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ABSTRACT
We designed and implemented a new programming language
called Hierarchical Timing Language (HTL) for hard real-
time systems. Critical timing constraints are specified within
the language, and ensured by the compiler. Programs in
HTL are extensible in two dimensions without changing
their timing behavior: new program modules can be added,
and individual program tasks can be refined. The mecha-
nism supporting time invariance under parallel composition
is that different program modules communicate at speci-
fied instances of time. Time invariance under refinement is
achieved by conservative scheduling of the top level. HTL
is a coordination language, in that individual tasks can be
implemented in “foreign” languages. As a case study, we
present a distributed HTL implementation of an automo-
tive steer-by-wire controller.

Categories and Subject Descriptors:
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems.

General Terms: Languages.

Keywords: Real Time; Automotive Systems.

1. INTRODUCTION
Much current real-time programming proceeds by trial

and error: if during a program test some task misses its
deadline, then the task priorities are reassigned, and new
tests are performed. In rare cases can the timing of a pro-
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gram be proved correct using scheduling theory and/or for-
mal verification. Scheduling analysis becomes difficult when
the program structure is irregular, with branches, excep-
tions, and dynamic task creation. Formal techniques are
difficult due to state space explosion.

Part of the problem is that design practice deals with
timing in an indirect way, often through low-level constructs
such as priorities. In this paper, we present a new high-level
coordination language for interacting hard real-time tasks
called Hierarchical Timing Language (HTL). Like Giotto [1],
our language refers directly to real-time instances, but it is
more general than Giotto, in that it offers hierarchical layers
of abstraction. Besides adding program structure, a main
benefit of the abstraction hierarchy is that feasible schedules
for lower layers can be efficiently constructed from feasible
schedules for higher layers.

HTL permits composition and refinement of programs
without changing their real-time behavior. Parallel program
modules communicate with each other and with the envi-
ronment through so-called communicators, of which sensors
and actuators are special cases. A communicator defines a
sequence of real-time instances of a static variable. Task
reads and writes specify communicator instances. As the
read and written time instances of communicators are fixed
by a program, they remain unchanged when the context of
the program is modified. In other words, the communicator
instances specify a logical execution time (LET) [1] slot for
each task; the actual physical execution of the task must
fall within this slot. As long as physical task execution falls
within the LET interval, the functional and timing seman-
tics of a program is deterministic, independent of the actual
task schedule. In particular, individual program modules
can be reused in different contexts without changing their
timing behavior, or upgraded without affecting the timing
of rest of the system.

In HTL, tasks can be refined iteratively by groups of tasks
with precedence relations. Each task refinement is con-
strained in such a way that if the task is schedulable, then
the more detailed replacement group of tasks is schedulable
as well. As a consequence, schedulability needs to be checked
only for the top level of an HTL program. This property
avoids a combinatorial explosion, and permits scheduling to
be performed by the HTL compiler. The compiler rejects a
program if it cannot guarantee that its timing specification
is satisfied on a given platform (which is specified through
worst-case execution times for all tasks).

In addition to module composition (concurrency) and task



refinement (hierarchy), HTL supports the collection of tasks
into modes, which can be composed sequentially. We provide
an operational semantics and a compiler for HTL. The com-
piler performs a schedulability analysis and translates HTL
programs into code for the Embedded Machine (E code) [2].
The compiler can generate E code for a distributed HTL im-
plementation; we assume that the Embedded Machine has
been implemented on each host over which the HTL imple-
mentation is distributed. The semantics of an HTL program
remains independent of the number of hosts, but the analy-
sis and code generation takes into account the distribution.

To demonstrate the expressive power and the feature of
HTL, we present an automotive steer-by-wire controller as
a case study. A steer-by-wire system removes the mechan-
ical linkage between steering wheel and car with a set of
sensors, actuators, and a controller distributed over several
processors. Typically the sensors and actuators are spread
over four processors for each of the wheels; the controller im-
plementation (along with different functionalities like fault
detection, supervisory control, and power coordination) is
distributed on more than one processor. The example shows
the use of communicators and task refinement, while illus-
trating the need for horizontal and vertical extensions of the
software. Horizontally, parallel modules can be appended to
the implementation without changing the timing behavior of
the implementation. Vertically, the refinement concept can
be used to provide (temporal) space for future extensions.

2. LANGUAGE OVERVIEW
Tasks. The computational units of HTL are LET tasks.

The LET model (Fig. 1) decouples the times when a task
reads input and writes output from the time when the task
executes. A LET task is sequential code with its own mem-
ory space (which cannot be accessed by other tasks) and
without internal synchronization points. Release and termi-
nation events, which are triggered by clock ticks or sensor
interrupts, determine the LET of the task; the task is active
between these two events. The input of the task is written
into its memory when the release event occurs, not when
the task actually starts executing. Similarly, the output
is made available to other tasks or actuators at the termi-
nation event, even if the task completes physical execution
earlier. Between the start and completion of execution the
task may be preempted and resumed any number of times.
A LET task is time-safe on some given hardware if the task
completes execution on that hardware before the termina-
tion event occurs. Time-safe LET tasks are time and value
deterministic, portable and composable [2].

Figure 1: A LET (logical execution time) task

Communicators. The communication model for HTL is
centered around communicators. A communicator is a typed
variable that can be accessed (read from or written to) only
at specific time instances. These time instances are peri-
odic and specified through a communicator period. Sensors
and actuators are communicators, but communicators can
also be used to exchange data between tasks. A task reads
from certain instances of some communicators, computes a
function, and updates certain instances of the same or other

communicators. Fig. 2 shows the interaction between four
communicators (c1, c2, c3, and c4, with periods 2, 3, 4, and
3, respectively) and two tasks (t1 and t2). Task t1 reads
the second instances of c1 and c4 and updates the fourth
instance of c2. Task t2 reads the second instance of c3 and
updates the sixth instance of c1 and the fifth instance of
c2. The read and write instances specify the LET for the
tasks: the latest read instance determines the release time,
and the earliest write instance determines the termination
time. Thus, the LET of t1 spans from time 3 to time 9, and
the LET of t2 from 4 to 10.

Figure 2: Communicators and tasks

Communicators are the key to compose HTL programs,
because they exhibit deterministic behavior: given sufficient
CPU speed for time-safety, the real-time behavior of a pro-
gram is determined by the input (i.e., the values of all sensor
instances), independent of the CPU speed and utilization.
The determinism is ensured by prohibiting update races on
communicators (different tasks cannot write to the same in-
stance of a communicator), and by ensuring that every com-
municator instance is updated before it is read.

Modes. HTL generalizes the LET model from tasks to
task groups. While tasks with different frequencies can com-
municate only through communicators, HTL allows direct
communication between tasks with identical frequencies. A
set of interacting tasks with the same frequency form a mode
with a specified mode period. The communication flow be-
tween tasks within a mode determines an acyclic precedence
relation on the tasks in the mode.

Figure 3: A mode with task precedences

Fig. 3 shows three tasks t1, t2, and t3 within a mode.
Task t1 reads the second instances of c1 and c4, and task
t2 reads the second instance of c3. No termination events
are specified for t1 and t2; instead, task t3 reads the out-
puts of t1 and t2, and updates the fifth instance of c2. The
communication between t1 (and t2) and t3 occurs through
ports. A port is a typed variable, but unlike a communi-
cator, it is not bound to time instances (i.e., as soon as t1

completes execution, t3 can read the output port of t1 and
start execution). Thus, within the mode, the two tasks t1

and t2 precede the third task t3.
The tasks within a mode interact through ports and com-

municators; tasks from different modes interact only through



communicators. Fig. 4 shows two modes m1 and m2 with pe-
riods 6 and 12, respectively.

Figure 4: Modes

Modules. In real-time applications, a group of tasks may
have to be replaced by an alternate group depending on some
specific condition (e.g., a certain sensor reading). HTL ac-
commodates this by allowing mode switches at the end of
mode periods, which are triggered by conditions on com-
municator and port values. A network of modes and mode
switches is called a module (Fig. 5). An HTL program is
a set of modules and a set of communicators. While the
modes within a module are composed sequentially (i.e., at
any time, the tasks of at most one mode of a module are
active), the modes from different modules are composed in
parallel and may interact through communicators. Com-
municators thus serve several purposes: to exchange data
between tasks from different parallel modules, and to ex-
change data from one task within a module to a later task
within the same module (but possibly in a different mode).
One mode in each module is specified as the start mode.

Figure 5: Modules

Refinement. Specifying all behaviors through mode
switching is cumbersome. For a structured and concise spec-
ification, we introduce the concept of mode refinement : each
mode in a program can be specified by an HTL program.
This does not add expressiveness to the model; in fact,
an HTL program with multiple levels of refinement can be
translated into an equivalent “flat” program without refine-
ment. Refinement is useful not only for compact repre-
sentation, but also for conservatively simplifying the pro-
gram analysis: we check schedulability only for the top-level
program, and constrain refinements so that they preserve
schedulability. Fig. 6 shows a mode m, and a mode m′ from a
program which refines m. HTL imposes certain restrictions
on m′ to preserve schedulability. First, the period of mode m′

is identical to that of m. This ensures that when m switches
(which is only possible at the end of its period), then all tasks
in the modes refining m have terminated execution. Second,
every task in m

′ refines an unique task in m (shown by dashed
arrows); e.g., t′5 (child) refines t5 (parent). HTL considers
t5 as a placeholder (an abstract task) for t

′
5 (the concrete

task): the abstract task t5 does not execute at run-time but
ensures that t

′
5 is accounted for during the schedulability

analysis of the top-level program. Therefore, (1) the latest
(resp. earliest) communicator read (resp. write) of t′5 must
be equal to or earlier (resp. later) than that of t5; (2) ev-
ery task that precedes t

′
5 must refine a task that precedes

t5; and (3) the WCET of t′5 must be less than or equal to
the WCET of t5. These three constraints ensure that if t5

can be scheduled in the top-level program, then t′5 can be
scheduled in the complete program.

Figure 6: Refinement

Refinement can represent both choice and change of be-
havior. Choice is expressed when an abstract task t in a
mode m is the parent of different (concrete or abstract) tasks
in several modes of a program that refines m. Change is ex-
pressed by having a (concrete or abstract) task that refines
t reading from and writing to different communicators than
t does (within the constraints listed above). Fig. 7 shows
a diagrammatic view of an HTL program with refinement.
The modes contain tasks with precedences.

Figure 7: An HTL program

Distribution. Many embedded applications are distri-
buted: the tasks are distributed on several hosts and interact
with each other through communication channels. In HTL,
distribution is specified through a mapping of top-level mod-
ules to hosts (all refinements are bound to the same hosts).
The distribution is implemented by replicating shared com-
municators on all hosts, and then have the tasks that write
to shared communicators broadcast the outputs. The se-
mantics (i.e., the real-time behavior) of an HTL program
is independent of the number of hosts, but code generation
and schedulability analysis must take the distribution into
account. For this purpose, the LET model (Fig. 8) is ex-
tended to include both WCETs as well as worst-case output
transmission times (WCTTs).

Figure 8: LET model with transmission times

3. STEER-BY-WIRE
A steer-by-wire (SBW) control system replaces the me-

chanical linkage between steering wheel and car wheels by a
set of electric motors that control the wheel angle, and a con-
troller that computes the required wheel motor actuation.
To maintain a realistic road condition feel for the driver, a



force feedback actuator is placed on the steering wheel. The
specific architecture that has been used here is a simplified
SBW model used by General Motors for their prototype hy-
drogen fuel-cell car FX-3. This example is an imitation of
the concerns and requirements of automotive design, and
does not represent a real set of control algorithms for an
actual product or prototype.

Figure 9: Steer-by-Wire: schematic view

An SBW architecture (Fig. 9) consists of eight hosts
(CPUs): four motor control units (MCUs) and four elec-
tronic control units (ECUs). The MCUs are placed near the
wheels; they detect sensor values related to wheels (wheel
angle, motor current, speed, friction, power, pitch, and yaw)
and send signals to motor actuators. The ECUs implement
functionalities such as computation of wheel motor actu-
ation, steer feedback, supervisory control, fault handling,
and power coordination. Supervisory control coordinates
between steering, braking, and suspension. The supervisor
typically runs in triple-redundant mode (three copies are ex-
ecuted in three different hosts). The fault handling system
detects, isolates, and mitigates faults, and warns the driver
in case of a fault. The power coordinator handles the coor-
dination of motor current computed by the controller with
rest of the power grid. All hosts are connected through a
communication link that allows broadcast from any host.

Figure 10: SBW modules

Steer-by-Wire in HTL. The HTL implementation of
the SBW functionality consists of fifteen modules (Fig. 101):
sensor and actuator units for each of the four wheels, and
computational units for control, steer feedback, fault diag-
nosis, power, and supervision (three copies). Fig. 11 shows
the modal structure for each of the modules, and the periods
of the modes (in milliseconds). The modes capture changes
in the computation policy under different environment con-
dition; e.g., wheel actuation needs to be done faster above
a critical speed. A specific scenario(Fig. 12) of inter-mode
communication is discussed next; refer to http://htl.cs.uni-
salzburg.at for a full specification.
1In the figures modules and modes are denoted by rectangles
and ellipses, respectively.

Figure 11: SBW modes

The angle of the rear-left wheel (while the car is moving
at a high speed) is measured by three sensors. The sen-
sor values are read by a task that mediates on the value
to be considered and then passes it on to the control task.
This necessitates communication between mode high (mod-
ule sensor RL), mode high (module steer feedback), and
mode high (module control). The modes and communi-
cators have periods of 4,000 and 5,00 microseconds, respec-
tively. Communicators instances are referred relative to the
mode period (the 0-th instance corresponds to the start of
the mode). Tasks tA3, tA4, and tA5 (mode high of module
sensor RL) read three sensors sA3, sA4, and sA5 respectively
at the start of the period and update the first instances
of the three communicators cA3, cA4 and cA5. The task
MEDAngleRL (mode high of module steer feedback) reads
the first instance of the above communicators and writes to
the second instance of cAngleRL. The task cntrlFUN reads
the second instance of cAngleRL (among other communica-
tors) and computes the value of the wheel actuation signal.
The task RackPinAct reads the output of cntrlFUN and com-
putes the power requirement for the motors.

Figure 12: Communication in SBW implementation

Fig. 13 shows the refinement of some of the modes dis-
cussed above. Refinement allows a concise representation
of changes in computation policies. For example, mode low

(module control) is refined by a program that has one mod-
ule with two modes, idle and motion. Without hierarchi-
cal refinement, module control would have 6 modes and
17 mode switches; this is not only inefficient but also error
prone. The modules of the root program are distributed over
eight hosts: the sensor and actuator modules for each wheel
share one host; the modules control, steer feedback, and
fault diagnosis are distributed over three hosts along with
one supervisor module on each host; the module power is as-
signed its own host.

Implementation. We implemented the SBW controller
on eight AMD Duron 1.4GHz machines with 256MB RAM
connected by a 100Mbps Ethernet network. The case study
is written in 873 lines of HTL code and compiled to around
1,800 E machine instructions per host. The E machine [2]
is written in C and executes the generated code with an
overhead between 60 and 300 microseconds per time instant
for which it is invoked. The tasks are written in C. Our
implementation simulates the case study in real time but
at a frequency of 2Hz, which is 1,000 times slower than the
actual system.



Figure 13: SBW program with all refinements

4. ABSTRACT SYNTAX
We provide the main components of an HTL program in

an abstract way. A concrete syntax [3] can be defined for
this abstract syntax. An HTL program P consists of the
following:

1 A set of communicator declarations commdecl. A com-
municator declaration (c, type, init, πc) consists of a com-
municator name c, a data type type, an initial value init,
and a communicator period πc ∈ N>0. The communica-
tor names are unique. The set of declared communicator
names for a program P is comms(P). Given a communicator
c ∈ comms(P), we write type[c] for the range of values that
c can evaluate to, and init[c] for the initial value of c.

2 A set of module declarations moduledecl. A module dec-
laration (M, portdecl, taskdecl, modedecl, start) consists of
a module name M, a set of port declarations portdecl, a set
of task declarations taskdecl, a set of mode declarations
modedecl, and a start mode start. The module names are
unique. The set of declared module names for a program
P is modules(P). Given a module M ∈ modules(P), we write
start[M] for the start mode.

2.1 A port declaration (p, type, init) consists of a port
name p, a data type type, and an initial value init. The
port names are unique for each module. The set of declared
port names for a module M is ports(M). Given a port p ∈
ports(M), we write type[p] for the range of values that p can
evaluate to, and init[p] for the initial value of p.

2.2 A task declaration (t, filist, folist, fn) consists of
a task name t, a list of formal input parameters filist,
a list of formal output parameters folist, and an optional
task function fn. An element of the lists of formal input and
output parameters is a data type type. If υ[type] denotes
the range of values for type, the length of filist is m,
and the length of folist is n, then fn is a function from
Π1≤i≤mυ[filist(i)] to Π1≤i≤nυ[folist(i)]. The function
fn is absent for abstract tasks; if fn is present, then t is
concrete. The task names are unique for each module. The
set of declared task names for a module M is taskset(M).

2.3 A mode declaration (m, πm, invocs, switches, refp) con-
sists of a mode name m, a mode period πm ∈ N>0, a set of
task invocations invocs, a set of mode switches switches,
and an optional program name refp. The program refp

is absent for modes that are not refined further; otherwise
refp defines the refining program. The mode names are
unique for each module. The set of declared mode names
for a module M is modes(M), and start[M] ∈ modes(M).

2.3.1 A task invocation (t, ailist, aolist, ptask) con-
sists of a task name t ∈ taskset(M), a list of actual in-
put parameters ailist, a list of actual output parameters
aolist, and an optional task name ptask. An element of the
lists of actual input and output parameters is either a port
p ∈ ports(M), or a pair (c, i) consisting of a communicator
name c ∈ comms(P) and a communicator instance number
i ∈ N, where 0 ≤ i ≤ πm

πc
. If P refines a mode of another

program P′, then the communicator c may be declared in
P′; see below. The task name ptask is absent if M is a top-
level module; otherwise ptask defines the parent task and
the invocation associated with the parent task defines the
parent task invocation. The task names of the invocations
are unique for each mode.

2.3.2 A mode switch (cnd, m′) consists of a condition cnd

which is expressed as a predicate on the ports in ports(M)
and communicators in comms(P) (and communicators de-
clared in super-programs of P; see below), and a destination
mode name m′ ∈ modes(M). The mode switches are determin-
istic for each mode, i.e., for port and communicator values,
at most one of the mode switch conditions is true.

Hierarchical program structure. A module Mn is a
sub-module of a module M1 if Mn = M1, or there exists n
modules M1, M2, . . . , Mn such that for every pair Mj , Mj+1 there
exists a mode declaration (m, ·, ·, ·, P) ∈ modedecl(Mj) with
Mj+1 ∈ modules(P) for 1 ≤ j < n. If M′ ∈ modules(P′),
M ∈ modules(P), and M′ is a sub-module of M, then P′ is a
sub-program of P, and P is a super-program of P′. A pro-
gram P is both a sub-program and a super-program of itself.
A top (leaf) level program is one with no super (sub) pro-
grams other than itself. A flat program is one which is both
a top-level and a leaf-level program. The abstract program
abs(P) for program P is the top-level program with all refin-
ing programs removed from the mode declarations of P.

Given a mode declaration (m, ·, ·, ·, P), mode m is parent of
mode m

′ if m′ is a mode in some module of P; m′ is child of
m. The set of ancestors of a mode m, denoted ancestors(m),
is the smallest set of modes that includes the parent of m

and the ancestors of the parent. The start set of m, denoted
starts(m), is the smallest set that includes m and contains
the start sets of all start modes of modules in P.

The accessible communicator set for module M in pro-
gram P is the set of communicators declared by the super-
programs of P. The write-set for M is the set of communica-
tors occurring as actual output parameters of task invoca-
tions of modes in M. The hierarchical write-set for M is the
set of communicators that belong to the accessible commu-
nicator set of M and to the write-sets of all sub-modules of
M.

A communicator not written to by any task invocation
is called an input communicator. Input communicators are
written by the physical environment (sensors), or by other
programs. Input communicator set icset(P) for program P

is the set of input communicators for all sub-programs of P.
Task precedences. A task invocation inv precedes an-

other invocation inv
′ if inv′ reads any port written by inv;

in this case, inv′ follows inv. The preceding invocation set
of a task invocation inv in mode m, denoted prec(inv, m), is
the set of task invocations that precede inv. The read time
(resp. write time), rtime(inv, m) (resp. ttime(inv, m)) of a
task invocation inv in mode m is the largest (resp. smallest)
interval from the start of mode m at which a communicator
instance is read (resp. written) by inv or any of its preceding
(resp. following) invocations.

Each task invocation has an input (resp. output) port as-
sociated with each actual input (resp. output) parameter;
we will refer to these ports as task ports. The set of input
(resp. output) task ports for task invocation inv is tips(inv)
(resp. tops(inv)). A task port has the same type and initial
value as the communicator (or module port) corresponding
to the actual parameter denoted by the task port. The in-
put (resp. output) task port that reads a port p of a module
is tip

p

inv (resp. toppinv). The input (resp. output) task port
that reads from (resp. writes to) i-th instance of a commu-
nicator c is tipc,iinv (resp. topc,iinv). The set of task ports (both



input and output) for a module M is tpset(M). The set of
(module) ports read (resp. written) by a task invocation inv

is rdset(inv) (resp. wrset(inv)).
Well-formed programs. A program is well-formed if it

conforms to the following syntactic restrictions (refer [3] for
formal definitions):

Constraints on programs: (1) There is only one top-level
program; and (2) each mode (other than those of the top-
level program) has an unique parent mode.

Constraints on communicators: (1) if a communicator is
declared in program P, then it is not redeclared in any other
sub-program of P; (2) if a communicator c is accessed (read
or written) by a task invocation or a switch in a mode of
module M in program P, then c is declared in one of the
super-programs of P; and (3) if a communicator c belongs
to the hierarchical write-set of a module M, then c does not
belong to hierarchical write-set of any sibling module of M.

Constraints on task invocations: (1) for every task invo-
cation, the read time is earlier than the write time; (2) the
precedence relation on task invocations is acyclic; (3) two
task invocations in a mode cannot write to the same port or
to the same instance of a communicator; (4) if a task invoca-
tion reads from or writes to a communicator c (resp. port p),
then the type of c (resp. p) complies to the type of the corre-
sponding formal parameter in task declaration; (5) if a task
invocation in a mode m reads from or writes to a communi-
cator c, then period πm is a multiple of the communicator
period πc; and (6) every task invocation reads from a com-
municator or is transitively preceded by a task invocation
that reads from a communicator, and writes to a commu-
nicator or is transitively followed by a task invocation that
writes to a communicator.

Constraints on refinement : (1) if program P refines a mode
m, then the period of all modes in P is equal to πm (this en-
sures that when there is a mode switch, there is no unsafe
termination of tasks in lower-level modes); (2) every task
invocation of a mode m that does not belong to the top-level
program has an abstract parent task invocation in the parent
of m (this ensures that the parent task acts as a placeholder
for its children during schedulability analysis); (3) any two
distinct task invocations in two modes of two (possibly iden-
tical) sibling modules have distinct parent task invocations
(this ensures that all tasks that can potentially execute in
parallel have unique parents); and (4) if inv′ is the parent
task invocation of inv, then the read time of inv is not later
than that of inv′, the write time of inv is not earlier than
that of inv′, and every invocation that precedes inv refines
a task invocation that precedes inv

′ (this ensures that the
parent invocation is more constrained in time than the child
task invocation, which is used in the schedulability analysis).

Well-timed programs. The host set hset for a program
P is the set of hosts over which the program is distributed. A
host mapping hmap is a function that assigns each module in
top-level program of P to a host h ∈ hset. For a given host
set hset and host mapping hmap, the worst-case execution
time (WCET) and the worst-case transmission time (WCTT)
maps, wemap and wtmap, assign two natural numbers to
each task of P: the WCET wemap(t) bounds the execu-
tion time of task t on host hmap(t); the WCTT wtmap(t)
bounds the broadcasting of the outputs of task t to all hosts.
Given a well-formed HTL program P together with an ex-
ecution platform specified in terms of hset, hmap, wemap,
and wtmap, the program P is well-timed if for all task invo-
cations inv1 = (t1, ·, ·, ·), inv2 = (t1, ·, ·, ·): if inv1 is the
parent invocation of inv2, then wcet(t1) ≥ wcet(t2) and
wctt(t1) ≥ wctt(t2). Note that while well-formedness is in-
dependent of the execution platform, well-timedness is not.

5. OPERATIONAL SEMANTICS
The semantics (i.e., set of traces) of an HTL program is

independent of the execution platform, which will be taken
into account later, for code generation and schedulability
analysis. The execution of an HTL program yields a (pos-
sibly infinite) sequence of configurations, called trace. Each
configuration consists of values for all program variables
(ports and communicators), a set of triggers, and a set of
released (but not yet completed) tasks. A trigger defines an
action to be taken at a future event, which is specified by
an integer n and a set cmps of tasks: the trigger becomes
enabled as soon as n time ticks have passed and all tasks
in cmps have completed execution. In practice, time ticks
and task completion event are raised by the execution plat-
form through interrupts; the time unit is required to be a
harmonic fraction of all communicator and mode periods.
When a trigger becomes enabled, the associated action is
carried out; this may be a communicator write (handled by
write triggers), mode switch (handled by switch triggers),
communicator read (handled by read triggers), or task re-
lease (handled by release triggers). Enabled write, switch,
read, and release triggers are handled in this order. If no
trigger is enabled, then the next time tick is awaited, and
any number of released tasks may complete their execution.

Formally, a trace of an HTL program is a sequence of
configurations u0, u1, . . ., where u0 is the initial configura-
tion, and for all i > 0, configuration ui is a time event,
write, switch, read, or release successor of ui−1. Each con-
figuration u is a triple (state, trgs, tasks), where state is
variable state, trgs is a set of triggers, and tasks is a set
of tasks. The variable state is a valuation of all communi-
cators, module ports, and task ports. Without loss of gen-
erality, we assume that all communicator names and port
names (both module and task ports) across the refinement
hierarchy are unique; we furthermore assume that each task
name uniquely identifies a particular task invocation (this
can be achieved by duplication and renaming of task dec-
larations). At a configuration u, cu (resp. pu) denotes the
value of a communicator c (resp. port p) and cndu denotes
the boolean value of a mode switch condition cnd.

A trigger g is a triple (τ, e, a), where τ ∈ {w, s, d, r} is a
tag that identifies write, switch, read, and release triggers,
respectively; e is an event instance; and a is action to be
carried out when the trigger is handled. An event instance
is a pair (n, cmps), where n ∈ N≥0 and cmps is a set of task
names. The trigger is enabled if n = 0 and cmps = ∅. A
configuration is waiting if none of its triggers is enabled. For
write triggers (τ = w), the action a = (c, i, t) specifies that
the i-th instance of communicator c will be updated to the
value of the corresponding output task port of task t. For
switch triggers (τ = s), the action a = (sw, m) specifies that
the condition of mode switch sw of mode m will be checked,
causing a possible mode switch. For read trigger (τ = d),
the action a = (t, c, i) specifies that the i-th instance of
communicator c will be read into the corresponding input
task port of task t. For release triggers (τ = r), the action
a = t specifies that the (unique) invocation of task t will be
released.

The five successor relations on configurations are defined
formally in Fig. 14. Configuration u has a time-event succes-
sor if u is waiting; in this case, a time tick event and possibly
some task completion events occur. The output task ports
of the completed tasks are updated. The completed tasks
are removed from the set of released tasks, and from all task
sets of the triggers in u. The positive time tick counts of



successor† the following conditions hold on
u = (state, trgs, tasks)

the following conditions hold on
u′ = (state′, trgs′, tasks′)

time
event no enabled trigger in trgs

tasks′ ⊆ tasks,
if (·, (n, cmps), ·) ∈ trgs then

(·, (n⊖ 1, cmps \ (tasks \ tasks′)), ·) ∈ trgs′,
∀t ∈ tasks \ tasks′ :
∀p ∈ tops(t) : pu′ = fn[Πp′∈tips(t)p

′
u′

],

∀p ∈ wrset(t) : pu′ = tops
p

t,u′

∀c ∈ icset(P) : cu′ = ϑ(typec)
⋆

write ∃g = (w, (0, ∅), (c, i, t)) ∈ trgs cu′ = top
c,i

t,u′
, trgs′ = trgs \ {g}, tasks′ = tasks

switch no enabled write trigger in trgs,
∃g = (s, (0, ∅), (sw, m)) ∈ trgs :
(sw = (cnd, m1) ∧
∀(s, (0, ∅), (·, m2)) ∈ trgs \ {g}: m2 6∈ ancestors(m))

if ¬cndu and exists other enabled switch trigger for m in trgs:
trgs′ = trgs \ {g}, tasks′ = tasks

if ¬cndu and no other enabled switch trigger for m in trgs:
trgs′ = gseti(m) ∪ trgs \ {g}, tasks′ = tasks

if cndu :
trgs′ = ∪m3∈starts(m1)gseti(m3) ∪ trgs \ gsetr(m, u),

tasks′ = tasks

read no enabled write or switch triggers in trgs,
∃g = (d, (0, ∅), (t, c, i)) ∈ trgs

tip
c,i

t,u′
= cu′ , trgs

′ = trgs \ {g}, tasks′ = tasks

release no enabled write or switch or read triggers in trgs,
∃g = (r, (0, ∅), t) ∈ trgs

∀p ∈ rdset(t) : tip
p

t,u′
= pu′ ,

trgs′ = trgs \ {g}, tasks′ = tasks ∪ {t}
†Values of variables remain unchanged from u to u′ unless noted.
⋆ϑ non-deterministically assigns a value from type typec of communicator c.

n⊖ 1 = n − 1, if n > 0

= n, otherwise
gseti(m) = Procedure Invoke Mode(m)
gsetr(m, u) = {(s, (0, ∅), (·, m4)) ∈ trgs(u) : (m4 = m) ∨ (m ∈ ancestors(m4))}

Figure 14: Definition of successor configurations

all triggers in u are reduced by one. All input communi-
cators are non-deterministically assigned a value from their
type; for simplicity we assume all input communicators have
period one.

Configuration u has a write successor if u contains an
enabled write trigger. The write trigger is removed and a
communicator is updated from an output task port. Con-
figuration u has a switch successor if in u no write trigger
is enabled, a switch trigger (say, for mode m) is enabled,
and there are no enabled switch triggers for any ancestors
of m. There are three different scenarios: (1) if the switch
condition evaluates to false and there exists another enabled
switch trigger from m, then the switch trigger is removed; (2)
the switch condition evaluates to false and there exists no
other enabled switch trigger from m, then the switch trigger
is removed and m is invoked; and (3) if the switch condition
(say destination mode is m

′) evaluates to true, then all en-
abled switch triggers of m and of the descendants of m are
removed, and all modes in starts(m′) are invoked. An in-
vocation of mode m (see Alg. 1) involves the following steps:
(1) for each task invocation in m, a read trigger is added for
each communicator input; (2) for each task invocation in m,
a write trigger is added for each communicator output; (3)
for each task invocation, a release trigger is added; and (4)
for each mode switch, a switch trigger is added.

Configuration u has a read successor if in u no write or
switch trigger is enabled, but some read trigger is enabled.
The read trigger is removed and a communicator is read into
an input task port. Configuration u has a release successor
if in u no write or switch or read trigger is enabled, but a
release trigger is enabled. The release trigger is removed,
the input ports of a task are loaded with output port values
from preceding tasks, and the task is added to the set of

Algorithm 1 Procedure Invoke Mode(m)

gset = ∅;
∀inv = (t, ailist, aolist, ·) ∈ invocs(m)
∀k ∈ N s.t. ailist[k] = (c, i)
add trigger (d, (i · πc, ∅), (t, c, i)) to gset;

∀j ∈ N s.t. aolist[j] = (c, i)
add trigger (w, (i · πc, ∅), (c, i, t)) to gset;

add trigger (r, (n, cmps), t) to gset for
n = rtime(t) and cmps = {t′ : (t′, ·, ·, ·) ∈ prec(t, m)};

∀sw ∈ switches[m]
add trigger (s, (π[m], ∅), (sw, m)) to gset;

return gset.

released tasks.
The initial configuration of a program is defined as fol-

lows: the variable state assigns the initial values to all mod-
ule ports, task input ports and communicators and default
values (specified by the types) to task output ports; the trig-
ger set consists of triggers by invoking modes in start set of
start(M) for each module M in top-level program; and an
empty task set.

6. HTL COMPILER
We have designed and implemented a compiler for full,

distributed HTL in Java. The compiler checks well-formed-
ness, well-timedness, and schedulability of a given HTL pro-
gram, flattens the program into a semantically equivalent
HTL program with only top-level modules, and then gen-
erates so-called E code for the flattened program targeting
the E(mbedded) Machine [2]. In our experiments, we have
used an existing implementation of the E machine written
in C running on Linux. E code specifies the exact real-time
instants when port and communicator values are exchanged,



Figure 15: Structure of compiler and target

and when tasks are released and terminated. E code neither
implements the actual tasks’ functionality nor specifies when
released tasks actually execute. Task functionality must be
implemented in some other programming language and com-
piled separately using an appropriate compiler. Here, we
have chosen C for implementing tasks, since our version of
the E machine is implemented in C. Released tasks are dis-
patched for execution by an EDF scheduler that is external
to the E machine and also implemented in C.

Fig. 15 depicts the structure of the compiler and the tar-
get architecture. Each host runs its own E machine and
maintains its own copies of all task ports and communica-
tors of an HTL program, even if some task ports and com-
municators are never accessed by tasks on that host. The
compiler generates E code for each host separately. The idea
is to compile repeatedly the whole HTL program for each
host and to generate E code that implements the whole pro-
gram on each host, except that the tasks of the modules not
mapped to a host are not invoked on that host. Thus the
generated E code is identical across all hosts except for the
instructions that invoke tasks. Each task invocation involves
broadcasting the task’s output port values and storing the
values in the respective task output ports on all receiving
hosts. As a result, each host maintains a complete image
of all port and communicator values of an HTL program.
Note that all host-to-host transmission is done by the tasks,
not by the E code. In our prototype implementation, tasks
broadcast via sockets and standard Ethernet. Memory con-
sumption as well as transmission load may be minimized if
necessary using, e.g., data-flow analysis, which is, however,
future work. In the following, we explain each phase of the
compiler.

Checking well-formedness, well-timedness and
schedulability. Before flattening the input program, the
compiler checks the well-formedness and well-timedness of
the program. In particular, the compiler verifies that any
concrete task indeed refines its parent task to make sure that
the subsequent top-level scheduling test guarantees overall
schedulability. The compiler performs an EDF-scheduling
test on the abstract, top-level portion of the input program
only. If the test succeeds, according to our result in Sec-
tion 7, the whole input program is schedulable. This result
also applies to distributed HTL programs as long as the
WCTT for broadcasting the output port values of each task
is added to the WCET of the task, and the WCTT includes
the time it takes to resolve any collisions even when all hosts
try to broadcast at the same time. In our current implemen-

tation, output port values of a task are always broadcast as
soon as an invocation of the task completes. Transmission
and scheduling techniques that may utilize the network more
efficiently, e.g. [4], can also be used but have not been im-
plemented.

Flattening. The HTL compiler flattens a given well-
formed and well-timed HTL program into a semantically
equivalent flat HTL program. A module of a flat HTL pro-
gram may only contain modes that do not contain a re-
fining program. Flattening works by essentially computing
the product of all modes in the refinement of each top-level
module of the original program. This is easy because these
modes all have the same period. Only modes in different
top-level modules may have different periods. In order to
maintain semantical equivalence, flattening needs to priori-
tize mode switch checking, i.e., mode switches in more ab-
stract modules need to be checked before mode switches in
more concrete modules [3]. Flattening an HTL program
may in theory result in generated code that is exponentially
larger than the size of the input program. However, exe-
cution of the generated code is very efficient and is readily
supported by existing versions of the E machine. An HTL
compiler that may shift the trade-off between code size and
execution efficiency more towards smaller code size by gen-
erating code directly from the unflattened input program is
future work. Note that for such a compiler the design of the
E machine may have to be modified as well.

Target machine. The HTL compiler generates E code,
which has a semantics that is designed to simplify code gen-
eration and can be executed very efficiently [5]. Besides
releasing tasks, E code also controls when port and com-
municator values are copied (or initialized) using so-called
drivers, which are implemented in C, one for each data type.
E code consists of the following instructions: a call(d) in-
struction executes the driver d; a release(t) instruction re-
leases the task t for execution by the EDF scheduler; a
future(g, a) instruction marks the E code at the address
a for future execution when the predicate g evaluates to
true, i.e., when g is enabled. We call g a trigger, which ob-
serves events such as time ticks and the completion of tasks.
Here, we only use triggers that are enabled when all ob-
served events have occurred. The E machine maintains a
FIFO queue of trigger-address pairs. If multiple triggers in
the queue are enabled at the same instant, the correspond-
ing E code is executed in FIFO order, i.e., in the order in
which the future instructions that created the triggers were
executed. An if (cnd, a) instruction branches to the E code
at address a if predicate cnd evaluates to true. We call cnd
a condition, which observes port or communicator states. A
jump(a) instruction is an absolute jump to E code address
a, and a return instruction completes the execution of an
E code sequence.

E code generation. Given a well-formed, well-timed,
schedulable, and flattened HTL program and a mapping of
its top-level modules to hosts, the HTL compiler generates
E code for the program and mapping by invoking Algo-
rithm 2 for each host, which invokes Algorithm 3 to gen-
erate E code for each module of the program, which finally
invokes Algorithm 4 to generate E code for each mode of
each module. The compiler conceptually divides each mode
into uniform temporal segments called units. The unit of
a mode is the smallest time interval at which any two con-
secutive communicator instances are accessed in that mode.
Given a mode m, we denote the duration of its unit by γ[m],
which is the gcd of all access periods of all communicators
accessed in m. The total number of units of m is π[m]/γ[m],
where π[m] is the period of m. The compiler generates sep-



arate E code blocks for each unit of a mode. The address
of an E code block corresponding to unit i of a mode m is
denoted by unit address [m, i]. This is a symbolic address to
which instructions may forward reference and therefore may
need fix up during compilation. We use similar notation for
other symbolic addresses.

We also use the following auxiliary operators. The driver
init(x) initializes the communicator or task port x. The set
readDrivers(m, u) contains the drivers that load the tasks
in mode m with values of the communicators that are read
by these tasks at unit u. The set writeDrivers(m, u) con-
tains the drivers that load the communicators with the out-
put of the tasks in mode m that write to these communica-
tors at unit u. The set portDrivers(t) contains the drivers
that load input ports of task t with the values of mod-
ule ports on which t depends. The set complete(t) con-
tains the events that signal the completion of the tasks on
which task t depends, and that signal the read time of the
task t. The set releasedTasks(m, u) contains the tasks in
mode m with no precedences that are released at unit u. The
set precedenceTasks(m) contains the tasks in mode m with
precedences.

Algorithm 2 generates instructions to initialize all com-
municators and modules. Here, we use instructions of the
form future(0,module address [M]), which effectively execute
the E code at the address module address [M] similar to a
jump-to-subroutine instruction. However, the actual mech-
anism is more complicated: for a future(0, a) instruction the
E machine appends the already enabled trigger-address pair
(true, a) to the trigger queue and then proceeds to the next
instruction. Only when the E machine reaches a return in-
struction, the machine checks the trigger queue again and
eventually removes the pair (true, a) from the trigger queue
and executes the E code at the address a but not before
it executed the E code of all other enabled trigger-address
pairs occurring before (true, a) in the queue.

Algorithm 2 GenerateECodeForProgramOnHost(P, h)

// initialize communicators
∀c ∈ comms(P):emit(call(init(c)))
// initialize and start each module
∀M ∈ modules(P):emit(future(0, module address [M]))
// end initialization phase
emit(return)
// generate code for each module
∀M ∈ modules(P):GenerateECodeForModuleOnHost(M, h)

Algorithm 3 generates instructions to initialize all task
ports in a module, and to start the execution of the module
by jumping to the E code of the first unit of the start mode
of the module. PC denotes the compiler’s program counter.

Algorithm 3 GenerateECodeForModuleOnHost(M, h)

set module address [M] to PC and fix up
// initialize task ports
∀p ∈ tpset(M):emit(call(init(p)))
// jump to the start mode at unit 0
emit(jump, unit address [start[M], 0])
// generate code for each mode
∀m ∈ modes(M):GenerateECodeForModeOnHost(m, h)

Algorithm 4 generates the E code for all units of a mode.
Only unit 0 contains instructions to check mode switching
because mode switching may only occur at the beginning
of a mode. When a mode switch occurs, E code execution
continues at the mode address [m′] of the target mode m

′, not
the unit address [m′, 0], since only at most one mode switch

Algorithm 4 GenerateECodeForModeOnHost(m, h)

u := 0
while u < π[m]/γ[m] do

set unit address [m, u] to PC and fix up
// update communicators with task output
∀d ∈ writeDrivers(m, u):emit(call(d))
// continue after other modules updated communicators
emit(future(0, PC + 2))
emit(return)
if (u = 0)
// check mode switches
∀(cnd, m′) ∈ switches(m):emit(if (cnd,mode address [m′]))
set mode address [m] to PC and fix up
end if

if (mode m is contained in a module on host h)
// read communicators into tasks
∀d ∈ readDrivers(m, u):emit(call(d))
// release tasks with no precedences
∀t ∈ releasedTasks(m, u):emit(release(t))
if (u = 0)
// release tasks with precedences
∀t ∈ precedenceTasks(m):
// wait for tasks on which t depends to complete
emit(future(complete(t), PC + 2))
emit(jump(PC + 5 + |portDrivers(t)|))
// release t after other modules updated communicators
emit(future(0, PC + 2))
emit(return)
// read ports of tasks on which t depends, then release t
∀d ∈ portDrivers(t):emit(call(d))
emit(release(t))
emit(return)

end if

end if

// continue mode after γ[m] time
emit(future(γ[m],unit address [m, u + 1 mod π[m]/γ[m]]))
emit(return)
u := u + 1
end while

per time instant may occur. At each time instant, the gener-
ated E code uses future(0, a) instructions to write communi-
cators always before any communicator is read making sure
that the latest communicator values are used across all mod-
ules. Communicator and port values need not be buffered
since tasks are invoked at most once per mode period and
communicator-to-port transactions are done as soon as pos-
sible while port-to-communicator transactions are done as
late as possible. It is therefore sufficient to have a single
copy of each communicator and task port on each host. Ad-
ditional memory is not required.

7. SCHEDULABILITY
The schedulability analysis for HTL is given a program P,

a set hset of hosts, a host map hmap (an assignment from
modules to hosts), a WCET map wemap (an assignment from
tasks to positive integers), and a WCTT map wtmap (also an
assignment from tasks to positive integers). For scheduling,
we extend program configurations with a map tmap that as-
signs to every task t in the task set, a nonnegative integer
tmap(t) that indicates the number of time units that the cur-
rently active invocation of t has been executed. An extended
program trace is a sequence of such extended configurations.
A scheduler is a function that maps every finite extended
program trace (representing the past execution of the pro-
gram) which ends in a waiting configuration, to a scheduling
decision for every time unit and every host: it may decide
to keep the host idle (no task is chosen from the task set),
execute a task (from the task set), or transmit the output
of a task (from the task set). The scheduler is assumed to



be discrete time; i.e., it makes decisions at a clock tick. The
clock tick is synchronized over all hosts and is a harmonic
fraction of the program clock (which is the minimum inter-
val between communicator accesses or mode switches). The
WCETs and the WCTTs are specified as multiples of clock
ticks.

The scheduler is time- and transmission-safe if every infi-
nite extended program trace produced by the scheduler has
the following two properties: (1) a task writing to a com-
municator must have completed execution and output trans-
mission before the communicator update; and (2) if a host
is transmitting, then all other hosts are listening (i.e., nei-
ther executing nor transmitting). The schedulability problem
asks, given P, hset, hmap, wemap, and wtmap, if there exists
a time- and transmission-safe scheduler. It can be solved in
time linear in the number of extended program configura-
tions [6], but this is often too expensive.

For efficiency reasons, we solve the schedulability problem
only for flat HTL programs, namely, for the top-level pro-
gram abs(P). Then, due to the HTL constraints on refine-
ment, we can construct a scheduler for the complete program
P from a scheduler for abs(P). This is achieved by iteratively
scheduling every task execution during time slots in which
the parent task is executed; see [3]. In other words, HTL
guarantees that top-level schedulability is a sufficient con-
dition for schedulability. For top-level schedulability on a
single host, we use an EDF scheduling algorithm for tasks
with precedences [7]. For top-level schedulability on multi-
ple hosts, one needs to account for transmission times, and
we can use the techniques of [4].

8. RELATED WORK
Timed languages. HTL builds on the LET concept pi-

oneered by the Giotto language [1]. LET-based languages
include TDL [8], which like Giotto is restricted to one level
of periodic tasks; Timed Multitasking (TM) [9], which de-
fines LET properties through deadlines; and xGiotto [10], an
event-triggered LET language. HTL differs from Giotto in
that logical execution times are defined through the reading
and writing of communicator instances. This adds consid-
erable flexibility, and naturally supports task precedences
and hierarchical refinement. At the other extreme, in fully
event-triggered timed languages, such as xGiotto, schedul-
ing quickly becomes intractable.

Synchronous languages. Esterel [11], Lustre [12], and
Signal [13] are based on the synchrony assumption that the
execution platform is sufficiently fast as to complete exe-
cution before the arrival of the next environment event. As
with timed languages, the behavior of synchronous programs
is deterministic. While the synchronous languages theoreti-
cally subsume timed languages, HTL offers explicitly a pro-
gram structure that supports the refinement of tasks into
task groups with precedences.

Other real-time languages. Most real-time modeling
languages such as Simulink [14] rely on simulators and code
generators (e.g., Real-Time Workshop [15]) to define the se-
mantics. There are also soft real-time languages for special-
ized domains: nesC [16] is targeted towards sensor networks;
Erlang [17] towards telecommunication; Flex [18] offers flex-
ible trade-offs between time, resources, and precision. Pro-
gram execution in any of these languages is not schedule
independent.

9. CONCLUSION
We presented HTL, a hierarchical coordination language

for safety critical hard real-time applications. HTL is built

upon the Logical Execution Time model of task execution
and allows parallel composition of modules and horizontal
refinement of tasks without modifying the timing behavior.
The hierarchical layers of abstraction allows efficient and
concise specification without overloading program analysis.
We introduced the restrictions on a general HTL program to
guarantee schedulability of lower levels if higher levels of ab-
straction are schedulable. We also presented the operational
semantics for HTL and the implementation of an HTL com-
piler. The compiler checks well-formedness, well-timedness,
and schedulability of a given HTL program, flattens the pro-
gram into a semantically equivalent HTL program with only
top-level modules, and then generates code for the Embed-
ded Machine. A steer-by-wire system was used to illustrate
the use and the features of HTL.
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