioTtT0 program for a cascaded controller

can be invoked, the configuration is callediting, and the arrival of the next event is
awaited. All transitions take place in logical zero time; time advances only in waiting
configurations. No two unrelated events arrive at the same time.

Configurations. Consider ax GIOTTO program with ports?, eventsF, task addresses

T, and reaction address&s A configurationis a pair(X, A), whereX is a function
from the port sef” to values, andi is a labeled tree —each node is labeled by a scope.
A scopeis a tuple(U, Q, S, «), whereU specifies the termination event instancg,

is a queue of triggers§ is a set of task instances, ande {asap,wait} specifies

the parallelism for (the siblings of) the scope. Awent instancés a tuple(e, n,),
wheree € E,n € N, andg € {A,R,F}, denotingasap , remember , andforget ,
respectively; the tuple implies that the required action (terminating a scope, or invoking
a reaction) happens when the everdccursn number of times. Arigger is a tuple
(I,m,r), wherel specifies the invoking event instanee,c N U {_L} records if the
trigger is registered by when (m = 1) or whenever (m € N) statement, and

r € Ris the invoked reaction. gask instancés a tuple(¢, p;, s;, p,), wheret € T and
pi, Po € P, ands; is a function fromp, to values. At task termination the output ports

p, are updated to the values computed by the taglven that the input ports; had
the valuess; when the task was released.

In theinitial configuration, all ports have their initial values, and the scope tree has
a single node labeled by the scope of thain reaction block. A scope ierminating
if it is a leaf scope and its terminating event instance has the ferth 5). A scope
is reactingif it is a leaf scope and its trigger queue contains a trigger with an invoking
event instance of the forie, 0, 3); this is called annvokedtrigger. A configuration is
waitingif all its scopes are neither terminating nor reacting.

Event transitions. For each waiting configuratiofi”, A) and event’ € F, an event
successor is obtained by replacing each event instaneg3) in A with (e,n — 1, 3)

if n > 0ande = ¢’ and either (13 € {A,R} or (2) 5 = F and the event instance occurs

in a leaf scope. Moreover, if the terminating event instance of a scope is replaced by
(¢’,0,4), then the trigger queues of all descendent scopes are emptied.

Termination transitions. For each configuratiof®”, A) which has a terminating scope,

a termination successor is obtained by removing the leaf with the terminating scope.
Second, for each task instangep;, s;, p,) of the removed scope, the port valuepf

in X’ are updated by applying tagko the port values; of p,. Third, if the removed
scope isasap -parallel, then the trigger queues of all sibling scopes and their descen-
dents are emptied. If the program is free of race conditions (see next section), then
each sequence of termination transitions leads, independent of their order, to a unique
configuration without terminating scopes.

Reaction transitions. For each configuratiofl”, A) which has no terminating scope

but a reacting scope, if the first invoked trigger in the queug is ((e, 0, 3), m,r),

then a reaction successor is obtained by adding to the node with the reacting scope a set
of children —one for each reaction blockxafMoreover, the triggeg is removed from

the queue, and if» # L, then the new triggef(e, m, 5), m, r) is appended at the end

of the queue. The scope of each new node is computed by executing the corresponding
reaction block: the termination event instance of the new scope is determined by the
until event of the reaction block; the trigger queue of the new scope contains one trigger
for eachwhen andwhenever statement whose condition is true I, in the order

of the statements; the ready set of the new scope contains one task instance for each
release statement whose condition is true iy where the values of the task input
ports are taken frony’; and the parallelism of the new scope is determined by whether
the reaction block is composed widlsap - or wait -parallelism. It is not difficult to

see that each sequence of reaction transitions leads, independent of their order, to a
unique waiting configuration.

5 Program Analysis

The xGloTTO compiler performs several program analyses. First, it does a conserva-
tive check and rejects programs whose execution may encounter a race condition. A
race occurs when two tasks that are terminated by the same event write to the same
port; in this case, the port value is not predictable. By contrast, for a given event se-
quence, programs without race conditions are executed deterministically. Second, since

the memory of embedded systems is often constrainedsx®eTTo compiler com-
putes a conservative estimate for the memory requirements of a program. Third, we
show how the compiler could check for time safety (schedulability) of a program on a
given platform. The platform is specified through WCETSs (worst-case execution times)
for all tasks.

Race detection.A program trace is a sequence of transitions starting from the initial
configuration. A trace containsraceif it has two termination transitions that update
the same port without an interspersed event transition. The absence of races can be
checked precisely by a traversal of the exponential configuration graph. The compiler
performs a less precise, but conservative polynomial-time check on the program text.
It associates with every reaction blokla setT’(b) of potential termination eventthe
setT'(b) contains the until event df, and if the until event ob has typeremember

or asap, thenT'(b) contains also all potential termination events of the immediate
subblocks ob. If for any two distinctrelease statements ands’ that have an output

port in common, the potential termination events of the reaction blocks containing
ands’ are disjoint, then all program traces are race-free. A less conservative analysis
might consider the configuration graph, but with all port values abstracted.

Resource requirementslin order to allocate sufficient memory, the compiler computes
from conservative bounds on the size of the scope tree, trigger queues, and ready sets of
anxGIoTTOo program (the computation of exact bounds would again require a traversal
of the configuration graph). As the reaction block structure of a program is nonrecursive,
the size of the scope tree is bounded. An upper bound on the tree size for a reaction
block is 1 plus the maximum of the tree sizes for the contained reactions, and for each
reaction, it is the sum of the tree sizes for the contained reaction blocks. The length of
the trigger queue of a reaction block is bounded by the numbeheh andwhenever
statements of the block, and the size of the ready set of a reaction block is bounded by
the number ofelease statements.

Time-safety (schedulability) analysisThe execution of ar GIOTTO program igime-
safeif each active task instance completes before its termination event. Time safety, of
course, depends not only on the program but also on the execution platform. In par-
ticular, for time-safety analysis, theGioTTO compiler needs WCET information. For
example, if there is a single task instance, then the program is time-safe if the WCET
is less than the LET. In general, there may be concurrent active task instances and
time-safety checking requires a schedulability analysis. X8eTTO compiler uses
discrete time. The WCET for each task is assumed to be a positive integer, and schedul-
ing decisions (i.e., task preemptions) are taken only at integer times. For this purpose,
we assume there is a periodic event calied . In every waiting configuration, the
scheduler assigns to the CPU one of the tasks that have been released but not com-
pleted. Scheduling decisions take effect only if the subsequent evetitis aevent.
Then, an integer counter that keeps the task execution time is decremented. At task re-
lease the counter is initialized to the WCET, and if the termination event arrives before
the counter is 0, thentame-safety violatiorccurs.

Formally, the schedulability of anGloTTO program (on a single CPU) is defined
as a two-player safety game. The game graph is an extended configuration graph, where

each configuration is extended with execution-time counters for all active tasks, and in
addition to event, termination, and reaction transitions, thersareduling transitions

An extended configuratiois a triple(c, v, b), wherec = (X, A) is a configurationy is

a function that assigns a positive integer to each task instance in the ready set for each
node ofA, andb is a bit. The functiorv indicates for each task instance the remaining
(worst-case) execution time. The bindicates which player moves next in the schedul-
ing game: ifb = 0, then the environment chooses an event or the system performs a
termination or reaction transition; if = 1, then the scheduler chooses a task to be
executed. The transitions between extended configurations deetfif is a transition

other than an event transition ¢ick , then((c, v,0), (¢/,v,0)) is the corresponding
extended transition; ifc, ¢’) is an event transition otick , then((c, v,0), (¢/,v,1))

is the corresponding extended transition; &(dv, 1), (c,v’,0)) is ascheduling tran-
sition if either (1) the scheduler does not schedule any task.énd v, or (2) the
scheduler schedules a task instanaé c andv’ (i) = v(i) — 1, andv/(i’) = v(i’) for

all task instances’ different fromi.

Player 1 is the system and its environment; they choose event, termination, and
reaction transitions. Player 2 is the scheduler; it chooses scheduling transitions, i.e.,
it determines the task whose execution-time counter is to be decremented (while the
execution-time counters of all other tasks stay unchanged). The progtameisafe
with respect to a given WCET mapping (which maps each task to a WCET) if in this
game player 2 —the scheduler— has a strategy to avoid time-safety violations forever.
Safety games can be solved in linear time in the size of the game graph. Since the ex-
tended configuration graph is exponential (even if port values are abstracted), in theory
the schedulability problem foxGioTTO is complete folEXPTIME It is an interest-
ing question to look for restrictions on the program structure which make the problem
tractable in practice, at least if ports values are abstracted. For examplepimd@s
(which is a special case afGI0TTO) the schedulability check can be done by a simple
utilization test [10].

6 Implementation

The prototype implementation of thké&G10TTO system consists of a compiler and a run-
time environment. The run-time environment is shown in the upper part of Figure 5 and
executes the code generated by & oTT0O compiler. The generated code is divided

into two parts,reaction codeandtask code Reaction code is essentially E code (the
instruction set of the E Machine [9]), whereas task code is similar to Java byte-code.
This can be any platform-native code, but we chose to interpret the task code in our
prototype and generate native code in a later stage of the project. The compiler checks
race conditions and determines upper bounds on the resource requirements of the pro-
gram. We are currently implementing a time-safety check with respect to given task
WCETSs. The run-time system also performs checks that raise exceptions when a time-
safety violation is detected at run time. Even if a static time-safety check is performed a
time-safety violation may happen at run time if the WCET data is wrong. The user can
specify, again irKGIOoTTO, how exceptions are handled.

execute E code task release

Event xGiotto Embedded xGiotto Scheduler
Filter Reactions Machine Tasks
‘%./3 ‘i/j
activate scope task completion
Sensors Environment 44 Actuators

Fig. 5. The system architecture

The xGIOTTO run-time environment consists of three interacting components: the
event filter, the E Machine, and the scheduler. The original E Machine is insufficient
to implement event scoping; therefore we have augmented the architecture presented
in [11] with an event filter. Theavent filterimplements the event-scoping mechanism
and presents the filtered events to the E Machine. The implementation of the event filter
is tree-based, where each node of the tree is the event scope of a reaction block. The
leaves of the tree are the active event scopes. An event scope is composed of the trigger
events (from thevhen and whenever statements), the until event of the reaction
block, and the set of released tasks. At run-time, the occurrence of an event is processed
by the event filter. The event filter computes the event transition and the termination
transitions on the tree of event scopes and gives to the E Machine a set of E code
addresses, which correspond to the invoked reaction blocks. The E Machine interprets
the E code, thus performing the reaction transitions. The E code instructions may release
new tasks to the scheduler and enable new triggers. When all invoked reactions are
processed by the E Machine, the system scheduler chooses a task to execute from the
ready set of the active event scopes, and whenever such a task completes, the E Machine
is notified. In addition, the E Machine monitors the running tasks by detecting task
overruns (time-safety violations). If a task overrun is detected (i.e., if a task termination
event arrives before the task completes), a run-time exception is generated.

The lower part of Figure 5 shows the execution environment. The platform interacts
with the environment through actuators and sensors. The actuators are driven by the
task outputs and the sensors generate events (interrupts), which are handled by
the event filter. The prototype system is implemented in Java and is able to run any
XGIOTTO program on any Java virtual machine (JVM). The E Machine is available on
several platforms, including JVM, POSIX, HelyOS, and KURT-Linux, and we are in
the process of porting theGioTTO system to these platforms.

7 Related Work

XGIOTTO has been inspired by thelGrTo [7] language. The ®TTO programmer’s
model is restricted to time-triggered task release and termination, and therefore well-

suited for control applications with a periodic task structure. The interest in investigat-
ing a LET-based programmer’s model that can handle also asynchronous events and
aperiodic tasks has been the main driver fontlBoTTO language projecilimed mul-
titasking(TM) [12] is based on a computational model similar to the LET assumption.
However, in TM the execution time of each parallel task is logically fixed only by time,
and not by general, dynamically scoped events aG3roTT10.

The zero-time execution ofGIOTTO statements is inspired by synchronous reac-
tive languages, such as Esterel [13] and Lustre [14]. In synchronous reactive languages
all computations are assumed to take zero logical time, as oppoz&il¢a 10, where
all task computations have a strictly positive logical execution tx@.0TTO, there-
fore, on one hand restricts the theoretical expressiveness of synchronous reactive lan-
guages, and on the other hand integrates them with scheduling theory. Esterel allows
the parallel execution of tasks in a way similarx@ioTTo. A parallel task can be
started by theexec statement, and at its completion a signal is raised. While Esterel
can stop the task execution, it cannot specify its termination point; it has no notion of
LET. Moreover, event scoping would have to be explicitly coded into an Esterel pro-
gram. Recent work in the synchronous language community has been aimed at relating
logical (synchronous) time and physical (real) time. For example, Taxys [15] relaxes
the zero-delay assumption with real-time constraints by merging the Esterel language
and the Kronos real-time constraint verifier, and an extension to Lustre with a relaxed
zero-delay assumption has been proposed as well [16].

nesC [17] is a programming language especially targeted to small, networked sensor
devices. The goal of nesC is very similart&I0TTO. Both compilers check for race
conditions. Interestinglys GIOTTO task instantiation can be specified in nesC by using
thepost command, which releases a computation, but without explicitly giving a ter-
mination requirement. The main difference between nesC&dTTO is the absence
of the concept of time, and therefore no hard-real time constraints can be guaranteed
by the nesC compiler. Also, the nesC programmer’s model is platform-independent but
not value-deterministic. In particular, the same program running on different platforms
with the same input events may produce different results. Erlang [18] is a functional lan-
guage for real-time embedded systems, specifically for the telecommunication domain.
Erlang, like XGIOTTO, generates code for a virtual machine, and is therefore easily
portable to different platforms. Erlang features the execution of parallel tasks but, like
nesC, does not explicitly address real-time requirements apart from timeouts and the
handling of run-time exceptions.

Real-Time Euclid [19] is a language designed specifically to address reliability and
schedulability issues in time-constrained environments. The language definition forces
every construct in the language to be time- and space-bounded. These restrictions make
it easier to estimate the execution time of the program, and they facilitate scheduling to
meet all deadlines. Therefore, RT-Euclid programs can always be analyzed for schedu-
lability. However, RT-Euclid does not have any notion of event reaction and is therefore
lacking an important aspect of embedded-systems programming. The programming lan-
guage Flex [20] extends C++ by introducing explicit real-time constraints. In Flex, tim-
ing constraints can be specified for each section of code. The run-time mechanism of
Flex ensures that the timing constraints are satisfied, or else the block is aborted and an

exception handler is invoked. In Flex timing constrains are guaranteed at run-time and
no schedulability analysis is performed at compile-time. HoweverXi&eoTTO, both

Flex and Real-Time Euclid define a platform-independent logical execution model for
real-time programs, which makes them predictable.

References

1.
2.

3.
4.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

Burns, A., Wellings, A.: Real-Time Systems and Programming Languages.
Addison-Wesley (2001)

Buttazzo, G.: Hard Real-Time Computing Systems. Kluwer (1997)

Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer (1993)

Girault, A., Menier, C.: Automatic production of globally asynchronous, locally synchronous
systems. In: Embedded Software. LNCS 2491. Springer (2002) 266—281

. Girault, A., Nicollin, X.: Clock-driven automatic distribution of Lustre programs. In: Em-

bedded Software. LNCS 2855. Springer (2003) 206-222

. Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A., Pree, W.: From control models to real-time

code using @®TTO. |IEEE Control Systems Magazi@3 (2003) 50—-64

. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: IGTTO: a time-triggered language for em-

bedded programming. Proc. IEEH (2003) 84-99

. Sanvido, M.A.A., Ghosal, A., Henzinger, T.XGIOTTO language report. Technical Report

UCB//CSD-03-1261, UC Berkeley (2003)

. Henzinger, T.A,, Kirsch, C.M.: The Embedded Machine: predictable, portable real-time

code. In: Proc. Programming Language Design and Implementation, ACM (2002) 315-326
Henzinger, T.A., Kirsch, C.M., Majumdar, R., Matic, S.: Time-safety checking for embedded
programs. In: Embedded Software. LNCS 2491. Springer (2002) 76—92

Kirsch, C.M., Henzinger, T.A., Sanvido, M.A.A.: A programmable microkernel for real-time
systems. Technical Report UCB/CSD-03-1250, UC Berkeley (2003)

Liu, J., Lee, E.A.: Timed multitasking for real-time embedded software. IEEE Control
Systems Magazin23 (2003) 65-75

Boussinot, F., de Simone, R.: The Esterel language. Proc. TREED91) 1293-1304
Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow programming
language Lustre. Proc. IEEP (1991) 1305-1320

Bertin, V., Closse, E., Poize, M., Pulou, J., Sifakis, J., Venier, P., Weil, D., Yovine, S.: Taxys
= Esterel + Kronos. A tool for verifying real-time properties of embedded systems. In: Proc.
Decision and Control, IEEB (2001) 2875-2880

Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., Niebert, P.: From Simulink to
Scade/Lustre to TTA: a layered approach for distributed embedded applications. In: Proc.
Languages, Compilers, and Tools for Embedded Systems, ACM (2003) 153-162

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language:
a holistic approach to networked embedded systems. In: Proc. Programming Languages
Design and Implementation, ACM (2003) 1-11

Armstrong, J., Virding, R., Wiksdbm, C., Williams, M.: Concurrent Programming in Erlang.
Prentice-Hall (1992)

Kligerman, E., Stoyenko, A.: Real-time Euclid: a language for reliable real-time systems.
IEEE Trans. Software Engineerii@ (1986) 941-949

Kenny, K., Lin, K.J.: Building flexible real-time systems using the Flex language. |IEEE
Computer24(1991) 70-78

