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Abstract. Giotto is a platform-independent language for specifying
software for high-performance control applications. In this paper we
present a new approach to the compilation of Giotto. Following this ap-
proach, the Giotto compiler generates code for a virtual machine, called
the E machine, which can be ported to different platforms. The Giotto
compiler also checks if the generated E code is time safe for a given plat-
form, that is, if the platform offers sufficient performance to ensure that
the E code is executed in a timely fashion that conforms with the Giotto
semantics. Time-safety checking requires a schedulability analysis. We
show that while for arbitrary E code, the analysis is exponential, for
E code generated from typical Giotto programs, the analysis is polyno-
mial. This supports our claim that Giotto identifies a useful fragment of
embedded programs.

1 Introduction

We have advocated a platform-independent approach to embedded program-
ming [4,5]: the programmer specifies the timing and functional aspects of the
program, and the compiler checks if the program can be executed as intended
on a particular platform in a particular environment. Besides providing the pro-
grammer with an application-level abstraction, and the obvious benefits of code
reuse, this approach offers maximal flexibility in the implementation: failure to
compile may be equally due to platform performance (CPUs too slow or too
few) and platform utilization (scheduling scheme inadequate) and environment
behavior (events too frequent), and therefore may be remedied by addressing
any one or more of these factors. Perhaps the most important benefit of the
platform-independent approach is that it permits a clean separation of timing
and function. An embedded program written in this way, called an E program,
consists of a timing part and a functional part. The functional part is a set of soft-
ware processes, and the timing part is a control-flow skeleton that supervises the
invocation of the software processes relative to events. Platform independence
means that the programmer can think of each software process as an atomic
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operation on a state; that is, as an infinitely fast, terminating program without
internal synchronization points. The programmer’s fiction of atomicity can be
implemented by nonpreemption, as in the synchronous reactive languages [3]. We
pursue maximal flexibility in the implementation and permit the system sched-
uler to preempt software processes as long as the compiler can ensure that the
scheduler maintains logical atomicity. An execution of the program that main-
tains this fiction is called time safe. Thus a central task of the compiler is to
check the time safety of all possible executions of a given E program on a given
platform in a given environment. In other words, a compiler that checks time
safety guarantees that the functional part of an E program can be executed as
specified by the timing part.

Let us be more precise. The functional part of an E program consists of
two kinds of software processes. Software processes with nonnegligible WCETs
(worst-case execution times) need to be scheduled, and their execution can be
preempted. These processes are called tasks. A typical example of a task is a
control law computation. On the other hand, software processes with negligible
WCETs —i.e., processes that can always be completed before the next environ-
ment event— can be executed synchronously. These processes are called drivers.
A typical example of a driver is a sensor reading, or an actuator update. Both
tasks (scheduled computation) and drivers (synchronous computation) are writ-
ten in a conventional language, such as C. The timing part of an E program
consists of a set of E actions. Each E action is triggered by an event, and may
call a driver, which is executed immediately, or schedule a task, which is handed
over to the scheduler of the operating system. It is important to note that the
schedule action is independent of the scheduling scheme: between events that
are separated in time, the OS allocates scheduled tasks to CPUs, but how this is
done, is not specified by the E program. In this model, time safety —the logical
atomicity of tasks— means that during an execution, the state of a scheduled
task is not accessed (by a driver or another task) until the task completes. We
have introduced two languages for specifying E actions. The E machine [5] is a
virtual machine that executes E code, whose instructions can specify arbitrary
sequences of E actions. Giotto [4] is a structured language for specifying limited
combinations of E actions that occur in typical control applications, where a
controller may switch between modes, and within each mode, periodically in-
voke a given set of tasks and drivers. From a Giotto source program we generate
E code, similar to the way in which assembly code is generated from high-level
programming languages. This offers portability, as Giotto programs can now be
run on any implementation of the E machine.

Time safety is a property of an individual program execution. Schedulability is
the existence of a scheduler that guarantees that all executions of a program are
time safe. Here, we restrict ourselves to single-CPU platforms. Such a platform is
specified by a WCET for each task. We solve two schedulability problems. First,
we show that for arbitrary E code (defined in Section 2), schedulability checking
is difficult: the problem corresponds to a game between the environment and
the scheduler [1] on an exponential state space, and is therefore EXPTIME-
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complete (Section 3). Second, we show that for E code that is generated from
a Giotto source program in a specific way (defined in Section 4), EDF (earliest-
deadline-first) scheduling is well-defined and optimal. This fixes the strategy of
the scheduler, and thus reduces schedulability checking to a reachability problem
on an exponential state space, which is PSPACE-complete. Indeed, if we know
that all modes of a Giotto program are reachable, then schedulability can be
checked by solving a linear utilization equation for each mode independently, no
matter how the program switches modes. This can be done in almost quadratic
time (Section 5). These results give a technical justification for our intuition
that Giotto captures a natural, widely applicable, and also easily schedulable
fragment of E programs. They also provide the basis for the Giotto compiler
we have implemented. The compiler generates E code following the algorithm of
Section 4, and checks schedulability using the method of Section 5.

2 E Code

The E machine [5] is a virtual machine that mediates between the physical
processes and the software processes of an embedded system through a control
program written in E code. E code controls the execution of software processes
in relation to physical events, such as clock ticks, and software events, such as
task completion. E code is interpreted on the E machine in real time. In this
paper, we restrict our attention to the input-triggered programs of [5]; they are
time-live, that is, all synchronous computation is guaranteed to terminate.

Syntax. The E machine supervises the execution of tasks and drivers that com-
municate via ports. A task is application-level code that implements a compu-
tation activity. A driver is system-level code that facilitates a communication
activity. A port is a typed variable. Given a set P of ports, a P state is a func-
tion that maps each port p ∈ P to a value of the appropriate type. The set P
is partitioned into three disjoint sets: a set PE of environment ports, a set PT

of task ports, and a set PD of driver ports, updated respectively by the physical
environment, by tasks, and by drivers. The environment ports include pc, a dis-
crete clock. An input event is a change of value at an environment or task port,
say, at a sensor ps. An input event is observed by the E machine through an
event interrupt that can be characterized by a predicate, namely, p′

s �= ps, where
p′

s refers to the current sensor reading, and ps refers to the most recent previous
sensor reading.

All information between the environment and the tasks flows through drivers:
environment ports cannot be read by tasks, and task ports cannot be read by
the environment. Formally, a driver d consists of a set P [d] ⊆ PD of driver ports,
a set I[d] ⊆ PE ∪ PT of read environment and task ports, and a function f [d]
from P [d]∪ I[d] states to P [d] states. A task t consists of a set P [t] ⊆ PT of task
ports, a set I[t] ⊆ PD of read driver ports, and a function f [t] from P [t] ∪ I[t]
states to P [t] states. The E machine handles event interrupts through triggers.
A trigger g consists of a set P [g] ⊆ PE ∪ PT of monitored environment and task
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ports, and a predicate f [g], which evaluates to true or false over each pair (s, s′)
of P [g] states. We require that f [g] evaluates to false if s = s′. The state s is the
state of the ports at the time instant when the trigger is activated. The state s′ is
the state of the ports at the time instant when the trigger is evaluated. All active
triggers are logically evaluated with each event interrupt. An active trigger that
evaluates to true is enabled, and may cause the E machine to execute E code.
The trigger g is a time trigger if P [g] = {pc} and f [g] has the form p′

c = pc + δ,
for some positive integer δ ∈ N>0. A time trigger monitors only the clock and
specifies an enabling time δ, which is the number of clock ticks after activation
before the trigger is enabled.

The E machine has three non-control-flow instructions. An E instruction is
either call(d), for a driver d; or schedule(t), for a task t; or future(g, a), for
a trigger g and an address a. The call(d) instruction invokes the driver d. The
schedule(t) instruction schedules the task t for execution by inserting it into
the ready queue of the OS. The future(g, a) instruction marks the E code at
address a for possible execution at a future time when the trigger g becomes
enabled. The E machine also has two control-flow instructions: the conditional
jump instruction if(f, a), where f is a predicate over the driver ports PD, and
a is the target address of the jump if f is true; and the termination instruction
return, which ends the execution of E code. Formally, an E program consists
of a set P of ports, a set D of drivers, a set T of tasks, a set G of triggers, a
set A of addresses, an initial address a0 ∈ A, and for each address a ∈ A, an E
or control-flow instruction ins(a), and a successor address next(a). All sets that
are part of an E program are finite. We require that E code execution always
terminates, i.e., for each address a ∈ A and all branches of if instructions, a
return instruction must be reached in a finite number of steps. The E program
is time-triggered if all triggers g ∈ G are time triggers.

Example. We illustrate the semantics of E code using a simple program with two
tasks, t1 and t2. The task t2 is executed every 10 ms; it reads sensor values using
a driver ds, processes them, and writes its result to an interconnect driver di. The
task t1 is executed every 20 ms; it obtains values from driver di (the result of t2),
computes actuator values, and writes to an actuator driver da. There are two
environment ports (the discrete clock pc and a sensor ps), two task ports (for the
results of the two tasks), and three driver ports (the destinations of the drivers).
The following time-triggered E program implements the above behavior:

a0: call(da) a1: call(ds)
call(ds) schedule(t2)
call(di) future(p′

c = pc + 10, a0)
schedule(t1) return
schedule(t2)
future(p′

c = pc + 10, a1)
return

There are two blocks of E code; the block at a0 is executed initially. The E ma-
chine processes each instruction in logical zero time. First, it calls the driver da
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and waits until the execution of da is finished (in logical zero time), and then
proceeds immediately to the next instruction. Once ds and di have been called,
all driver ports are updated. Then the E machine schedules the task t1 by adding
it to the ready queue of the operating system (which is initially empty). As we
assume no particular scheduling scheme, we do not know the organization of
the ready queue, and maintain the scheduled tasks as a set, called the task set.
After inserting t1 into the task set, the E machine immediately processes the
next instruction and adds t2 to the task set. Next, it proceeds to the future
instruction, which creates a trigger binding (p′

c = pc + 10, a1, s), where s is the
current value of pc, and appends it to a queue, called trigger queue, of active
trigger bindings (initially empty). The trigger queue ensures that the E machine
will execute the E code block at a1 as soon as the trigger p′

c = pc +10 is enabled.
For now the E machine proceeds to the return instruction. Since no active trig-
gers are enabled, the E machine relinquishes control to the scheduler of the OS,
which takes over to schedule the tasks t1 and t2 in the task set. The E machine
wakes up again when an input event occurs that enables an active trigger. In
particular, at 10 ms the trigger binding (p′

c = pc + 10, a1, s) is removed from the
trigger queue, and the E code at address a1 is executed. The execution of block
a1 is similar to that of block a0. The whole process repeats every 20 ms.

The above scenario assumes that the execution of a task has completed before
it is scheduled again, in other words, we need that w(t1) + 2 · w(t2) ≤ 20, where
w(t) is the WCET of task t. This requirement must be checked by the compiler.
We will see in the next section how this requirement can be derived automatically
and checked statically.

Semantics. The execution of an E program yields an infinite sequence of program
configurations, called trace. Each configuration tracks the values of all ports, the
program counter, the task set, and the trigger queue. Formally, a (program)
configuration c = (s′, a′,Trigs,Tasks) consists of (1) a P state s′, called port
state; (2) an address a′ ∈ A ∪ {⊥}, called program counter, where the special
symbol ⊥ indicates termination; (3) a queue Trigs of trigger bindings (g, a, s),
called trigger queue, where g is a trigger, a is an address, and s is a P [g] state;
and (4) a set Tasks of triples (t, s, ∆), called task set, where t is a task, s is
a P [t] ∪ I[t] state, and ∆ ∈ N is the CPU time, i.e., the amount of time that
the task has run. We assume that CPU time is given in discrete units of the
clock pc, which may represent CPU cycles. The ready tasks of configuration c
are defined as Tc = {t | ∃s, ∆. (t, s, ∆) ∈ Tasks}. The configuration c is initial if
the program counter is the initial address (a′ = a0), and the trigger queue and
task set are empty (Trigs = Tasks = ∅). A trigger binding (g, a, s) is enabled at
c if the trigger predicate f [g] evaluates to true over the pair (s, s′) of P [g] states.
The configuration c is input-enabling if a′ = ⊥ and Trigs contains no enabled
trigger bindings; otherwise, c is input-disabling.

The E machine runs as long as the program configuration is input-disabling.
If the program counter a′ is different from ⊥, then the instruction ins(a′) is
executed. This updates the current configuration c = (s′, a′,Trigs,Tasks) to a
new configuration succ(c) as follows. We only specify the parts of the config-
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uration succ(c) that are different from c: if ins(a′) = call(d), then the new
P [d] state is f [d](s′(P [d] ∪ I[d])), and the new program counter is next(a′); if
ins(a′) = schedule(t), then the new task set is Tasks ∪ {(t, s′(P [t] ∪ I[t]), 0)},
and the new program counter is next(a′); if ins(a′) = future(g, a), then the new
trigger queue is Enqueue(Trigs, (g, a, s′(P [g]))), and the new program counter is
next(a′); if ins(a′) = if(f, a) and f evaluates to true (respectively, false) over s′,
then the new program counter is a (respectively, next(a′)); if ins(a′) = return,
then the new program counter is ⊥. Note that the call instruction updates the
port state, the schedule instruction updates the task set, and the future in-
struction updates the trigger queue. When a return instruction is reached, the
program counter becomes ⊥. Consider the configuration c = (s′,⊥,Trigs,Tasks).
If some trigger binding in Trigs is enabled at s′, then let (g, a, s) be the first such
binding, and define succ(c) to be the configuration that differs from c in that
the new program counter is a, and the new trigger queue results from Trigs by
removing (g, a, s). This leads to the execution of more instructions. If no trigger
binding in Trigs is enabled at s′ (i.e., c is input-enabling), then event interrupts
are enabled and the E machine relinquishes control of the CPU to the scheduler
until a new input event enables an active trigger binding. While the E machine
waits for an input event, scheduled computation can be performed.

A trace is a sequence of configurations such that from one configuration to
the next, there is either an environment event, an elapse of one time unit possibly
followed by a software event (i.e., the completion of a task), or the execution of
an instruction of E code. An environment event causes a nondeterministic change
in the values of some environment ports; the choice is up to the environment.
A time elapse causes a nondeterministic change in the CPU time of some task;
the choice of task is up to the scheduler. If the chosen task completes, it also
causes a deterministic change in the value of the task ports according to the task
function. The execution of E code causes a deterministic change as specified by
the function succ defined above. Formally, given an E program Π with task
set T , a WCET map for Π is a map w: T → N>0 that assigns to each task
a positive integer. A trace of the pair (Π, w) is a finite or infinite sequence of
program configurations such that (1) the first configuration is initial and (2) for
any two adjacent configurations c and c′, one of the following holds:

(Environment event) c is input-enabling, and c′ differs from c at most in the
values of environment ports other than pc. In this case, we write e-step(c, c′).

(Time elapse with idle CPU ) c is input-enabling, and c′ results from c by incre-
menting the clock pc. In this case, we write t-step(c, ∅, c′).

(Time elapse with used CPU ) c is input-enabling, and c′ results from c by in-
crementing the clock pc. In addition, there is a task t such that the task
set of c contains a triple of the form (t, s, ∆), and either ∆ + 1 < w(t) and
the task set of c′ results from c by replacing (t, s, ∆) with (t, s, ∆ + 1); or
∆ + 1 = w(t) and the task set of c′ results from c by removing (t, s, ∆), and
the P [t] state of c′ is f [t](s). In this case, we write t-step(c, t, c′).

(E code instruction) c is input-disabling, and c′ = succ(c).
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Note that we consider only traces where all task invocations consume their full
WCETs; this is a worst-case assumption necessary for schedulability analysis. A
trace with atomic task execution of Π is a sequence of configurations such that
(1) the first configuration is initial and (2) for any two adjacent configurations c
and c′, either (Environment event); or (E code instruction); or (Time elapse) c is
input-enabling, the task set of c is empty, and c′ results from c by incrementing
the clock pc; or (Task completion) c is input-enabling, the task set of c contains
a triple of the form (t, s, 0), the task set of c′ results from c by removing (t, s, 0),
and the P [t] state of c′ is f [t](s). In a trace with atomic task execution, all tasks
are executed in zero time.

3 Time-Safety Checking for E Code

An E program executes as intended only if the platform offers sufficient perfor-
mance so that the computation of a task t always finishes before drivers access
task ports of t, and before another invocation of t is scheduled. A trace that sat-
isfies these conditions is called time safe, because the outcomes of if instructions
cannot be distinguished from a trace with atomic task execution. Formally, a con-
figuration c with program counter a is time safe [5] if either a = ⊥, or for every
ready tast t ∈ Tc, the instruction ins(a) that is executed at c obeys the following
two conditions: if ins(a) = call(d), then P [d] ∩ I[t] = ∅ and I[d] ∩ P [t] = ∅; and
if ins(a) = schedule(t′), then P [t′] ∩ P [t] = ∅. If one of these two conditions is
violated, then we say that the configuration c conflicts with the task t. A trace
is time safe if it contains only time-safe configurations.

Given a nonempty finite trace τ , let last(τ) be the final configuration of τ .
A scheduling strategy is a function that maps every nonempty finite trace τ
whose final configuration last(τ) is input-enabling, either to ∅ (meaning that
no task is scheduled), or to some ready task t ∈ Tlast(τ). An infinite trace τ =
c0c1c2 . . . is an outcome of the scheduling strategy σ if for all nonempty finite
prefixes τ ′ = c0 . . . cj of τ , if cj is input-enabling, then either e-step(cj , cj+1)
or t-step(cj , σ(τ ′), cj+1). The E program Π is schedulable for the WCET map
w if there exists a scheduling strategy σ such that all infinite traces of (Π, w)
that are outcomes of σ are time safe. The schedulability problem for E code asks,
given an E program Π and a WCET map w for Π, if Π is schedulable for w.

To solve the schedulability problem we need to eliminate some possible
sources of infinity. An E program Π is propositional if it satisfies the following
conditions: (1) all ports of Π except the clock pc are boolean; (2) for all drivers
d of Π, we have pc �∈ I[d]; and (3) for all triggers g of Π, either pc �∈ P [g], or g
is a time trigger. As time safety implies that a task must finish before it can be
invoked again, along a time-safe trace, the size of the task set is always bounded
by the number of tasks. However, the size of the trigger queue may grow un-
bounded [5]. A configuration c is k-bounded, for a positive integer k ∈ N>0, if
the trigger queue of c contains at most k trigger bindings. A trace is k-bounded
if it contains only k-bounded configurations. The bounded schedulability problem
asks, given an E program Π, a WCET map w for Π, and a bound k ∈ N>0, if
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there is a scheduling strategy σ such that all infinite traces of (Π, w) that are
outcomes of σ are both time safe and k-bounded.

Two-player safety games. Schedulability can be solved as a safety game on the
configuration graph [1]. A two-player safety game [2] G = (V, E, V0, U) consists
of a finite set V of vertices, a relation E ⊆ V ×V of edges, a set V0 ⊆ V of initial
vertices, and a set U ⊆ V of safe vertices. The vertices V are partitioned into V1
and V2. The game is turn-based and proceeds in rounds. For i = 1, 2, when the
game is in v ∈ Vi, player i moves to v′ such that E(v, v′). The goal of player 1 is
to stay inside the safe set U . A source-v0 run is an infinite sequence v0v1v2 . . .
of vertices in V such that E(vj , vj+1) for all j ≥ 0. A strategy for player i, with
i = 1, 2, is a function fi: V ∗ ×Vi → V such that for every finite sequence r ∈ V ∗

and vertex v ∈ Vi, we have E(v, fi(r, v)). For a player-1 strategy f1, a player-2
strategy f2, and a state v0 ∈ V , the outcome ρf1,f2(v0) = v0v1v2 . . . is a source-v0
run such that for all j ≥ 0, for i = 1, 2, if vj ∈ Vi, then E(vj , fi(v0 . . . vj−1, vj)).
The outcome ρf1,f2(v0) is winning for player 1 if vj ∈ U for all j ≥ 0. The
strategy f1 is winning for player 1 if for all initial vertices v0 ∈ V0 and all
player-2 strategies f2, the outcome ρf1,f2(v0) is winning for player 1.

The schedulability game. Let Π be a propositional E program with ports P ,
tasks T , triggers G, and addresses A. Let w be a WCET map for Π, and
let k ∈ N>0. We define the schedulability game GΠ,w,k as follows. Player 1 is
the scheduler; it chooses during time elapses which task to run on the CPU.
The environment is player 2; it chooses environment events. The actions of the
E machine when executing E code are deterministic, so it does not matter to
which player we attribute them; we choose player 2. From each configuration
c = (s′, a′,Trigs,Tasks) of Π we obtain its clock abstraction [c] as follows: re-
move the value of pc from the port state s′, and for each time trigger g, replace
each trigger binding (g, a, s) in Trigs by (g, a, s′(pc) − s). Hence, for each active
time trigger, the clock abstraction [c] tracks only the number of clock ticks since
the trigger was activated. A configuration c of Π conforms with w if ∆ ≤ w(t)
for each triple (t, s, ∆) in the task set of c. Let CΠ,w,k be the set of clock ab-
stractions for all k-bounded configurations of Π that conform with w. As Π is
propositional, the set CΠ,w,k is finite. Specifically, the size of CΠ,w,k is bounded
by 2|P | · |A| · (|T | · 2|P | · α) · (|G| · |A| · 2|P | · β · k), where α = max {w(t) | t ∈ T},
and β is the greatest enabling time for all time triggers in G.

The vertices of the schedulability game GΠ,w,k are V = CΠ,w,k×{1, 2}, where
the second component indicates which player can choose the next move, that is,
the second component defines the subsets V1 and V2. The initial vertices are
those of the form ((·, a0, ∅, ∅), 2), where a0 is the initial address of Π. There are
three types of edges. The environment chooses new values for the environment
ports (other than pc): for all configurations c and c′ with e-step(c, c′), there
are two edges (([c], 2), ([c′], 2)) and (([c], 2), ([c′], 1)). The E machine executes
E code in input-disabling configurations: if c is input-disabling, then there is
an edge (([c], 2), ([succ(c)], 2)). The scheduler assigns the CPU to tasks: for all
configurations c and c′ with t-step(c, ·, c′), there is an edge (([c], 1), ([c′], 2)). A
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vertex ([c], i), for i = 1, 2, is in the safe set U if the configuration c is time
safe. The objective of the scheduler is to ensure that the game always remains
in U . A winning strategy of the scheduler prescribes a scheduling strategy for the
program Π that guarantees time safety and k-boundedness under the WCET
assumption w, no matter what the environment does. Conversely, if the scheduler
does not win, then by the determinacy of the safety game GΠ,w,k, there is an
environment strategy that forces the game into a time-safety or k-boundedness
violation, no matter what the scheduler does. Since safety games can be solved
in linear time [7], this gives an exponential upper bound for checking bounded
schedulability.

Hardness. The bounded schedulability problem is hard for EXPTIME by a re-
duction from alternating linear-space Turing machines. Let M be an alternating
Turing machine that uses 	 · n tape cells for inputs of length n, and makes bi-
nary existential and universal choices. For an input x of length n, we construct
a propositional E program ΠM,x (with the WCETs of all tasks being 1) such
that ΠM,x is two-bounded schedulable iff M does not accept x. For each control
state q of M , and each tape-head position h ∈ {1, . . . , 	 · n}, the program has an
address (q, h) that begins a block of E code. We have 	 ·n task ports to keep the
tape contents. The initial block of E code writes x followed by blanks to these
ports, and jumps to (q0, 1), where q0 is the initial control state of M . We encode
the existential moves of M as choices made by the environment, that is, if q is
an existential control state, then the E program reads an environment port and
goes to one or the other successor configuration of M . For universal moves, the
program schedules two tasks, each with WCET 1. Each task triggers an event
upon completion. This event writes the identity of the task to a special port pu.
The scheduler chooses which task to run first, and this choice determines the
order in which the tasks finish, and thus the value of pu after 2 time units. The
E program reads the new value of pu and goes to the corresponding successor
configuration of M . Every step of the simulation gives rise to a solvable schedul-
ing problem. Finally, as soon as the Turing machine reaches an accepting state,
the E program goes to an address that sets up an unsolvable scheduling prob-
lem. The trigger queue contains at any time at most two trigger bindings, and
all numbers are bounded by a small constant.

Theorem 1. Checking bounded schedulability for propositional E programs is
complete for EXPTIME (even if all numbers are coded in unary).

4 E Code Generation from Giotto

4.1 The Giotto Language

Giotto [4] is a programming language for time-triggered applications. Figure 1
shows an example of a Giotto program. The Giotto compiler generates time-
triggered E code from a Giotto program. We demonstrate code generation based
on the abstract syntax of a program, rather than its concrete syntax, and we use
the program from Figure 1 as a running example.
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sensor gps uses dev [gps]; toggle uses dev [toggle];
actuator servo uses dev [servo];
output
ctrlOut := init[ctrlOut] uses copy[ctrlOut];
filterOut := init[filterOut] uses copy[filterOut];

task control(ctrlIn) output (ctrlOut) private () {
schedule task [control](ctrlIn, ctrlOut); }

task filter(filterIn) output (filterOut) private (filterState := init[filterState]) {
schedule task [filter ](filterIn, filterOut, filterState); }

task adaptiveFilter(filterIn) output (filterOut) private (adaptiveState := init[adaptiveState]) {
schedule task [adaptiveFilter ](filterIn, filterOut, adaptiveState); }

driver inputCtrl(filterOut) output (ctrlIn) {
call driver [inputCtrl](filterOut, ctrlIn); }

driver inputFilter(gps) output (filterIn) { call driver [inputFilter ](gps, filterIn); }
driver updateServo(ctrlOut) output (servo) { call driver [updateServo](ctrlOut, servo); }
driver switchFilter(toggle) output (ctrlOut, filterOut) {
if condition[switchFilter ](toggle) call driver [switchFilter ](ctrlOut, filterOut); }

start normal {
mode normal(ctrlOut, filterOut) period 6 {
actfreq 1 do servo(updateServo);
exitfreq 2 do adaptive(switchFilter);
taskfreq 1 do control(inputCtrl);
taskfreq 2 do filter(inputFilter); }

mode adaptive(ctrlOut, filterOut) period 12 {
actfreq 2 do servo(updateServo);
exitfreq 3 do normal(switchFilter);
taskfreq 2 do control(inputCtrl);
taskfreq 3 do adaptiveFilter(inputFilter); }}

Fig. 1. A Giotto program with two modes

A Giotto program begins with declarations of a set SensePorts of sensor
ports, a set ActPorts of actuator ports, and a set OutPorts of task output ports.
The set Ports of all program ports also includes the set InPorts of task input
ports and the set PrivPorts of task private ports, which are declared for each
task separately. A sensor or actuator port p requires the declaration of a device
driver dev [p]. For example, the sensor port gps uses the device driver dev [gps]
to read new sensor values. A task output port p requires the declaration of an
initialization driver init [p] and a copy driver copy [p]. Each task output port is
double-buffered, that is, it is implemented by two copies, a local copy that is used
by the task only, and a global copy that is accessible to the rest of the program.
The initialization driver initializes the local copy; the copy driver copies data
from the local copy to the global copy. The second part of a Giotto program are
the task declarations. A Giotto task t has a set In[t] ⊆ InPorts of input ports, a
set Out [t] ⊆ OutPorts of output ports, a set Priv [t] ⊆ PrivPorts of private ports,
and a task function task [t] from the input and private ports to the private and
output ports. In the example, the task filter has an input port filterIn, an output
port filterOut , a private port filterState, and the task function task [filter ]. Private
ports have initialization drivers similar to task output ports. Each task function
is implemented as an E machine task. The third part of a Giotto program are
the driver declarations. Giotto drivers transport data between ports and initiate
mode changes. A Giotto driver d has a set Src[d] ⊆ Ports of source ports,
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an optional driver guard condition[d], which is evaluated on the source ports
and returns a boolean, a set Dst [d] ⊆ Ports of destination ports, and a driver
function driver [d] from the source to the destination ports. The driver guard
is implemented as a branching condition of the E machine; the driver function,
as an E machine driver. The driver inputCtrl is a task driver that transports
data from the filterOut port to the input port ctrlIn of the control task. The
driver updateServo is an actuator driver that updates the servo port with data
from the ctrlOut port. The driver switchFilter is a mode driver that initiates
a mode change whenever the driver guard condition[switchFilter ] evaluates to
true. Moreover, the driver function driver [switchFilter ] may update the ctrlOut
and filterOut ports when changing mode.

The final part of a Giotto program declares the set Modes of modes and the
start mode start ∈ Modes. In the example, there are two modes, normal and
adaptive, the former being the start mode. A mode m has a period π[m] ∈ Q, a set
ModePorts[m] ⊆ OutPorts of mode ports, a set Invokes[m] of task invocations,
a set Updates[m] of actuator updates, and a set Switches[m] of mode switches.
For example, the mode period π[normal ] of the normal mode is 6 ms, and its
mode ports are ctrlOut and filterOut . For simplicity, we use milliseconds though
another unit of time is possible. A task invocation (ωtask , t, d) ∈ Invokes[m]
consists of a task frequency ωtask ∈ N relative to the mode period, a task t,
and a task driver d, which loads the task inputs. For example, the normal mode
invokes the control task with the task driver inputCtrl and a period of 6 ms (i.e.,
once per mode period) as well as the filter task with the task driver inputFilter
and a period of 3 ms. An actuator update (ωact , d) ∈ Updates[m] consists of
an actuator frequency ωact ∈ N, and an actuator driver d. For example, the
normal mode updates the servo port every 6 ms using the updateServo driver.
A mode switch (ωswitch , m′, d) ∈ Switches[m] consists of a mode-switch frequency
ωswitch ∈ N, a target mode m′ ∈ Modes, and a mode driver d, which governs the
mode change. For example, the normal mode may change to the adaptive mode
every 3 ms using the switchFilter driver.

A Giotto program is well-timed [4] if for all modes m ∈ Modes, all task
invocations (ωtask , t, ·) ∈ Invokes[m], and all mode switches (ωswitch , m′, ·) ∈
Switches[m], if ωtask/ωswitch �∈ N, then there exists a task invocation (ω′

task , t, ·)∈
Invokes[m′] with π[m]/ωtask = π[m′]/ω′

task . Well-timedness ensures that mode
changes do not terminate tasks: if a mode change occurs when a task may not
be completed, then the same task must be present also in the target mode. The
Giotto program in Figure 1 is well-timed, because the control task, which may
be preempted by a mode change, runs in both modes with the same period.
All non-well-timed Giotto programs are rejected as ill-formed. A complete list
of syntactic criteria for the well-formedness of a Giotto program, such as the
condition that the ports of different tasks be disjoint, is given in [4].

For a mode m, the least common multiple of the task, actuator, and mode-
switch frequencies of m is called the number of units of m, and is denoted
ωmax [m]. For example, ωmax [normal ] is 2, and ωmax [adaptive] is 6. Thus a unit
in the normal mode is equivalent to 3 ms, and a unit in the adaptive mode
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is equivalent to 2 ms. We use an integer u ∈ {0, . . . , ωmax [m] − 1} as the unit
counter for a mode m. Given a mode m ∈ Modes and a unit u with 0 ≤ u <
ωmax [m], we need the following auxiliary operators for E code generation:

taskInvocations(m, u) := {(ωtask , t, d) ∈ Invokes[m] | u · ωtask/ωmax [m] ∈ N}
tasks(m, u) := {t | (·, t, ·) ∈ taskInvocations(m, u)}
taskDrivers(m, u) := {d | (·, ·, d) ∈ taskInvocations(m, u)}
taskOutputPorts(m, u) := {p | t ∈ tasks(m, u) ∧ p ∈ Out [t]}
taskSensorPorts(m, u) := {p | d ∈ taskDrivers(m, u) ∧ p ∈ Src[d] ∩ SensePorts}
preemptedTaskPeriods(m, u) :=

{ωmax [m]/ωtask | (ωtask , ·, ·) ∈ Invokes[m] \ taskInvocations(m, u)}
actuatorDrivers(m, u) := {d | (ωact , d) ∈ Updates[m] ∧ u · ωact/ωmax [m] ∈ N}
actuatorPorts(m, u) := {p | d ∈ actuatorDrivers(m, u) ∧ p ∈ Dst [d]}
modeSwitches(m, u) :=

{(m′, d) | (ωswitch , m′, d) ∈ Switches[m] ∧ u · ωswitch/ωmax [m] ∈ N}
modeSensorPorts(m, u) :=

{p | (·, d) ∈ modeSwitches(m, u) ∧ p ∈ Src[d] ∩ SensePorts}

Consider the taskInvocations operator. For example, taskInvocations(normal , 1)
returns {(2,filter , inputFilter)}, because the filter task is the only task that
is invoked at unit 1 in the normal mode. At unit 0 the operator returns the
invocations of both the control and the filter task. All other operators work
in a similar way, except the preemptedTaskPeriods operator, which returns the
periods of the tasks that are preempted, not invoked, at the specified unit.

4.2 From Giotto to E Code

Algorithm 1 generates E code that implements the logical semantics of a well-
timed Giotto program, as it is specified in [4]. The command emit generates
E code instructions. The key programmer’s abstraction in Giotto is that the
computation of a task takes exactly as long as its period. Thus the outputs
of a task are logically made available at the end of its period, not at the end
of its computation. The compiler begins generating E code by emitting call
instructions to the initialization drivers of all task output and private ports.
Then an absolute jump is emitted to the first instruction of the start mode.1

Since this instruction is unknown at this point, we use a symbolic reference
mode address[m, u]. The symbolic reference will be linked to the first instruction
of the E code that implements mode m at unit u. Finally, Algorithm 2 is called
to generate code for all modes and units. For the Giotto program from Figure 1,
the following E code is generated by Algorithm 1:

call(init [ctrlOut ])
call(init [filterOut ])
call(init [filterState])
call(init [adaptiveState])
jump(mode address[normal , 0])

1 The instruction jump(a) is shorthand for if(true, a).
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∀p ∈ OutPorts ∪ PrivPorts: emit(call(init [p]));
emit(jump(mode address[start , 0]));
∀m ∈ Modes: invoke Algorithm 2 for mode m;

Algorithm 1: The Giotto program compiler

u := 0; γ := π[m]/ωmax [m];
while u < ωmax [m] do

link mode address[m, u] to the address of the next free instruction cell;
∀p ∈ taskOutputPorts(m, u): emit(call(copy [p]));
∀d ∈ actuatorDrivers(m, u): emit(call(driver [d]));
∀p ∈ actuatorPorts(m, u): emit(call(dev [p]));
∀p ∈ modeSensorPorts(m, u): emit(call(dev [p]));
∀(m′, d) ∈ modeSwitches(m, u): emit(if(condition[d], switch address[m, u, m′, d]));
emit(jump(task address[m, u]));

∀(m′, d) ∈ modeSwitches(m, u):
link switch address[m, u, m′, d] to the address of the next free instruction cell;
// compute the unit u′ to which to jump in the target mode m′ and
// compute the time δ′ before new tasks in the target mode m′ can be scheduled
if preemptedTaskPeriods(m, u) = ∅ then

// jump to the beginning of m′ if all tasks in mode m are completed
δ′ := 0; u′ := 0;

else
// compute the hyperperiod h of the preempted tasks in units of mode m

h := lcm(preemptedTaskPeriods(m, u));
// compute the time δ to finish the hyperperiod h

δ := (h − u mod h) ∗ π[m]/ωmax [m];
// compute the time δ′ to wait for the unit u′ in the target mode m′ to begin
δ′ := δ mod (π[m′]/ωmax [m′]);
// compute the closest unit u′ to the end of the mode period in m′ after δ′

u′ := (ωmax [m′] − (δ − δ′) ∗ ωmax [m′]/π[m′]) mod ωmax [m′];
end if
emit(call(driver [d]));
if δ′ > 0 then

emit(future(timer [δ′],mode address[m′, u′]));
emit(return);

else
emit(jump(task address[m′, u′]));

end if

link task address[m, u] to the address of the next free instruction cell;
∀p ∈ taskSensorPorts(m, u): emit(call(dev [p]));
∀d ∈ taskDrivers(m, u): emit(call(driver [d]));
∀t ∈ tasks(m, u): emit(schedule(task [t]));
emit(future(timer [γ],mode address[m, u + 1 mod ωmax [m]]));
emit(return);
u := u + 1;

end while

Algorithm 2: The Giotto mode compiler
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Algorithm 2 generates three types of E code blocks for each unit u of a
mode m. The duration of a unit is denoted by γ. The first type of E code
block, labeled mode address[m, u], takes care of updating task output ports,
updating actuators, reading sensors, and checking mode switches. The compiler
generates call instructions to the appropriate drivers and an if instruction for
each mode switch. The block is terminated by a jump instruction to a block
that deals with task invocations; see below. The jump is only reached if none
of the mode switches is enabled. The second type of E code block implements
the mode change to a target mode m′ with a given mode driver d. We use the
symbolic reference switch address[m, u, m′, d] to label this type of E code block.
Upon a mode change, the mode driver is called and then control is transfered
to the appropriate E code block of the target mode. The compiler computes the
destination unit u′ as close as possible to the end of the target mode’s period. We
distinguish the two cases of whether the duration of either u or u′ is a multiple
of the other, or not. If so, then the compiler generates a jump instruction to
the E code of the target mode for u′. If not, then the time δ′ to wait for u′ is
computed and generated as part of a future instruction. The trigger timer [δ′]
is a time trigger with enabling time δ′; that is, it specifies the trigger predicate
p′

c = pc + δ′, which evaluates to true after δ′ ms elapse. The third type of
E code blocks handles the invocation of tasks and the future invocation of the
E machine for the next unit. The label for these blocks is task address[m, u].
Before scheduling the tasks, the task drivers are called in order to load the task
input ports with new data. The final future instruction makes the E machine
wait for the duration γ of u and then execute the E code for the next unit.
Note that the resulting E code is time-triggered. If, along a trace, the E code
generated for m and u is executed consecutively without mode change for all
units u with 0 ≤ u < ωmax [m], then the trace contains a full period of mode m.

Figure 2 shows the E code generated for the normal mode of the Giotto
program from Figure 1. The E code for the adaptive mode is not shown. The
normal mode has a period of 6 ms and two units of 3 ms length each. At the
0 ms unit, the control and filter tasks are invoked; at the 3 ms unit, only the
filter task is invoked. The mode switch to the adaptive mode is checked at both
units. Consider the mode switch at unit 1 when the control task is preempted
after 3 ms of logical computation time. In Algorithm 2 the number h of units in
the normal mode until the task completes is 1. Thus the time δ to complete the
task is 3 ms. The time δ′ to wait for the next unit u′ in the adaptive mode is
1 ms, because the duration of a unit in the adaptive mode is 2 ms. The closest
unit u′ to the end of the adaptive mode’s period is 5. Within one more unit of
2 ms the end of the period will be reached. Thus the control task has exactly
3 ms time to complete even when the mode is changed to the adaptive mode.

5 Time-Safety Checking for Giotto

For special classes of E programs, schedulability can be checked efficiently. For
example, a set T of periodic tasks can be scheduled iff it satisfies the utilization
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mode address[normal, 0]: mode address[normal, 1]:
call(copy[ctrlOut]) call(copy[filterOut])
call(copy[filterOut]) call(dev [toggle])
call(driver [updateServo]) if(condition[switchFilter ], switch address[
call(dev [servo]) normal, 1, adaptive, switchFilter ])
call(dev [toggle]) jump(task address[normal, 1])
if(condition[switchFilter ], switch address[

normal, 0, adaptive, switchFilter ])
jump(task address[normal, 0])

switch address[normal, 0, adaptive, switchFilter ]: switch address[normal, 1,adaptive,switchFilter ]:
call(driver [switchFilter ]) call(driver [switchFilter ])
jump(task address[adaptive, 0]) future(timer [1], mode address[adaptive, 5])

return

task address[normal, 0]: task address[normal, 1]:
call(dev [gps]) call(dev [gps])
call(driver [inputCtrl]) call(driver [inputFilter ])
call(driver [inputFilter ]) schedule(task [filter ])
schedule(task [control]) future(timer [3], mode address[normal, 0])
schedule(task [filter ]) return
future(timer [3], mode address[normal, 1])
return

Fig. 2. E code generated for the normal mode of the Giotto program from Figure 1

test, i.e., the processor utilization
∑

t∈T w(t)/π(t), where w(t) is the WCET time
and π(t) is the period of task t, is less than or equal to 1 [6]. For E programs that
are generated from typical Giotto source programs —namely, Giotto programs
where each mode may be executed for a full period— we have a similarly simple
schedulability test. More precisely, a mode m of a Giotto program G is fully
reachable if there exists a trace with atomic task execution of ΠG that contains
a full period of mode m. Note that the definition of full reachability does not
depend on time safety, as it assumes atomic task execution. Given a (well-timed)
Giotto program G, we write ΠG for the E program that is generated from G
by Algorithm 1. The Giotto program G is E schedulable for the WCET map
w if the E program ΠG is schedulable for w. The E schedulability problem for
Giotto asks, given a Giotto program G and a WCET map w for ΠG, if G is
E schedulable for w.

Theorem 2. A Giotto program G is E schedulable for the WCET map w if for
each mode m of G, the utilization equation

∑
(ωtask ,t,·)∈Invokes[m] w(t)/π(t) ≤ 1

holds, where π(t) = π[m]/ωtask is the period of task t. This condition is necessary
if each mode of G is fully reachable.

Assuming that all modes are fully reachable, Theorem 2 gives a polynomial-time
algorithm for checking the E schedulability of a Giotto program: the utilization
equation can be checked in time no more than O(n2polylog(n)), where n is the
size of the Giotto program. This test shows, for example, that the Giotto program
from Figure 1 is E schedulable for the WCETs w(control) = 3, w(filter) = 1.5,
and w(adaptiveFilter) = 2. Note that E code schedulability is not the most
general notion of schedulability for Giotto programs. While E code schedulability
refers to the particular E code generation scheme specified by Algorithm 1, for
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any given Giotto program, there may be other, more flexible code generation
strategies that are faithful to the Giotto semantics. For example, a task could
be started as soon as all arguments are available, which may be before its logical
release time.

Proof sketch. Suppose that each mode satisfies the utilization test. This means
that each mode is schedulable by itself. We show that mode changes do not cause
the system to become non-schedulable, by using the schedule that assigns to each
ready task t a time slice equal to w(t)/π(t) in every time unit. This is possible
by the utilization equation. Now consider a mode change. By the semantics of
a mode change in Giotto, in particular by the well-timedness condition, at the
mode change, all tasks that are not present in the target mode have finished
executing, and all tasks that are present in the target mode retain their deadline
after the mode change. This implies that the common tasks have executed for
exactly the same amount of time in the source mode up to the mode change as
they would have, following the chosen schedule, in an execution that started in
the target mode. Since the target mode can finish executing all tasks by their
deadlines, it can do so even after the mode change. In fact, the only difference
of an execution in the target mode after the mode change from an execution
starting in the target mode is that some tasks in the target mode may not run
in the former case. Since the target mode is individually schedulable, it remains
schedulable after a mode change into it.

For the converse, suppose that the utilization test fails for a fully reachable
mode m. Consider a trace τ with atomic task execution that contains a full
period of m. Choose any scheduling strategy σ. If the environment plays against
σ using the same behavior as used along τ in a game with WCET task execution,
then either a time-safety violation occurs, or a full period of m is reached. In the
latter case, time safety must be violated also, because of the failed utilization
test. It follows that the program is not E schedulable.

EDF scheduling. For each configuration c and ready task t ∈ Tc, we define the
deadline D(c, t) as the weight of the shortest path in the (unbounded) game
graph GΠ,w,∞ from [c] to the clock abstraction of a configuration that conflicts
with t, where each player 1 (scheduler) move has weight 1, and all other moves
have weight 0; if no such path exists, then D(c, t) = ∞. An EDF scheduling
strategy is a function that maps every nonempty finite trace τ to ∅ if the task set
of the final configuration last(τ) is empty, and otherwise to a task t ∈ Tlast(τ) such
that for all ready tasks t′ ∈ Tlast(τ), we have D(c, t) ≤ D(c, t′). The E programs
that are generated from Giotto source programs using Algorithm 1 have the
property that with the execution of a schedule(t) instruction, the deadline of
t is known and does not change in subsequent configurations until t completes.
In particular, all deadlines are independent of the chosen scheduling strategy. It
follows by a standard argument that EDF is optimal for Giotto.

Proposition 1. Let σ be an EDF scheduling strategy. A Giotto program G is
E schedulable for the WCET map w iff all infinite traces of (ΠG, w) that are
outcomes of σ are time safe.
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The deadlines for an EDF scheduler can be computed directly on the Giotto
source and may be passed to the scheduler as E code annotations [5]. The Giotto
compiler we have implemented proceeds in two steps. First, it computes the
relative deadline for each task in each mode and checks the E schedulability of the
Giotto program by performing the utilization test of Theorem 2 for each mode.
Second, it generates E code using Algorithm 1 and annotates each schedule(t)
instruction with the deadline of t. Then, for an EDF scheduler that uses the
deadlines, time safety is guaranteed for all possible environment behaviors.

Checking E schedulability. If there are modes that are not fully reachable, then
the utilization test is only a sufficient condition for E schedulability. In general,
however, it is PSPACE-hard to check if a mode is fully reachable, or if a Giotto
program is E schedulable. We can reduce succinct boolean reachability to the
reachability of a boolean port state, say sf , in the start mode (using a driver
to encode the transition relation). The start mode is schedulable, but if sf is
reached, the program switches to a non-schedulable mode. Then the Giotto pro-
gram is E schedulable iff sf is reachable. This gives half of the theorem below.
For propositional Giotto programs, which have only boolean ports, inclusion in
PSPACE follows from the following scheduling algorithm. First observe that if G
is propositional, then so is ΠG. From Algorithm 1 it follows also that all traces
of ΠG are one-bounded. Moreover, the number of E code instructions of ΠG is
exponential in the size of the Giotto program G. By Proposition 1, we can fix
an EDF scheduling strategy and check if a non-time-safe configuration can be
reached on the game graph GΠG,w,1. This is a reachability, rather than a game
problem, on an exponential graph, and therefore in PSPACE.

Theorem 3. Checking E schedulability for propositional Giotto programs is
complete for PSPACE (even if all numbers are coded in unary).
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