
Advanced Indexing Operations
on Substitution Trees

Peter Graf �� Christoph Meyer

Max�Planck�Institut f�ur Informatik
Im Stadtwald

����� Saarbr�ucken� Germany
email� peter�graf	sap�ag�de� meyer	mpi�sb�mpg�de

Abstract� Indexing techniques support the retrieval and maintenance
of large sets of terms� There is also an indexing method called substi�
tution tree indexing that e
ciently handles sets of substitutions� We
present three advanced indexing operations for substitution trees� The
multi�merge for the simultaneous uni�cation of sets of substitutions� the
subsumption operation on two sets of substitutions� and the selection of
�lightest
 substitutions of a set of substitutions� The indexing operations
can be combined to obtain powerful reasoning tools for theorem provers�

� Introduction

Theorem provers that implement synthetic calculi like resolution ���� �� face
the problem of program degradation� The theorem prover�s rate of drawing con�
clusions falls o	 sharply with time due to an increasing amount of retained
information ����


Term indexing particularly in�uences a system�s performance by providing
rapid access to �rst�order predicate calculus terms with speci�c properties
 Typ�
ical queries to a logical database ��� in context with theorem proving are� Given
a database I containing terms 
literals� and a single query term t� �nd all terms
in I that are uni�able with� instances of� or more general than t
 Thus standard
applications of term indexing are the search of resolution partners for a given
term 
literal� or the retrieval of literals in clauses for both forward and backward
subsumption


The standard approaches in term indexing work for a single query term for
which partners in an indexed set of terms are searched
 Our advanced indexing
operations are able to handle sets of query terms at a time
 In this work we
shall demonstrate how advanced indexing operations can support the search of
simultaneous uni�ers in sets of substitutions as it is necessary for unit resulting
resolution ��� or hyperresolution ���� for example
 Moreover� a subsumption pro�
cedure on two indexes as well as a selection mechanism for �lightest� entries will
be presented


� This work was supported by the German Science Foundation �DFG�� Peter Graf
s
current address is SAP AG� ����� Walldorf� Germany�



The advanced indexing operations are based on a speci�c indexing technique
called substitution tree indexing ���
 This method does not only provide an e��
cient representation of terms but also of substitutions


As an example� Fig
 � illustrates the e�cient implementation of unit resulting
resolution using our advanced indexing operations
 We attach substitution trees
to each literal of the nuclei in the initial problem set
 The trees represent sets �i

of substitutions
 Each substitution of a set �i instantiates the according literal
Li
 Here it is of advantage if the indexing technique employed is able to index
substitutions in a convenient manner


L� L� L� L�

��

�
��

�
��

�New
�� �Given

Merge Subsumption Selection

Fig� �� UR�Resolution on a nucleus fL�� L�� L�� L�g

The set �� contains the uni�ers of the according literal L� with electrons
which have not been combined yet with L�
 The sets �� and �� contain uni�ers
which have been considered in previous steps
 The result of the simultaneous
uni�cation of the three sets is the set �New of substitutions containing the com�
mon instances � representing new electrons L��
 The simultaneous uni�cation
of an arbitrary number of substitution trees can be achieved by the so�called
multi�merge operation presented in this paper


The subsumption test of the set �New with previously generated electrons
contained in the substitution set �� is an application for our subsumption opera�
tion on two indexes
 Usually� not all of the produced electrons can be taken into
account for subsequent ur�resolution steps
 Therefore� we provide an e�cient
operation for the selection of �lightest� substitutions resulting in a substitution
tree �Given


This approach has been implemented in a distributed theorem prover called
Purr ��� 
Parallel Unit Resulting Resolution�


In the second and third section we present some preliminaries and a classi��
cation of indexing techniques
 Section � contains an introduction to substitution
tree indexing
 The advanced indexing operations discussed in Sect
 � are simul�
taneous uni�cation of substitutions� subsumption of substitutions� and selection
of �lightest� substitutions
 In Sect
 � the results of several experiments will be
presented


� Preliminaries

The standard notions for �rst order logic are used
 Fn is the set of n�ary
function symbols� V denotes the set of variable symbols and V� � V is the



set of indicator variables
 The variables that occur in a term or a set of terms
are denoted by VAR
t�
 In our examples the symbols u� v� w� x� y� z � V and
�i � V� are used for variables
 The symbols f� g� h denote function symbols and
a� b� c denote constants� i
e
 a� b� c � F�


The set DOM
�� �� fx � V j x� �� xg is called domain of the substitution
�� the set COD
�� �� fx� j x � DOM
��g the codomain of �� and IM
�� ��
VAR
COD
��� is the set of variables introduced by �
 The composition �� of
substitutions � � fx� �� s�� � � � � xn �� sng and � � fy� �� t�� � � � � ym �� tmg
is de�ned as x
��� �� 
x��� for all x
 The join of the substitutions � and � is
de�ned as � � � �� fx� �� s��� � � � � xn �� sn�g � fyi �� ti j yi � DOM
��nIM
��g

For � � fz �� g
x�g and � � fx �� a� y �� cg we have �� � fz �� g
a�� x ��
a� y �� cg and � � � � fz �� g
a�� y �� cg


� Classi�cations of Term Indexing Techniques

Relations on Terms and Substitutions� The main purpose of indexing techniques
in theorem provers is to achieve e�cient access to �rst�order terms with speci�c
properties
 To this end� a set of terms I is inserted into an indexing data struc�
ture
 A retrieval in I is started for a set Q of query terms
 The aim of the
retrieval is to �nd tuples 
s� t� with s � I and t � Q in such a way that a special
relation R holds for s and t
 Most automated reasoning systems can pro�t from
a retrieval based on the following relations� s and t are uni�able� t is an instance
of s� and s is a generalization of t
 If we are interested in retrieving indexed
substitutions instead of indexed terms� a generalized relation R
�� �� is needed


Retrieval of Type ���� n��� and n�m� A retrieval is of type ��� if both sets I and
Q have cardinality �
 Since both sets Q and I solely consist of one single term
or substitution� the retrieval corresponds to simply testing if R
s� t� holds


Retrieval of type n�� is determined by a single query term t� which is used to
�nd entries s � I
 The set I of n indexed terms is represented by an indexing data
structure
 The result of a retrieval is a subset of I
 Note that a very ine�cient
retrieval of type n�� could be performed by testing each entry of the index in a
��� type retrieval because such an approach would have to consider all indexed
terms explicitly


Retrieval of type n�m includes all cases in which more than a single query term
is involved
 Exploiting n�m indexing� the query set typically is also represented
by an index
 Hence� we have to deal with two indexes� one of them represents
the indexed and the other one represents the query set
 The result of such a
retrieval is a subset of the direct product of the term sets involved


Maintenance of Type n�� and n�m� In addition to the retrieval operations we
also have to provide functions that insert entries into and delete entries from
the indexing structure
 Insertion and deletion can also be classi�ed according to
the cardinalities of the involved sets


Maintenance of type n�� includes all operations that modify an index by a
single term
 Beside the classical insertion and deletion operations of a single



term� the deletion of all instances of a term� for example� also corresponds to an
n�� maintenance operation


Maintenance of type n�m corresponds to index manipulation operations that
�t into the concept of n�m indexing
 For example� the union of two indexes results
in a new index that contains all terms of the two sets involved
 An additional
n�m maintenance task is to delete all instances of Q that occur in I from I 
 Such
an operation is used for subsumption in the case of unit clauses� for example


� Substitution Tree Indexing

Substitution tree indexing is an indexing technique that has been developed from
discrimination tree indexing ��� and abstraction tree indexing ���
 A substitution
tree 
ST� can represent any set of idempotent substitutions
 In the simplest case
all these substitutions have identical domains and consist of a single assignment�
which implies that the substitution tree can be used as a term index as well

Fig
 � shows an index for the substitutions fx �� f
a� b�� y �� cg and fx ��
f
u� b�� z �� dg
 As the name indicates� the labels of substitution tree nodes are
substitutions
 Each branch in the tree represents a binding chain for variables

Consequently� the substitutions of a branch from the root down to a particular
node can be composed and yield an instance of the root node�s substitution

Consider the substitution � � fx �� f
a� b�� y �� cg� which is represented by
the chain of substitutions �� � fx �� f
x�� b�g� �� � fx� �� a� y �� cg
 The
original substitution � can be reconstructed by simply applying the substitution
���� to the domain of � 
 The result of this application is � � fx �� x
������ y ��
y
�����g � fx �� f
x�� b���� y �� y��g � fx �� f
a� b�� y �� cg


ST

�� � fx �� f�x�� b�g

�� � fx� �� a� y �� cg �� � fx� �� ��� z �� dg

fx��f�a�b��y ��cg fx��f�u�b��z ��dg

Fig� �� Representation of substitutions

Substitutions are normalized ��� before being inserted into the index
 Nor�
malization renames all variables in the codomain to so�called indicator variables�
which are denoted by �i
 The substitutions represented by the index in Fig
 �
therefore are fx �� f
a� b�� y �� cg and fx �� f
��� b�� z �� dg
 The renaming
is done for two main reasons� There is more structure sharing in the index if
the substitutions are normalized and� when searching for instances in the index�
indicator variables must not be instantiated and therefore need to be marked
specially


Retrieval in substitution trees is based on a backtracking algorithm in addi�
tion to an ordinary representation of substitutions as lists of variable�term pairs




The retrieval also needs a backtrackable variable binding mechanism� similar to
the one used in Prolog


De�nition � �Substitution Tree�� A substitution tree is a tuple 
���� where
� is a substitution and � is an ordered set of substitution trees
 The following
conditions hold�

� A substitution tree is either a leaf 
�� �� or j�j 	 �

� For every path 
��� ���� � � � � 
�n� �� starting from the root of a substitution
tree we have IM
�� � � � � � �n� � V�


� For every path 
��� ���� � � � � 
�i� �i� from the root to any node of a tree we
have DOM
�i� 


S
��j�i DOM
�j� � �


If 
��� ���� � � �� 
�n� �n� is a path from the root of the tree to node 
�n� �n�
and x occurs in the codomains of the �i but not in the domains of the �i� then
the variable x is called open at node 
�n� �n�
 Variables that are not open at a
node N are called closed at N 
 The second condition in Def
 � implies that all
non�indicator variables are closed at leaf nodes of substitution trees
 The empty
tree is denoted by �


� Advanced Indexing Operations

We call n�m retrieval and maintenance tasks �advanced indexing operations�

In this chapter several advanced indexing operations are considered� The multi�
merge operation computes simultaneous uni�ers of substitutions which are stored
in several substitution trees
 The result of such a multi�merge is a substitution
tree containing the common instances of the uni�ed substitutions
 The subsump�
tion operation deletes in one substitution tree all instances of substitutions that
occur in another substitution tree
 The selection operation searches a substi�
tution tree for entries with lowest �weight� and adds these entries to another
substitution tree


��� Multi�Merge

Standard Merge� The merge ��� operation computes the compatible substitu�
tions stored in two di	erent trees
 Substitutions are compatible if the codomains
of identical variables in the two substitutions are simultaneously uni�able


Suppose we want to merge three substitution trees M � N � and O
 Using the
ordinary merge operation for two trees� we �rst merge M and N 
 The resulting
tree which contains the most general common instances of M and N is �nally
merged with O
 However� the merge does not necessarily have to be performed
on just two trees in a single merge operation
 Instead of performing two merges
and creating an intermediate result� we use a new backtracking algorithm that
traverses the three trees in parallel
 In this way� we avoid the creation of inter�
mediate results and thus save a large amount of memory




Multi�Merge� The multi�merge operation ��� takes an arbitrary number of sub�
stitution trees and traverses the trees in parallel
 If a combination of leaf nodes
is reached� the resulting common instance of the substitutions represented by
these leaves can be stored in a new substitution tree
 Furthermore� subsumption
might be performed thus reducing the amount of substitutions to be maintained


Consider the algorithm multimerge in Fig
 � which employs n�� insertion
and subsumption operations
 The algorithm has four parameters� A substitution
tree RES� two ordered sets CURRENT and NEXT of substitution trees� and a
stack STK of bindings
 The common instances resulting from the simultaneous
uni�cation are inserted into the substitution tree RES which does not have to be
empty at the beginning
 The tree may contain previously obtained results which
are then considered in the subsumption phase of the multi�merge operation

Initially� the ordered set CURRENT contains the substitution trees to be merged
whereas the ordered set NEXT is empty
 We assume that the substitutions of
the root nodes have been successfully uni�ed before multimerge is called
 In this
way we avoid unnecessary recursive calls in the algorithm
 The variable bindings
of the uni�cation are pushed on the stack STK


� algorithm multimerge�tree RES�set CURRENT� set NEXT�stack STK�

� begin

� h Let CURRENT � fNi� � � � � Nmg be an ordered set of trees i
� h Let NEXT � fN�� � � � � Ni��g be an ordered set of trees i
� if �N � CURRENT �NEXT � is leaf�N� then

� h Simultaneous Uni�er i
� if �genexist�RES�STK� do

� delete instances�RES� STK�

� RES � insert�RES�STK�

�� else

�� if CURRENT � � then

�� RES � multimerge�RES�NEXT� CURRENT� STK�

�� elsif is leaf�Ni� then

�� RES � multimerge�RES�CURRENT nNi�NEXT � fNig� STK�
�� else

�� h Let ����� � Ni be the root of Ni i
�� forall N � � � do

�� if unify�N �� STK�BINDINGS� then

��
RES � multimerge�RES�CURRENT nNi�

NEXT � fN �g� STK�

�� backtrack�STK�BINDINGS�

�� return RES

�� end

Fig� �� Algorithm for multimerge

The function unify
N� STK�BINDINGS� implements the test for uni�ability
by checking for each assignment xi �� ti of N �s substitution � � f� � � � xi ��
ti� � � �g whether xi is uni�able with ti
 The bindings of variables in the uni�er



are pushed on the stack STK and are counted in BINDINGS
 This uni�ca�
tion considers variable bindings in the terms to be uni�ed
 Additionally� the
function backtrack
STK�BINDINGS� resets the stack STK by popping BIND�
INGS bindings from it
 After a successful uni�cation at leaf nodes the function
genexist performs n�� forward subsumption using the established bindings
 If
no generalization of the found common instance � exists in RES� the func�
tion delete instances removes all instances of � from RES by a n�� backward
subsumption
 Finally� the function insert normalizes and inserts � into the sub�
stitution tree RES
 Note that all functions work with bindings instead of really
instantiated substitutions
 In this way we delay 
and often avoid� the allocation
of memory as long as possible


The main idea of the algorithm multimerge is to traverse the trees in par�
allel
 All combinations of subnodes of the CURRENT set of inner nodes have
to be considered
 The subnodes which pass the test for uni�ability are moved
to the NEXT set of nodes 
s
 line ���
 If CURRENT is empty we simply ex�
change CURRENT with the NEXT level 
s
 line ���
 CURRENT leaf nodes are
also moved to the NEXT level in order to uphold the original order of trees

s
 line ���
 Each combination of leaf nodes represents a simultaneous uni�er
which corresponds to the established bindings on the stack STK 
s
 line ��


A sequence of stacks resulting from the simultaneous uni�cation of substitu�
tions stored in three substitution trees is depicted in Fig
 �
 Originally� the stack
is empty
 Before we start the multi�merge algorithm� the substitutions of the root
nodes have to be uni�ed� resulting in the bindings pushed on the stack 
compare

stack �Init��
 The sequence A U X denotes the tree nodes which have been

considered in this step
 The recursive algorithm is started on the subnodes of the
root nodes
 In case it succeeds in testing the current substitution for uni�abil�
ity� the modi�ed stack is marked with �Success�
 If a combination of leaf nodes
has been found� �Success� is written boldface
 The �rst common instance is
fu �� f
d� g
d��g which is backward subsumed by the second common instance
fu �� f
v� g
v��g
 The last found substitution fu �� f
b� g
b��g is forward sub�
sumed by the second
 Therefore� the result of the multi�merge is a substitution
tree only containing fu �� f
v� g
v��g


��� Subsumption

In resolution�based theorem provers subsumption is a powerful technique for
pruning the search space
 The forward subsumption test checks for a given clause
C if the set of kept clauses contains a generalization of C
 In this case� clause
C may be discarded
 Otherwise� before we insert clause C into the set of kept
clauses� all instances of C in the set can be removed
 We refer to this operation
as the backward subsumption


Subsumption can be supported by indexing techniques
 In general� forward
subsumption corresponds to an n�� retrieval task and backward subsumption to
an n�� maintenance task
 If we deal with unit clauses� for example when per�
forming ur�resolution� both subsumption tasks can be performed by a complex
n�m deletion operation on substitution trees that represent these unit clauses




A

u �� f�x�� x��

B x� �� a

x� �� ��
x� �� g����

E

x� �� b

C

x� �� c

D

u��f�a�b� u��f�a�c� u��f�x�g�x��

�

U

u �� f�y�� g�y���

y� �� ��
y� �� ��

V

y� �� b

y� �� b

W

u��f�y�g�z�� u��f�b�g�b��

�

X

u �� f���� g�z���

z� �� d

Y

z� �� ��

Z

u��f�v�g�d�� u��f�v�g�v��

Init

y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

A U X

Fail

y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

x� �� a B

Success
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

x� �� ��
x� �� g����

E

Success

�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

y� �� ��
y� �� ��

V

Success

�� �� d

�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� d Y

B
a
ck
T
ra
ck

Success

�� �� ��
�� �� ��
�� �� ��
z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� �� Z

B
a
ck
T
ra
ck

Success

�� �� b

z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

y� �� b

y� �� b
W

Fail

�� �� b

z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� d Y

B
a
ck
T
ra
ck

Success

�� �� b

�� �� b

z� �� ��
�� �� ��
y� �� z�
y� �� ��
x� �� g�y��
x� �� y�
u �� f�x�� x��

z� �� �� Z

R
e
se
t
In
it

Fig� �� Multi�Merge with three substitution trees

Suppose the set of kept unit clauses is represented by an index N 
 Further�
more� we have an index M containing a set of new unit clauses which are now
tested for subsumption
 Backward subsumption corresponds to the deletion of
all instances of M in N 
 To this end� we traverse M and N in parallel
 Dur�
ing the traversal we map variables occurring in M to subterms stored in N 

This mapping is exactly the same as just looking for instances in a n�� retrieval

Whenever we reach a leaf node in the index N we may delete it
 Note that the
deletion in the index N can cause the whole tree to be removed


We obtain forward subsumption by simply changing the roles of M and
N 
 After subsumption the unit clauses contained in M are usually inserted into
index N 
 Therefore� Graf developed a so�called union ��� of indexes which inserts



a whole index into another

Consider the algorithm subsume depicted in Fig
 �
 Subsumption has to con�

sider three major situations occurring during the traversal of the trees
 First� in
tree M we may �nd a leaf node
 In this situation we have to check if tree N
contains a generalization of the current bindings in the corresponding subtree

If this is the case� the leaf node in M is deleted 
s
 line ��
 Second� tree M is
not a leaf node� but the corresponding node in N is
 Here we simply call a dele�
tion routine that deletes all instances of the current bindings in M 
s
 line ��

Third� if two inner nodes are considered� we proceed by considering all possible
combinations of subnodes until tree M has been completely deleted or no more
combinations are available
 Note that in line �� node M has to be �repaired� if
all subtrees of M but one have been deleted�


� algorithm subsume�tree M �tree N �stack STK�

� begin

� hAssume match reverse�M� and match�N� holdi
� if is leaf�M� then

� if genexist�N� STK� then

� M � �

� elsif is leaf�N� then

� M � delete instances�M� STK�

� else

�� forall subtrees M � of M do

�� if match reverse�M �� STK�BINDINGSM� then

�� forall subtrees N � of N do

�� if match�N �� STK�BINDINGSN � then

�� � � � � subsume�M �� N �� STK�

�� backtrack�STK�BINDINGSN �

�� backtrack�STK�BINDINGSM �

�� M � repair�M���

�� return M

�� end

Fig� �� Algorithm for subsume

For example� suppose we have to deal with the two treesM andN depicted in
Fig
 �
 We compute the tree M � resulting from subsume
M�N� STK�
 In tree M
we maintain the substitutions fu �� f
a� b�g� fu �� f
x� c�g� and fu �� f
d� c�g

Tree N contains the substitutions fu �� f
a� c�g� fu �� f
a� y�g� and fu ��
f
z� c�g
 Obviously� the substitution fu �� f
a� y�g stored in N subsumes the
substitution fu �� f
a� b�g stored in M 
 Moreover� fu �� f
z� c�g subsumes the
two substitutions fu �� f
x� c�g and fu �� f
d� c�g
 Hence� tree M � resulting
from subsumption should be empty


The function match
N� STK�BINDINGS� checks if N �s substitution is a gen�
eralization of the current bindings
 New bindings are established on the stack


� According to de�nition � of substitution trees an inner node has at least two sons�



M

u �� f�x�� x��

x� �� a

x� �� b
x� �� c

x� �� �M x� �� d

u��f�a�b� u��f�x�c� u��f�d�c�

N

u �� f�y�� y��

y� �� a
y� �� �N
y� �� c

y� �� c y� �� �N

u��f�a�c� u��f�a�y� u��f�z�c�

Fig� �� Subsumption as an n�m indexing task

The function match reverse
M� STK�BINDINGS� is accordingly de�ned to test
whether M �s substitution is an instance of the bindings
 We start at the root
nodes of treeM and treeN and assume that match reverse
M� STK�BINDINGS�
and match
N� STK�BINDINGS� have been successfully called before we enter
the subsumption operation
 The initialization establishes the binding fu ��
f
x�� x��g with the root of M and the bindings fy� �� x�� y� �� x�g with N 

Using the algorithm subsume we recursively traverse the subtrees
 First� we
consider the left subtree in M where the test function match reverse yields the
bindings fx� �� a� x� �� bg
 Keeping the current bindings� the left subtree of
N is traversed� searching for leaf nodes that correspond to substitutions more
general than fu �� f
a� b�g
 Such a substitution is found in fu �� f
a� y�g and
the leaf node representing fu �� f
a� b�g is deleted
 Now� the right subtree of
M is considered establishing the binding fx� �� cg
 Since the left subtree of N
does not yield any deletions 
because the test function match reverse must not
bind the variable �M �� we immediately consider the right subtree of N � which is
a leaf marked with fy� �� �N � y� �� cg
 Applying function match on this node
yields the binding fx� �� �Ng
 According to the de�nition of subsume we delete
all instances in the right subtree of M 
 Finally� both subtrees of M have been
deleted and repairing the resulting tree leads to �� i
e
 tree M has been deleted
completely


��	 Selection

A heuristic that is used in many resolution�based theorem provers selects the
smallest clauses in the set of kept clauses for the application of inference rules

In general� we call a clause A lighter than a clause B if A has less weight than
B
 The weight of a clause is determined by a weighting function


For example� if the weighting function counts the number of symbols in a
clause then the clause C � fP 
f
x� y��g has weight � and the clause D �
fP 
g
a��g has weight �
 Following the heuristic clause D would be selected �rst

The selection of lightest substitutions in a substitution tree is of speci�c inter�
est if these substitutions represent unit clauses for ur�resolution
 Following our
heuristic only the lightest clauses serve as partners in inference steps
 Thus the
lightest substitutions in the tree should be selected only once




The selection is a n�m maintenance operation on two indexes M and N 
 The
set of lightest substitutions occurring in N is added to M 
 The selected sub�
stitutions are not removed from N � but marked as selected preventing multiple
selection
 The marked substitutions in N are still considered for conventional re�
trieval
 To provide this functionality the nodes of a substitution tree are modi�ed
such that�

�
 A leaf node 
�� �� w� s� refers to entries with the corresponding weight w
 The
state s is true if all entries have been selected


�
 The weight w of an inner node 
����w� s� is the minimum of the weights of
the subtrees � with unselected substitutions
 The state s is true if all entries
of the subtrees � have been selected
 In this case the weight w is arbitrary


A sequence of substitution trees is depicted in Fig
 �
 In tree � no entries

have been selected yet
 The lightest entries have weight �
 Note that a tree
contains unselected entries if the state s of the root node is marked false
 Then
the weight w of the root node corresponds to the weight of the lightest unselected
entry in the tree


�

��
w��

s�false

��
w�	

s�false

��
w��

s�false

��
w��

s�false

��
w��

s�false

�

w��

s�false

�

��
w��

s�false

��
w�	

s�false

��
w��

s�true

��
w��

s�false

��
w��

s�true

�

w��

s�true

�

��
w�	

s�false

��
w�	

s�false

��
w��

s�true

��
w��

s�true

��
w��

s�true

�

w��

s�true

Fig� �� A sequence of substitution trees resulting from selection

In tree � the two lightest entries have been selected
 The subtree of �� is

marked as selected
 The new minimal weight � has been propagated to the root


Finally� the entry with weight � has been selected in tree � 


The selection considers a substitution tree N as being separated into par�
titions of di	erent weights
 Each partition contains substitutions with identical
weight
 The lightest partition can be selected within a single retrieval operation

Note that this operation also modi�es tree N to provide consistency of N 
In
particular� a new lightest weight w and the state s are propagated to the root�

If the lightest partition is completely retrieved� the weight w in the root of N
corresponds to the weight of the new lightest partition
 Thus a single selection
operation retrieves at most the substitutions of the lightest partition


The function selection depicted in Fig
 � implements a selection of n sub�
stitutions in a substitution tree N and stores the retrieved substitutions in tree
M 
 The auxiliary function partition repeatedly retrieves the lightest partition



in N 
s
 line ��
 Thus the number n of demanded substitutions does not depend
on the size of the lightest partition in N 


� algorithm selection�tree M �tree N �nat n�stack STK�

� begin

� while n � �	N is unselected do

� �M�N� n� � partition�M�N� n� STK�

� return �M�N� n�

� end

Fig� �� Algorithm for selection

Consider the algorithm for partition in Fig
 �
 We assume that partition
is called only with substitution trees containing unselected substitutions
 Fur�
thermore� the current tree node N in partition always contains substitutions
with the lightest weight w� i
e
 node N is marked with weight w
 Therefore� a
parameter for the lightest weight in tree N is not needed in the algorithm


� algorithm partition�tree M �tree N �nat n�stack STK�

� begin

� h Assume that N has unselected entries i
� bind�N� STK�BINDINGS�

� if is leaf�N� then

� hN � ��� �� w� false�i
� M � insert�M� STK�

� backtrack�STK�BINDINGS�

� return �M� ��� �� w� true�� n
 ��

�� else

�� hN � �����w� false�i
�� forall subtrees N � of N do

�� if n � �	N � is unselected with weightw then

�� �M�N �� n� � partition�M�N �� n� STK�

�� �� � �� �N �

�� backtrack�STK�BINDINGS�

�� return �M� ������ lightest weight����� all selected������ n�

�� end

Fig� 	� Algorithm for partition

In order to reconstruct the selected substitutions in tree N � the function
bind establishes N �s substitution on the stack 
s
 line ��
 If node N is a leaf�
then insert adds the corresponding substitution� which is represented by the
established bindings� to tree M 
s
 line ��
 Note that leaf N will be marked as
selected 
s
 line ��
 If node N is an inner node� then the subtrees of N containing
unselected entries with the lightest weight w are recursively searched 
s
 line ���

As the algorithm propagates a new lightest weight and the state of selection



from the leaves to the root� the set �� contains the updated subtrees of N

s
 line ���
 The new weight of node N is the lightest weight of the subtrees in
�� with unselected entries computed by the function lightest weight
 The function
all selected is true if all entries in all subtrees in �� have been selected 
s
 line ���


Again� consider the example depicted in Fig
 �
 It shows the selection of three
entries
 The substitution tree contains three partitions
 The lightest partition
with weight � contains two entries
 The �rst call of partition results in the
second tree
 In the rightmost tree the second partition with weight � has been
selected by the second call of partition


� Experiments

Subsumption� The experiments in the left table of Fig
 �� were run on a Sun
SPARCstation SLC computer with �� MBytes of RAM
 The sets EC 
����� CL

������ and BO 
����� contain substitutions with a single domain variable u like
fu �� f
a� x�g� for example
 The number in brackets refers to the number of
substitutions in the set
 The sets were taken from real Otter applications ���

The indexing problem EC�� for n�� forward subsumption refers to storing the
set EC� in an index and checking the existance of generalizations in the index
for each member of the query set EC�
 The n�m operation also maintains an
index for EC� and deletes all instances of generalizations stored in EC� from
EC�
 For the randomly created sets AVG� WIDE� GND� LIN� and DEEP the
index set and the query set are identical
 Each set contains ���� substitutions


Task Subsumption Merge

ForwardBackward

n�� n�m n�� n�m n�� n�m

EC�� ��� �	� �	� ��� �
	� ����

EC�� �	� ��� �	� ��� ��	
 ���

EC�� � �	� �	� ��� ��� �	�
EC�� �	� ��� �	� ��� 
�	� ����

CL�� ��� �	� �	� ��� ��	� 	��
CL�� ��� �	
 � � ��� ��	

CL�� � � �	
 ��� ��	� ����

CL�� ��	 �	
 �	� ��
 �	� ���

BO�� ��	 �	� 
	� ��� ��	� ����

BO�� ��
 
	� �	
 ��� �	� ���

BO�� ��� �	� ��� 
	� ��� 
	�
BO�� �	� ��� �	� ��� �	� ��


AVG ��� �	� ��� ��� ��	� ���	

WIDE ��� ��	� ���� ��	� ���� ���	�
GND ��� ��� �	� ��� �	� ���

LIN ��� �	� �	� ��� ��	� �
��

DEEP ��� �	� �	� ��� �
	� ���	

Task Multi�Merge

Seconds MBytes

n�� n�m multi n�� n�m multi

AVG ��� �	� ��	 ��	� �	� �	� �
��� ��	� ���� �
	� �	� �	� �
��� 
�	� ���	� ���� ��	� �
	� �
��� 
�	� 
�	� ���� ��	
 
�	� �

WIDE ��� ��� ��� ��	� �	� �	� �
��� ��	 �	
 ���	� � � �
��� �
�	� fail ��
�� �
�	� fail �
��� �
�	
 fail ����� �
�	
 fail �

GND ��� ��� �	
 ��	� �	� �	� �
��� ��� �	
 �	� �	� �	� �
��� 
�	
 

	� ���� ��	� ��	� �
��� 
�	� ��	� ���� ��	� ��	� �

LIN ��� 
�� 
�� ��	
 �	� �	� �
��� 
�� 
	� �
	� �	� �	� �
��� 
�	� ���	� �
�� 
�	
 ��	
 �
��� 
�	
 ��	� �
�� ��	� 
�	� �

DEEP ��� �
	� �	�� ��	� �	� �	
 �
��� 
	� 
�� ��	� �	
 �	
 �
��� �

	� ���	� ���	 ���	
 ���	� �
��� ���	� ���	� 		�� ���	
 ��
	� �

Fig� �
� Experiments with subsumption� merge� and multi�merge

Consider the retrieval times for forward subsumption
 As the n�m operation
corresponds to a maintenance task which also deletes the found entries from the



index representing the query set� the n�� retrieval task slightly performs better

The n�� and n�m operations for backward subsumption are both maintenance
tasks since the found instances are deleted in both cases
 In all but three exper�
iments the n�m operation shows better performance


Binary Merge� Consider the merge column of the left table in Fig
 ��
 Here the
problem EC�� refers to storing the substitutions of EC� in an index and to
�nd compatible substitutions for each of the substitutions in EC�
 In the case of
an n�� retrieval� the tree containing EC� is traversed for each entry of EC�
 The
n�m operation also stores the set of query substitutions EC� in a substitution
tree and performs a merge operation on the two substitution trees
 In most of
the experiments the merge was faster than the standard n�� retrieval operation


Multi�Merge� The experiments with the multi�merge were run on a Sun SPARC�
station �� computer with ��� MBytes of RAM
 We report experiments with four
substitution trees each of which contains �� randomly created substitutions
 The
n�� and n�m operations compute compatible substitutions as described above

The tree resulting from the merge of the �rst two trees is merged with the
third tree and so on
 The �multi� operation corresponds to a real multi�merge
operation


The notation ����� in the leftmost column means that only the �rst and the
second tree contain substitutions with common domains
 In other words� the
constellation ����� is likely to have less uni�ers of the �rst and the second tree
than the order ������ for example
 Thus the order of trees determines the size
of the intermediate results
 Note that we could add assignments of an unused
domain variable to all substitutions making an optimized preordering of trees
di�cult


We observe that the multi�merge operation is the fastest technique on prob�
lems with large intermediate results
 Another advantage of the multi�merge is
that it requires no memory for intermediate results
 If the number of uni�ers of
the �rst trees is small� the n�� and n�m operations perform better
 In all cases the
n�m operation is not faster than the n�� operation
 Note that the performance
of the multi�merge seems to be more or less independent from the order of the
trees


Applications� The multi�merge operation supports all types of inferences involv�
ing the simultaneous uni�cation of at least two sets of substitutions
 Impor�
tant examples are ur�resolution and hyperresolution
 The subsumption test on
unit clauses� for example in ur�resolution� is e�ciently implemented by our sub�
sumption operation
 The selection operation supports weighting heuristics by
providing fast access on the lightest entries of a substitution tree


The presented indexing operations have been implemented in a distributed
theorem prover called Purr ��� 
Parallel Unit Resulting Resolution�
 All oper�
ations in the system are carried out in the framework of indexing
 Indexes of
substitutions are the fundamental data structure of the prover
 The notion of
clauses and literals is not required
 The system even communicates with indexes




� Conclusion

Three indexing operations for substitution trees have been presented
 The multi�
merge operation supports the simultaneous uni�cation of sets of substitutions

We also included the creation and subsumption of the common instances into
the multi�merge� thus making this operation a �exible tool for working with an
arbitrary number of indexes
 Using the multi�merge the simultaneous uni�ca�
tion of substitutions can be achieved either by a repeated binary�merge or by a
single multi�merge operation
 Indexes of substitutions can e�ciently be tested
and maintained by the subsumption operation
 The selection of lightest entries
addresses the need for fast access on the �best� candidates in an index
 As the
indexing operations does not only work with but also result in new or modi�ed
indexes� these methods can directly be combined to obtain powerful reasoning
tools
 The algorithms have been implemented and tested in isolation on large
sets of substitutions as well as components in a parallel ur�resolution theorem
prover


Acknowledgments� We thank Hans J�urgen Ohlbach and the referees for the com�
ments on earlier versions of this paper


References

�� R� Butler and R� Overbeek� Formula databases for high�performance resolu�
tion�paramodulation systems� Journal of Automated Reasoning� ����������� �����

�� C�L� Chang and R�C�T� Lee� Symbolic Logic and Mechanical Theorem Proving�
Computer Science and Applied Mathematics� Academic Press� New York� New
York� �����

�� P� Graf� Substitution tree indexing� In �th International Conference on Rewriting
Techniques and Applications RTA���� pages �������� Springer LNCS ���� �����

�� P� Graf� Term Indexing� Springer LNAI ����� �����
�� J�D� McCharen� R� Overbeek� and L� Wos� Complexity and related enhancements

for automated theorem�proving programs� Computers and Mathematics with Ap�

plications� ������� �����
�� W� McCune� Experiments with discrimination�tree indexing and path�indexing for

term retrieval� Journal of Automated Reasoning� ������������� October �����
�� C� Meyer� Parallel Unit Resulting Resolution� Diploma thesis� Universit�at

des Saarlandes� Saarbr�ucken� Germany� ����� http���www�mpi�sb�mpg�de�pa�
pers�masters theses�meyer�ps�gz�

�� H�J� Ohlbach� Abstraction tree indexing for terms� In Proceedings of the �th

European Conference on Arti�cial Intelligence� pages �������� Pitman Publishing�
London� August �����

�� J�A� Robinson� Automated deduction with hyper�resolution� International Journal
of Comp� Mathematics� ���������� �����

��� J�A� Robinson� A machine�oriented logic based on the resolution principle� Journal
of the ACM� ������������ �����

��� L� Wos� Note on McCune
s article on discrimination trees� Journal of Automated

Reasoning� ������������� �����


