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Abstract—A symbolic execution engine regularly queries a
Satisfiability Modulo Theory (SMT) solver to determine reacha-
bility of code during execution. Unfortunately, the SMT solver is
often the bottleneck of symbolic execution. Inspired by abstract
interpretation, we propose an abstract symbolic execution (ASE)
engine which aims at querying the SMT solver less often by
trying to compute reachability faster through an increasingly
weaker abstraction. For this purpose, we have designed and
implemented a value set decision procedure based on strided
value interval (SVI) sets for efficiently determining precise, or
under-approximating value sets for variables. Our ASE engine
begins reasoning with respect to the SVI abstraction, and then
only if needed uses the theory of bit-vectors implemented in
SMT solvers. Our ASE engine efficiently detects when the former
abstraction becomes incomplete to move on and try the next
abstraction.

We have designed and implemented a prototype of our engine
for a subset of 64-bit RISC-V. Our experimental evaluation
shows that our prototype often improves symbolic execution
time by significantly reducing the number of SMT queries while,
whenever the abstraction does not work, the overhead for trying
still remains low.

Index Terms—symbolic execution, value set decision procedure,
strided value interval set abstraction

I. INTRODUCTION

Symbolic execution [1]–[4] computes inputs to a given
program that make the program run into an error state such as
division by zero within a given number of steps during con-
crete execution. For this purpose, a symbolic execution engine
constructs, during program execution, a Satisfiability Modulo
Theory (SMT) formula for a given program path to a control-
flow location, called path condition, that is satisfiable in the
theory of program expressions if and only if the location is
reachable on that path. A variable assignment that satisfies the
SMT formula corresponds to an input that makes the program
run into the location on that path. Conversely, an unsatisfiable
SMT formula indicates that the location is unreachable for
all inputs that take the program onto that path. The engine
regularly queries an SMT solver to determine reachability
of the execution branches appearing in the program. Despite
recent advances, constraint solving is a scalability bottleneck
in symbolic execution of code [1]. Employing a lightweight
reasoning procedure to make decisions about the reachability
of each of the execution branches enables the symbolic exe-
cution engine to scale and to penetrate deeper into the code.

While symbolically executing code, the generated con-
straints are typically modeled in the theory of bit-vectors [5] to
be passed to an SMT solver. A constraint solver for the theory
of bit-vectors with a solving algorithm which is designed to
operate on an arbitrarily general set of constraints including a
wide range and combination of operations may be inefficient
for a set of constraints which use a small number of operations
and have specific features [6], [7]. In this paper we propose an
abstract symbolic execution (ASE) engine exploiting an inte-
ger decision procedure for constraint solving which performs
a theory integration in a layered manner by considering two
abstractions: strided value interval (SVI) set abstraction [8],
[9] and bit-vectors [5]. The respective decision procedures
for each abstraction in this design strategy are organized in
a layered order of increasing capability and complexity. All
the decisions are made without querying the SMT solver for
the set of constraints which can be solved using the SVI
decision procedure in the first layer. Otherwise, the theory
of bit-vectors implemented in SMT solvers is responsible for
answering reachability queries.

The decision procedure in the first layer employs a
lightweight value set analysis technique designed for symbolic
execution which uses the SVI abstraction to propagate values
and speedup the process of reachability decision making. The
SVI abstraction uses a set of strided value intervals to specify
values of program variables precisely. An SVI in this set
is represented by a wrapped strided interval [8]–[12] which
maintains an incrementing step of possible values in addition
to the value bounds and allows wrapping in case of overflow.
Keeping the incrementing step enables us to reason about
multiplication which introduces steps in possible values. By
employing the SVI abstraction the decision procedure analyzes
the constraints at a higher level than bits (e.g., words and
double words) in contrast to bit-precise reasoning used in
typical SMT solvers which may be inefficient because of costly
bit-blasting [5] in their backend [6], [7].

The strided intervals and value set analysis technique are
typically used in the context of static analysis to over-
approximate the values of variables in the program [8]–[12].
However, in the context of symbolic execution the precision
of the decisions over reachability matters. Therefore, the SVI
abstraction in ASE is used to represent values that variables



can certainly take (no false positive). Such a value set enables
us to make reachability or unreachability decisions precisely.
The ASE engine is aware of when the SVI decision procedure
is able to provide precise decisions over the set of under-
lying constraints, and when this cannot be achieved because
of a high imposing complexity or incapability, the baseline
abstraction is upgraded to bit-vectors.

When the representation of precise values for variables is
not possible using the SVI abstraction, we propose a technique
in the SVI abstraction layer that under-approximates the set of
possible values for involving variables in an operation when
applicable. The technique employs an incomplete, lightweight
extension of the propagation technique used for our precise
SVI decision procedure to make satisfiability decisions and
reduce the number of queries sent to the SMT solver and
speed up the symbolic execution time.

The following contributions are made by this paper: 1) We
propose an ASE engine which employs a theory integration
in the constraint solving component of the symbolic execution
process, and benefits from a novel value set analysis technique
to propagate values at a higher level than bits. 2) We propose
a value set decision procedure based on the SVI abstraction,
define the theory behind it, and provide conditions under which
the analysis provides precise values for program variables. As
such, the decision procedure detects when such an abstraction
leads to exact satisfiability and unsatisfiability decisions for
symbolic execution (Section IV). 3) In order to benefit from
the efficiency of our precise SVI decision procedure we intro-
duce an extension technique which enables the ASE engine to
make satisfiability decisions using an under-approximation of
the set of possible values for variables (Section V).

Our experimental evaluation on a set of benchmarks shows
on average 33.62% and 59.84% reduction in symbolic execu-
tion time compared to the state-of-the-art approach [13] and
the approach which always queries an SMT solver, respec-
tively.

II. OVERVIEW

The principled idea of abstract symbolic execution is to
integrate symbolic execution with decision procedures that
leverage domain specific reasoning to speedup constraint
solving by employing increasingly weaker abstractions. The
decision procedure we propose here is able to reason about
the set of constraints generated out of a program with respect
to an abstract domain:

Definition 2.1: A constraint satisfaction problem on finite
domains (CSP) is defined by a triplet 〈X ,D, C〉 where X =
{x1, . . . , xn} is a set of variables, D = {d1, . . . , dn} is the
set of variables’ domains (xi ∈ di), and C = {c1, . . . , cm}
is a set of constraints over variables. A valuation is defined
as v = (v1, . . . , vn) where vi ∈ di. A solution to the CSP is
defined as a valuation s which satisfies the set of constraints
C. The set of all solutions is denoted as S.

Given a specific abstract domain to represent the possible
values of variables, the set of all solutions S for a set of
constraints C can be represented precisely, or approximated.

Definition 2.2: Given an abstract domain A and a corre-
sponding set of solutions SA, this set is precise if SA = S
and is an under-approximation if SA ⊆ S. In case of an under-
approximation we write SA for S.

In this paper we present a decision procedure employing
a propagation technique which considers an SVI set as its
underlying abstract domain to find the precise, or the under-
approximating set of all solutions to a CSP. To do so, we
employ a refinement model [14] wherein initially variables can
take any value in their domain. While symbolically executing
code, constraints are generated and gradually variables’ values
are refined so that they satisfy the currently seen set of
constraints. When the SVI decision procedure cannot provide
a decision, the abstraction is upgraded to bit-vectors and the
decision procedure implemented in an SMT solver is used to
make a decision.

Section IV presents the precise SVI decision procedure and
discusses the conditions under which the analysis provides the
exact set of all solutions. In Section V we propose a technique
which continues propagating an under-approximation of the
set of solutions when representation of the precise solutions
is not possible. Keeping the under-approximating solutions
SA for the currently seen constraints enables us to check the
satisfiability (and not unsatisfiability) of subsequent constraints
appearing in the program while still using the efficient propa-
gation technique of the decision procedure of Section IV. The
proposed symbolic execution algorithm and its implementation
details are explained in Section VI.

III. RELATED WORK

In this paper we employ an abstract domain in the process
of symbolic reasoning about the set of generated constraints
out of a program. Abstracting values using interval domain is a
well-studied and efficient technique in the context of abstract
interpretation and program analysis. The concept of strided
intervals was introduced by Reps et al. [10] representing fixed-
precision value intervals with incrementing steps. However, a
strided interval in their definition does not permit wrapping
[15]. The application of the interval abstract domain becomes
harder when it comes to the analysis of machine arithmetic
with wrap-around semantics in case of overflow. Integer
wrapped intervals [15], [16] extends the classical intervals by
considering wrap-around semantics. Gange et al. [15] provide
a sound analysis for wrapped interval abstract domain. They
use intervals to over-approximate the set of all possible values
which one variable can take. In our SVI decision procedure
we use their soundness conditions, however we extend the
abstraction to wrapped strided intervals, propose completeness
conditions for operations, and define the detailed semantics of
reachability decision making when the comparison operation
is involved. In particular we define the inverse semantics of op-
erations while propagation intervals backward (Section IV-B).

Sen et al. [8] employ the wrapped interval abstraction
with steps where they propose a new abstract domain called
Circular Linear Progressions (CLPs) to combine the efficiency
of interval abstract domain with the discreteness of linear



congruence domain. In our SVI decision procedure we use
their defined semantics, however we extend those by defining
soundness and completeness conditions for each operation
since in the context of symbolic execution the precision of
decisions matters. Moreover, we discuss the inverse semantics
of operations while propagating constraints backward (Sec-
tion IV-B), and investigate the semantics of the remainder
operation during the forward propagation (Section IV-A).

The strided interval abstraction [10] has been used in several
research works [9], [11]. Balakrishnan et al. [11] propose value
set analysis (VSA) which uses a combined numeric and pointer
analysis algorithm to over-approximate the set of values. Later,
to increase the precision, Shoshitaishvili et al. [9] extends the
VSA of Balakrishnan et al. [11] to detect memory corruptions
by developing a new abstraction called strided interval set,
implementing a lightweight algebraic solver, and adopting a
signedness-agnostic wrapped interval domain. However, they
omit discussing the detailed semantics of their algebraic solver.
Both papers use VSA as a static analysis technique to over-
approximate possible values that registers or abstract locations
in a program can take. We also use strided interval sets to
analyze possible values, however since we employ our SVI
decision procedure in symbolic execution, it is necessary to be
able to make exact decisions. Therefore, additionally we derive
completeness conditions under which our analysis provides
exact values for variables and leads to exact reachability
decisions. Moreover, the provided under-approximating values
by ASE can also lead to exact reachability decisions.

The layering design strategy which refers to employing
a set of theory solvers in an increasing order of capability
and complexity is another related research topic [17]–[19].
Bruttomesso et al. [17] proposed a three-layered theory solver
including a solver for the logic of equality of uninterpreted
functions as first layer, an incomplete solver which is based
on term rewriting technique and inconsistency detection for
bit-vector constraints as second layer, and a complete solver
for bit-vectors as third layer. Hadarean et al. [18] proposed a
lazy, layered approach for the theory of bit-vectors targeting
equality and inequality constraints. Their proposed inequality
solver applies a polynomial-time algorithm to check satisfia-
bility given a set of constraints. In this paper we also use a
layering design strategy in our decision procedure. However,
we propose an SVI decision procedure as the first layer.

In the context of symbolic execution there are many tools
which implement the symbolic execution algorithm targeting
different languages and by applying different techniques [1]–
[4], [20]–[24]. In this paper we extend the idea of PARTI [13]
which proposed an optimization technique to reduce the
number of accesses to the constraint solver by implementing
an incomplete solver for interval theory. Variable’s values in
such a solver are represented by a data-structure called multi-
interval. The expressions and operations which can be handled
by this incomplete solver are solved efficiently and the rest
of the queries are passed to a complete SMT solver. The
contributions of this paper over PARTI [13] are as follows.
1) we extend the employed abstraction in PARTI, which is

a set of non-wrapped value intervals, to a set of wrapped
strided value intervals. The strided value intervals introduce
an incrementing step for possible values needed to reason
about linear multiplication. 2) Given the SVI abstraction, we
propose the corresponding propagation algorithm by defining
the precise, formal semantics of each operation together with
soundness and completeness conditions (Section IV). The
extraction of such conditions is essential to make exact reach-
ability decisions. PARTI omits to define the theory behind
its engine formally including the detailed semantics of the
operations. 3) When a complete analysis is possible, ASE
extents the theory by supporting several more operations
including linear multiplication, division, and remainder. 4)
We propose an optimization technique based on the SVI
abstraction which aims at solving satisfiability by keeping an
under-approximating set of values for variables (Section V).
On the other hand, PARTI supports features that ASE does
not such as signed integer arithmetic and type casting.

IV. PRECISE SVI DECISION PROCEDURE

1int x, y;
2interval(&x, [10, 20]);
3y = 2 * x;
4if (y < 30) {...;}
5else {...;}

Listing 1: Code example.

In this section we present
the value set decision proce-
dure which is used in the ASE
engine with respect to the SVI
abstraction. Listing 1 shows a
code example where a sym-
bolic input is provided to the program. The execution of the
program at line 2 assigns a symbolic value which varies in a
range from 10 to 20 into variable x. Then, at line 3 variable
y is assigned through a symbolic expression which therefore
assigns values {20, 22, . . . , 40} to y. These values cannot be
represented by only bounds because some values in between
are missing. In order to handle such a case which is the result
of a multiplication we also need to keep the incrementing
step of possible values in addition to the bounds, denoted
as a tuple 〈lo, up, step〉. Thus, the possible values for y are
represented as 〈20, 40, 2〉. The assignment of an arithmetic
expression to a variable is evaluated by the substitution of
variables appearing on the right hand side. We call this process
forward propagation of constraints. Afterwards, the execution
of the conditional expression at line 4 creates two execution
branches. The evaluation of the branch to true and false,
tightens the possible values of y to 〈20, 28, 2〉 and 〈30, 40, 2〉,
respectively. Since the assignment at line 3 created an alias
relation between variables y and x, the values for x have
to be updated in consequence of the tightened values for
y. Therefore, the new values for x on the true and false
execution paths are 〈10, 14, 1〉 and 〈15, 20, 1〉, respectively.
As it is manifested in this example, the evaluation of a
conditional expression may need to update previously stored
value intervals for involving variables and those which were
in relation with them through an assignment (which creates
memory aliasing). We call this process backward propagation
of constraints. The value intervals of variable x at each end-
point is used to generate test inputs which trigger each of two
execution paths in Listing 1.



In the context of fixed-width machine arithmetic with over-
flow semantics, integer variables can only take a finite range of
values representable by w bits. The performed operations on
these integers are denoted by a subscript w (e.g., +w). In this
paper we assume all arithmetic operations are unsigned and for
integers. In fact integer values are represented by a sequence of
bits of fixed length and signedness is an interpretation of those
bits by using a method like two’s complement to represent
signed numbers.

Definition 4.1: (Strided Value Interval). A strided value
interval (SVI) with wrap-around semantics is a tuple 〈a, b, s〉w
where s> 0, each of a, b, and s are represented by w-bit
integers, and s | (b−w a). The tuple indicates the set of integer
values {a+w i∗ s | 0 ≤ i ≤ imax} where imax is the smallest
integer value which satisfies a+w imax ∗ s = b. The elements
a, b, and s specify the lower bound, upper bound, and stride
(or step) of the values.

Definition 4.2: (Cardinality). The cardinality of a SVI
denoted as card(〈a, b, s〉w) is the number of integer values
in that interval and it is computed as (b−w a)/s+w 1 where
/ is an integer division.

Definition 4.3: (Strided Value Interval Set). A strided value
interval set represents a set of SVIs with an identical stride
indicating the values that a variable in the program can take.

Following the wrap-around semantics the bounds for a range
of values are represented on a number circle (as opposed to
number line) [8], [15]. The values for an unsigned integer start
with 0 and proceed clockwise to the maximum value which
is 2w−1. The representation of numbers in a circular manner
enables us to depict the overflow concept. For example, the
addition of maximum integer value, i.e. 2w − 1, and 1 results
in 0 when a variable is represented by w bits. Given a value
interval 〈a, b, s〉w, in the circular representation the starting
point of the interval can take place in a position where either
a ≤ b or a> b. The latter case specifies the occurrence of an
overflow which indicates a wrapping. Interval I = 〈a, b, s〉w
represented on a number circle can be decomposed into at
most two sub-intervals which do not wrap as follows:{
〈a, b, s〉w ↪→ 〈a, b, s〉w a ≤ b
〈a, b, s〉w ↪→ 〈a,max, s〉w ∪ 〈min, b, s〉w otherwise

(1)
where min = glbI(0) and max = lubI(2w− 1). The lubI(i)
function maps its argument i to the largest value that belongs
to the interval I = 〈a, b, s〉w and is less-than or equal to i.
The glbI(i) function maps i to the smallest value that belongs
to the interval I = 〈a, b, s〉w and is greater-than or equal to i.

The multi-interval data structure used in PARTI [13] con-
siders a set of non-wrapped intervals which only keeps value
bounds. It always splits the values when an overflow occurs.
Moreover, representation of values with an incrementing step,
may not be efficient using the multi-interval data structure.
For example, considering unsigned 64-bit integers, the set
{264 − 1, 2, 5} contains 3 values where 264 − 1 is the
maximum representable value for an unsigned 64-bit integer.
Given the multi-interval abstraction this set is represented
as {[264 − 1, 264 − 1], [2, 2], [5, 5]}, whereas using the SVI

abstraction this can be represented by 〈264 − 1, 5, 3〉64.
In the rest of this section we define the semantics for

forward and backward propagation of an SVI. Since we design
a decision procedure for symbolic execution, it is critical to
extract conditions under which the analysis provides correct
and exact decisions based on the employed SVI abstraction.

A. Forward Propagation of Constraints

This section presents the forward semantics of arithmetic
operations and specifies the conditions under which the re-
sulting value interval(s) represent the exact possible values.

1) Addition/Subtraction: The addition and subtraction of a
non-empty interval 〈a, b, s〉w and a concrete integer value k
are computed as follows:

〈a, b, s〉w + k = 〈a+w k, b+w k, s〉w
〈a, b, s〉w − k = 〈a−w k, b−w k, s〉w
k + 〈a, b, s〉w = 〈k +w a, k +w b, s〉w
k − 〈a, b, s〉w = 〈k −w b, k −w a, s〉w

(2)

Given two value intervals 〈a, b, s〉w and 〈c, d, s′〉w where car-
dinality of each is greater than 1, the addition and subtraction
of those are computed as follows [8]:

〈a, b, s〉w + 〈c, d, s′〉w = 〈a+w c, b+w d, gcd(s, s
′)〉w

〈a, b, s〉w − 〈c, d, s′〉w = 〈a−w d, b−w c, gcd(s, s
′)〉w

(3)

where gcd computes the greatest common divisor of two inte-
gers. The resulting interval computed in Formula 3 is a sound
over-approximation of all possible resulting values when the
following condition is satisfied [15]:

card(〈a, b, 1〉w) + card(〈c, d, 1〉w) ≤ 2w + 1 (4)

which means that the length of the resulting interval, i.e.
(b − a) + (d − c), should not be overflowed. For the case
wherein both operands are symbolic and the condition in
Formula 4 is satisfied, Formula 3 may provide an interval
which is a superset of the exact possible values in two
following cases. First case may happen when the steps of two
intervals corresponding to the operands are not identical. For
example, the addition of l = 〈0, 90, 10〉64 and r = 〈0, 7, 1〉64
value intervals results a proper subset of 〈0, 97, 1〉64 containing
values such as 88 which cannot be inferred from l + r.
We derive a condition under which the resulting interval in
Formula 3 can provide the exact resulting values:

s′ % s = 0 ∧ card(〈a, b, s〉w) ≥ s′/s or
s% s′ = 0 ∧ card(〈c, d, s′〉w) ≥ s/s′

(5)

The second case is when the operands are related to each other,
for example x+x or x−x. In such a case the resulting interval
will be an over-approximation of possible values.

2) Multiplication: The multiplication of a non-empty inter-
val 〈a, b, s〉w and a concrete integer value k > 0, is computed
as:

〈a, b, s〉w ∗ k = 〈a ∗w k, b ∗w k, s ∗ k〉 (6)

The conditions under which the above formula provides an
exact resulting values are defined as follows: (b − a) ∗ k <
2w and s ∗ k < 2w, which implies that the length of the
resulting interval after multiplication [15] and the resulting



step must not be overflowed. PARTI [13] supports left shifts
by using a so-called left shift attribute in its decision stage.
Otherwise, non-constant multiplications are not supported by
PARTI since it introduces value steps.

3) Division: Given a non-empty interval 〈a, b, s〉w and a
concrete integer value k > 0, the division 〈a, b, s〉w / k is
computed as follows:{

〈a / k, b / k, sr〉w a ≤ b
〈min / k,max / k, sr〉w a > b

(7)

where min and max have the same definition as in Formula 1.
sr is computed as s / k when s≥ k and otherwise is equal to
1. Formula 7 provides a sound over-approximation of possible
values as result of division. In order to derive the resulting
interval which represents the exact possible values, we need
to specify two conditions. First when a 6= b, by checking
whether the step s and the divisor k are divisible or not which
means: s% k = 0 if s ≥ k. The second condition applies
on when a > b. In this case the interval 〈a, b, s〉w should
be split into two sub-intervals 〈a,max , s〉w and 〈min, b, s〉w
according to Formula 1. The resulting values can be repre-
sented as the two following intervals: 〈a / k,max / k, sr〉 and
〈min / k, b / k, sr〉. PARTI [13] only supports right shifts by
constant.

4) Remainder: Given a non-empty interval 〈a, b, s〉w where
a ≤ b and a concrete integer value k > 0, the remainder
operation 〈a, b, s〉w % k can be computed as:

〈a%k, b%k, s〉w b/k = a/k

〈a%k − istart ∗ gcd(s, k),
a%k + iend ∗ gcd(s, k),
gcd(s, k)〉w

b− a ≥ lcm(s, k)− s ∧
b/k 6= a/k

〈0, k − 1, 1〉w otherwise
(8)

wherein lcm is the least common multiple function, istart =
(a%k)/ gcd(s, k), and iend = (k − 1 − a%k)/gcd(s, k). All
the arithmetic operations in the above formula are modulo
2w. When one of the two first conditions in Formula 8 are
satisfied, the resulting interval represents the exact values.
However in case of violation, the otherwise case represents
an over-approximation of the possible values.

In case of a > b, the resulting values should be the
remainder of both k and 2w. When b − a ≥ lcm(s, k) − s
and gcd(k, 2w) = k then the resulting values can be rep-
resented by the second rule in Formula 8. Otherwise if the
conditions are not satisfied, interval 〈a, b, s〉w should be split
into two sub-intervals according to Formula 1 and each is
analyzed separately. The remainder operator is not supported
by PARTI [13].

5) Comparison: The unsigned comparison expressions,
x cmp y, where cmp ∈ {<,≤, >,≥,=, 6=} can all be converted
into an equivalent expression using only < operation. For
operations cmp ∈ {≤, >,≥,=, 6=} the equivalent versions
are 1 − (y < x), y < x, 1 − (x < y), y − x < 1,
and 0 < y − x, respectively. Therefore, we only need to

x
?
< y Evaluation Resulting Interval

x y

if b < c
false ⊥ ⊥
true 〈a, b, sx〉 〈c, d, sy〉

if d ≤ a
false 〈a, b, sx〉 〈c, d, sy〉
true ⊥ ⊥

if c = d ∧ false 〈c, b, sx〉 〈c, d, sy〉
a < c ≤ b true 〈a, lubx(c−1), sx〉 〈c, d, sy〉

if a = b ∧ false 〈a, b, sx〉 〈c, a, sy〉
c ≤ a < d true 〈a, b, sx〉 〈glby(a+1), d, sy〉

TABLE I: The exact evaluation of less-than operation.

reason about < operation. Given two intervals x= 〈a, b, sx〉
and y= 〈c, d, sy〉 where a≤ b and c≤ d, Table I shows the
conditions under which the evaluation of x<y can be decided
by specifying the exact values that each operand can take.

If the intervals for both operands are wrapped then the
precise operands’ values cannot be efficiently computed. How-
ever, if only one of them is wrapped and the other operand is
a concrete value then a precise decision can be made. In this
case the evaluation is done by splitting the wrapped interval
into two sub-intervals based on Formula 1 and then comparing
the operands accordingly.

Moreover, if either of the intervals for operands are repre-
sented by more than one SVI, the other operand has to be a
concrete value so that exact decisions can be made.

B. Backward Propagation of Constraints

Taking each branch of a conditional expression might
tighten the bounds of possible values for each operand. In
consequence, all the other variables in the program which
were in relation with those operands through an assignment
expression and up to the current program location have to be
updated. For example, if we consider the interval 〈10, 20, 1〉
for variable x and execute y = 2∗x the resulting interval for y
is 〈20, 40, 2〉. Now the program may contain either if(y < 30)
or if(x < 18) statements which forms two different types of
bound propagation. The first one should revise the value inter-
vals back to the variables from which y was computed (i.e., x
through the expression y = 2 ∗ x), and the second one should
update resulting variables of the assignment expressions in
which x were involved (i.e., y in the expression y = 2∗x). We
call these two types of backward propagation as left-to-right,
and right-to-left propagations, respectively. In our example the
condition if(y < 30) tightens the constraint on y to 〈20, 28, 2〉
and then this new constraint should be propagated to update
the value interval of x to 〈10, 14, 1〉. Furthermore, for the right-
to-left propagation type, the condition if(x < 18) tightens
the constraint on x to 〈10, 17, 1〉 and then this new interval is
propagated through the expression y = 2 ∗ x which updates
the value interval of y to 〈20, 34, 2〉.

The right-to-left propagation is the same as what is done
in forward propagation of constraints as described in Section
IV-A. In order to deal with the left-to-right propagation we
need to define the inverse semantics of each operation.

Let us assume that the values for variable x are represented
as 〈a, b, sx〉. If we execute the expression y = x � k where



� ∈ {+,−, ∗, / ,%} and k > 0 is a concrete integer value, the
resulting values for y will be represented by 〈c, d, sy〉. Now the
execution of the conditional expression if(y < t) may tighten
the possible values of y to 〈c′, d′, sy〉 where c′, d′ ∈ 〈c, d, sy〉.
In order to update the values of x based on the new values of
y, we need to inverse the applied operation as follows.

Operation New Bounds

x+ k or k + x
a′ = c′ − k
b′ = d′ − k

x− k
a′ = c′ + k
b′ = d′ + k

k − x
a′ = k − d′

b′ = k − c′

TABLE II: Inverse of addi-
tion and subtraction opera-
tions.

1) Addition/Subtraction:
The addition can be reversed
by subtraction and the
subtraction is reversed using
either addition or subtraction.
Table II shows how to reverse
an addition or a subtraction
by indicating expressions to
compute bounds of variable x.
The semantics of addition and
subtraction to do reversion is the same as what is explained
in Section IV-A.

2) Multiplication: The multiplication can be reversed using
division as follows:

a′ = a+ (c′ − c)/k and b′ = a+ (d′ − c)/k (9)

for example, considering 〈263, 264−1, 1〉64 as the value inter-
val of x, then multiplication of x by 2 results in 〈0, 264−2, 2〉64
when the arithmetic is modulo 264. Now we execute if(y <
232) and thus the tightened interval for y is 〈0, 232 − 2, 2〉64.
The original bounds for x can be updated as 263+(0−0)/2 and
263+(232−2−0)/2. PARTI [13] omits explaining the details
of how multiplication is reversed using a division especially
while wrapping occurs.

3) Division: Whenever for the original interval of x con-
dition a ≤ b is satisfied, the new bounds for x are as follows:

a′ =

{
a c′ ∗ k ≤ a
glbx(c

′ ∗ k) c′ ∗ k > a

b′ = lubx(d′ ∗ k + offset)
(10)

Moreover, offset is computed as:{
b− d′ ∗ k b < d′ ∗ k + k − 1
k − 1 b ≥ d′ ∗ k + k − 1

(11)

In fact, the purpose of offset is to reverse the side effect of
integer division. In integer division the result loses its decimal
part (e.g. 15/2 = 7) and in order to be able to reverse
that we need to compute offset. For example, we assume
x = 〈11, 27, 4〉 and we execute y = x/2 then y = 〈5, 13, 2〉
and the execution of if(5 < y) results in a new value interval
y = 〈7, 13, 2〉 and thus x = 〈15, 27, 4〉.

In case of a > b, inversion should be applied with respect to
two non-wrapped sub-intervals 〈a,max, sx〉 and 〈min, b, sx〉
of x computed according to Formula 1. The backward propa-
gation of division is not supported by PARTI [13].

4) Remainder: To reverse remainder, we need to compute
values inside the interval 〈a, b, sx〉 for which x%k results a
value in 〈c′, d′, sy〉. The analysis of this operation may lead
to a large number of value intervals and thus may be costly
using the SVI abstraction. Therefore, we omit to apply the
exact backward propagation on remainder operation.

C. Time Complexity

The time complexity of the decision procedure proposed in
this section depends on the number of instructions and their
cost. Given an execution path in a program, we assume that n
indicates the number of instructions on the path, k identifies
the maximum number of value intervals returned by applying
an operation, and c represents a constant indicating the upper-
bound on the cost of applying an operation. While doing
forward propagation, the time complexity of each addition or
subtraction is O(k2 · c). Moreover, multiplication, division,
modulo, and comparison operations each can be computed in
O(k · c). Backward propagation of intervals takes O(n · k · c)
since the depth of backward propagation might be proportional
to the number of executed instructions on the path. Therefore,
the total time complexity of the analysis for an execution path
is computed as O(n ·k2 ·c)+O(n2 ·k ·c). Let us assume that a
symbolic expression is represented by an abstract syntax tree.
Each intermediate node of this tree represents an arithmetic
operation and each leaf node represents a concrete or a sym-
bolic input value. When the symbolic expressions representing
variables and operands have shallow depth and can be bounded
by a constant value d, then this time complexity order tends
to O(n · k2 · c) +O(n · d · k · c).

V. UNDER-APPROXIMATING SVI DECISION PROCEDURE

In Section IV we explained the conditions under which
our SVI abstraction can provide exact decisions over a set of
constraints. In order to exploit the efficiency of the decision
procedure presented in Section IV, we propose a technique
which enables us to still reason about the satisfiability of a
set of constraints efficiently for the cases which conditions in
Table I are not satisfied anymore. For example, considering the
expression x ≤ y where x ∈ 〈0, 10, 1〉 and y ∈ 〈2, 10, 1〉, the
striped region in Figure 1b illustrates the values for each of x
and y which satisfy x ≤ y. The values of the operands intersect
each other on interval 〈2, 10, 1〉 and for this intersection area in
addition to the value intervals, a less-than-equal relation has
to be set between variables. Representing the precise set of
values which each of x and y variables can take is inefficient
using the SVI abstraction since it may lead to many relative
cases and may increase the complexity of the analysis. The
interval theory proposed by Dustmann et al. [13] does not
support the backward propagation of such constraints to the
involving variables. In learning stage of their theory, only
binary operations whose one side is a constant is analyzed.

In such cases where the intervals of the operands in a
comparison expression overlap each other, the analysis can
still be continued by maintaining an under-approximating set
of values, SA. Keeping a set of values which satisfy the
currently seen set of constraints on the path condition, as
opposed to only one generated witness by an SMT solver,
may help deciding the satisfiability of the constraints which
will appear further on the execution path (The unsatisfiabili-
ty/unreachability decisions cannot be proved using the under-
approximation since the set of all values are not available). The
satisfiability of a set of constraints which can be determined by
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Fig. 1: a) Boxes B1 and B2 indicate two candidate under-
approximating regions for the evaluation of x ≤ y to true.
b) Box B indicates an under-approximating region for the
evaluation of x ≤ y to true.

this set of values does not need to be checked by a complete
bit-vector decision procedure (i.e., SMT solver).

Definition 5.1: Given a constraint satisfaction problem
〈X ,D, C〉, a solution box is defined as B = (I1, . . . , In),
where Ii ⊆ di represents a value interval for xi, satisfying C.

An under-approximating set of possible values can be indi-
cated by a box. Figure 1 shows the region (striped) where x ≤
y is evaluated as true where x ∈ 〈0, 10, 1〉 and y ∈ 〈2, 10, 1〉.
Choosing any box (or set of boxes) in this region determines
candidate intervals for each of the operands which under-
approximate the possible resulting values. We avoid selecting
a set of boxes since it increases the complexity of the propaga-
tion algorithm which harms the efficiency. To keep the analysis
lightweight, one of the design factors is to trade off accuracy of
the resulting candidate box(es) for faster selection of those. We
propose and evaluate two methods for the under-approximating
box selection based on the following observations. Given
the conditional expression x ≤ y on an execution path of
a program, depending on the further usages of x and y on the
path, the selection of different boxes can be useful.
Observation 1. In a program which computes the maximum
of elements in an array, the comparison of two array elements
x and y always takes the greater variable and continues the
execution with that (i.e., y for x ≤ y, and x for the negation
x > y). Therefore, the best choice is a box which prioritizes
the greater variable. The variable prioritization means that
we assign the largest possible value interval satisfying the
condition to that variable. The story is reverse while computing
the minimum of elements in an array where the comparison of
two array elements x and y always takes the smaller variable
and continues the execution with that (i.e., y for x > y, and x
for the negation x ≤ y). Here the best choice is the box which
prioritizes the smaller variable. Based on this observation we
propose a heuristic which considers two candidate boxes: the
box in which variable y is prioritized over x, and the box
in which variable x is prioritized over y. For example, the
true evaluation of x ≤ y, as depicted in Figure 1a, leads
to the following choices, respectively: 1) x = 〈0, 2, 1〉 and
y = 〈2, 10, 1〉, 2) x = 〈0, 10, 1〉 and y = 〈10, 10, 1〉. We
keep the above two choices as candidate boxes for the true

evaluation of x ≤ y and continue the execution. The first
upcoming decision point on the execution path which involves
one of the operands will select one of the boxes which can
provide a decision and the execution is continued with that
choice. For example, if after the true evaluation of x ≤ y the
execution reaches the condition y ≤ z where z = 〈0, 5, 1〉 then
for the rest of the execution on this path the box x = 〈0, 2, 1〉
and y = 〈2, 10, 1〉 is chosen for the true evaluation of x ≤ y
since this choice leads to decisions for both true and false
branches of the currently processing condition y ≤ z.
Observation 2. Given x ≤ y on an execution path of a
program, the second observation is when we cannot prioritize
one variable over the other one because both of them are used
further on the execution path. In this case we need to select a
range of values for each of the involving variables instead of
one concrete value. Therefore, we propose a heuristic which
takes the middle point in the intersection of the operands’
intervals and derives the respective boxes accordingly. The
middle point provides equal chance to each of the operands.
Any other choice prioritizes one of the operands over the other
one. In Figure 1b the middle point of the intersection of the
intervals representing variables x and y is 6, and thus the
derived box for the x ≤ y will be represented as x = 〈0, 6, 1〉
and y = 〈6, 10, 1〉.

Once the under-approximating box(es) is selected the execu-
tion will be continued accordingly. Any satisfiability decision
which can be made base on the selected under-approximating
value boxes does not need to be checked with the SMT solver.

VI. IMPLEMENTATION DETAILS

This section explains the implementation details of the
proposed symbolic execution engine.
Machine State Representation. Symbolic inputs to the pro-
gram are denoted by set In = {α1, . . . , αn} where αi is
represented as a value interval Ii. The symbolic execution
engine has to keep track of the machine state transitions
as a consequence of executing instructions using symbolic
values. The machine state at each step of the execution
is represented by the current state of the registers and the
memory. The stored values inside the registers and memory
addresses may be symbolic or concrete. The stored value is
the result of applying binary and unary operations on initial
symbolic or concrete input values expressed as a symbolic
expression E . The registers and memory states are indicated
by a mapping from register numbers and memory addresses
to symbolic expressions and values which are guarded by the
path condition.

Definition 6.1: A symbolic value is represented as a tu-
ple 〈Epc,V,A〉 where Epc specifies the symbolic expression
guarded by the path condition, A indicates the abstraction, and
V denotes the set of values with respect to A.

A symbolic memory address M[addr], or a symbolic
register Ri is represented by a symbolic value tuple which is
associated to the memory address or the register. The element
A of a symbolic value tuple associated to each memory
address indicates the abstraction which has been used so far



to reason about the set of constraints involving that memory
address. A mainly takes three values of pvi, ubox and bvt
representing precise value interval, under-approximating value
box, and bit-vector abstractions. A = pvi and A = ubox mean
that our SVI decision procedure provides precise, and under-
approximating analysis for the involving variable. Otherwise
when the theory of bit-vectors is used to reason about the
constraints involving that memory address, A is set to bvt. The
value set V is represented by a set of wrapped strided value
intervals which specify the precise or under-approximating
values. In the worst-case V only contains one value which is
obtained from the SMT’s witness. We use a trace of execution
history to keep track of memory state transitions, which is
called the memory trace data-structure.

Definition 6.2: A trace entry, te, for memory address addr
is represented by a tuple 〈`, prev,M〉 where ` is the location
of the instruction which caused creating the trace entry, prev
points to the previous symbolic value tuple of addr, and M
represents the new symbolic value tuple for addr.

The operations which update the memory trace are any
instructions whose execution affects the symbolic value of a
memory address. These operations include storing a symbolic
expression into a memory address, evaluating a symbolic con-
ditional expression, and executing a system call such as read,
or brk. At each point of the execution of a program the trace
should return the most recently updated symbolic value tuple
which is stored into a specific memory address. This is done by
keeping track of pointers which assign memory addresses to
the corresponding trace entries which contain the most recently
updated values. The previously stored values into a memory
address by previous instructions and on different pending paths
during symbolic execution of code are kept on the trace for
further backtracking.
ASE Algorithm. Algorithm 1 illustrates the symbolic exe-
cution algorithm. The execution starts at the initial program
location `0. Depending on the instruction which is currently
under execution, the engine updates its state. When a memory
address (variable) is specified with a symbolic input then a
symbolic value tuple representing its value is stored at that
memory address (line 5). For example, if we assign a range
of values between 10 and 20 to variable a, then this is done
by assigning an interval 〈10, 20, 1〉 for our value interval
abstraction and a symbolic expression denoting 10 ≤ a ≤ 20.
A symbolic expression is represented as an abstract syntax
tree. A symbolic expression which is evaluated as a concrete
value is stored accordingly in the memory.

The content of a memory address M[addr] is loaded by
putting a symbolic value tuple 〈Epc,V,A〉 stored at that
memory address into a destination register (line 7). Each store,
which may be interpreted as an assignment in high level code,
updates the memory with the symbolic value of a register (line
9). Moreover, it keeps track of the memory aliases which is
created between variables through this assignment (e.g., the
aliasing relation between a and b through a = 3 ∗ b).

During the execution whenever a conditional expression
Rd = Ri cmpRj is reached where cmp ∈ {<,≤,=, 6=}, then

Algorithm 1: Abstract Symbolic Execution Engine
Input : Program P

1 ` = 0;
2 while true do
3 switch op(`) do
4 case read:
5 M[addr] = 〈Epcα ,Vα, pvi〉;
6 case load:
7 Ri = M[addr];
8 case store:
9 M[addr] = Ri;

10 case if(Rd):
// Rd = Ri cmpRj , cmp ∈ {<,<=,=, 6=}

11 false reachability = evaluate(Rd = false);
12 if false reachability == true then
13 save_context(Rd = false);
14 end
15 true reachability = evaluate(Rd = true);
16 if true reachability == true then
17 pc = pc ∧ (Rd = true);
18 else
19 backtrack();
20 end
21 case end-point:
22 generate_witness();
23 backtrack();
24 default:
25 propagate_forward(op(`), abstraction);
26 end
27 ` = next `;
28 if ` = 0 then terminate;
29 end

the reachability of the true and false branches is evaluated
by calling the evaluate function. The reachability of the
false branch is tried first and if it is reachable, the symbolic
execution context for the false evaluation of the conditional
expression is saved for further backtracking (line 13). After-
wards, the reachability of the true branch is examined and if
it is reachable, the true evaluation of the condition will be
added to the explored path condition so far (line 17). If the
true branch is not reachable the execution will be continued
with the false branch by backtracking (line 19).

The evaluate function, as depicted in Algorithm 2, takes
the conditional expression as input and returns the reachability
decision as its output. In this function the decision proce-
dures are tried in order. DPpvi(.) and DPubox(.) functions
refer to the evaluation of the comparison operation in the
decision procedures of sections IV and V, respectively. The
propagate_backward function implements the semantics
explained in Section IV-B. The newly evaluated SVIs for each
of the operands, Ri and Rj , are propagated backwards with
respect to the underlying abstraction. This function refines the
possible values of the involving variable in each operand and
all expressions in which those were involved until it reaches
an input variable. While propagating backwards if the engine
detects that further propagation is not possible, for example
because of an unsupported operation such as remainder, the
function returns a failure. In case neither of the precise and the
under-approximating decision procedures can provide a deci-
sion, the reachability is decided by the SMT solver (line 18). In



Algorithm 2: evaluate
Input : constraint Rd = Ri cmpRj

Output: true or false
1 if A(Ri) == pvi && A(Rj) == pvi then
2 [can handle, reachability result] = DPpvi(Rd);
3 if can handle == true then
4 if reachability result == false then return false;
5 ri = propagate_backward(Ri when Rd, pvi);
6 rj = propagate_backward(Rj when Rd, pvi);
7 if ri == true && rj == true then return true;
8 end
9 end

10 if A(Ri) 6= bvt && A(Rj) 6= bvt then
11 [can handle] = DPubox(Rd);
12 if can handle == true then
13 ri = propagate_backward(Ri when Rd, ubox);
14 rj = propagate_backward(Rj when Rd,ubox);
15 if ri == true && rj == true then return true;
16 end
17 end
18 if check_sat_SMT_solver(Rd) == true then
19 upgrade_abstraction(bvt);
20 return true;
21 else
22 return false;
23 end

case of a satisfiability decision, the abstraction of the involving
symbolic variables are upgraded to bvt and the value set V of
each is updated with the generated witness of the SMT solver
using the upgrade_abstraction function (line 19).

The default case at line 25 of Algorithm 1 applies the
forward propagation of the other operations including addi-
tion, subtraction, multiplication, division, and remainder. The
forward_propagation function applies forward propaga-
tion of the current instruction based on the semantics explained
in Section IV-A when the abstraction is SVI, or keeps track
of symbolic expressions to be used for bit-vector abstraction
layer. While symbolically executing the program, the target
may be to generate test inputs which trigger an end-point, for
example the exit point of the program on a path or an error
detection (line 22). Moreover, reaching an end-point triggers a
backtracking (line 23). Through the backtracking, the machine
restores its previous state for a given pending path. Thus, it
undoes the effect of instructions which were executed after a
given branching point. This includes undoing trace entries by
restoring the previous value for each memory address, pointed
by prev element of the trace entry, and updating the pointer
to the most recent value of that memory address. Moreover,
the path condition is retrieved to the previous state.

Considering the example of Listing 2, a conditional ex-
pression is evaluated as follows using evaluate function.
Variables x and y take two symbolic values represented as
two SVIs and their abstraction is set to pvi (lines 2 and 3).
When the execution reaches the conditional expression at line
4, the reachability of the false evaluation of the branch is
tried first by using the precise SVI decision procedure. An
exact decision for evaluating 3 ∗ 〈10, 30, 1〉 − 1 ≥ 45 can
be made by DPpvi(.). Thus, the values for x will then be
refined to 〈16, 30, 1〉 using propagate_backward function

with pvi abstraction and evaluate returns true. The current
execution context will be saved for further backtracking, and
then the reachability of the true branch is examined. The
evaluation of 3 ∗ 〈10, 30, 1〉 − 1 < 45 is done accordingly
using DPpvi(.) and the values for x will then be refined to
〈10, 15, 1〉 with pvi abstraction and evaluate returns true.
The recently evaluated constraint will be added to the path
condition and the execution continues on the true branch.

1int x, y;
2x = <10, 30, 1>;
3y = <10, 20, 1>;
4if (3 * x - 1 < 45) {
5if (x <= y) {
6if (x > 12) {
7...;
8} else { ...; }
9} else { ...; }
10} else { ...; }

Listing 2: An example to
show how reachability is
evaluated using ASE.

At line 5 to decide the reacha-
bility of the false branch, x > y,
first DPpvi(.) is tried since the
abstraction used for representing
x and y is still pvi. However,
since the operands’ value inter-
vals overlap each other, the pre-
cise backward propagation is not
possible (See Section V). Thus,
at next step DPubox(.) is tried to
check if it can provide a decision.
Using Observation 2 of Section V,
a decision can be made by setting 〈13, 15, 1〉 and 〈10, 12, 1〉
under-approximating SVIs for operands x and y, respectively.
Hence, the abstraction for x and y are set to ubox and
evaluate returns true. The execution context will be saved,
and next the reachability of the true branch is investigated. The
evaluation of x ≤ y, is done accordingly using Observation 2
of Section V and the values for x and y will then be
refined to 〈10, 12, 1〉 and 〈12, 20, 1〉 using ubox abstraction
and evaluate returns true. The path condition is updated
and the execution continues on the true branch. Later, when
line 6 is reached, the current abstraction for x is ubox and
thus DPubox(.) is first checked whether it can provide an exact
decision over reachability of the false branch, 〈10, 12, 1〉 ≤ 12,
based on the operands’ SVIs. The satisfiability is decided
by considering values 〈10, 12, 1〉 for x using ubox abstrac-
tion. The current execution context for false branch is saved
and then the true branch is evaluated. The evaluation of
〈10, 12, 1〉 > 12, however cannot be decided using DPubox(.)
since we only keep an under-approximation of possible values
and those values do not satisfy the condition. Therefore, the
abstraction is upgraded to bvt and a query, including the
symbolic constraint guarded by the path condition, will be sent
to the SMT solver to be decided. The value sets for x and y
will be refined by the generated witness of the solver (e.g.,
Vx = 〈14, 14, 1〉 and Vy = 〈14, 14, 1〉) and their abstraction is
set to bvt. Now that we reached to an end-point, the execution
backtracks to traverse the false evaluations of the conditions
starting at the saved context for the false branch of line 6.
It is worth mentioning that the interval theory proposed in
PARTI [13] cannot reason about this example.

VII. EVALUATION

In this section, we demonstrate the effectiveness of our
proposed ASE engine in speeding up the symbolic analysis. In
Section IV-C we discussed the asymptotic time complexity of
the proposed SVI decision procedure. In this section the goal is



benchmark #paths
ASE (O1) ASE (O2) PARTI baseline reduction in execution time for ASE (%)

time (s) #queries time (s) #queries time (s) #queries time (s) #queries versus PARTI versus baseline
O1 O2 O1 O2

bubble sort 1 300 32.86 0 33.50 0 32.49 0 206.39 67350 -1.13 -3.10 84.08 83.77
bubble sort 3 55445 670.84 637821 588.35 559587 779.11 728766 1207.21 1135634 13.90 24.48 44.43 51.26
bubble sort all 40320 244.69 233087 65.14 91796 255.90 234958 249.14 234958 4.38 74.54 1.79 73.85
heap sort 1 275 3.22 0 3.20 0 3.11 0 7.11 2340 -3.48 -2.68 54.69 55.04
heap sort 3 39286 93.41 104524 95.68 105620 140.81 162096 437.36 518822 33.66 32.05 78.64 78.12
heap sort all 135423 1188.13 960034 982.57 830632 1202.91 964444 1180.73 964444 1.23 18.32 -0.63 16.78
insertion sort 1 300 26.23 0 26.32 0 25.53 0 204.87 67350 -2.75 -3.07 87.19 87.15
insertion sort 3 55445 1391.06 1420769 1208.43 1249913 1575.29 1575736 2830.64 2860000 11.69 23.29 50.86 57.31
insertion sort all 40320 73.21 80057 5.22 4878 75.33 80638 74.35 80638 2.81 93.08 1.54 92.98
merge sort 1 300 0.91 0 0.91 0 0.88 0 1.93 896 -3.99 -3.58 52.80 52.98
merge sort 3 55445 40.14 29460 23.73 14125 45.12 34746 149.79 147400 11.04 47.41 73.20 84.16
merge sort all 40320 71.36 78750 58.94 63238 77.01 80638 76.84 80638 7.34 23.47 7.13 23.30
quick sort 1 300 19.73 0 19.94 0 19.84 0 18.55 598 0.52 -0.55 -6.34 -7.49
quick sort 3 49675 274.33 205666 212.65 162382 304.82 230898 558.60 446606 10.00 30.24 50.89 61.93
quick sort all 40320 109.53 78800 15.36 9757 111.27 80638 109.93 80638 1.56 86.20 0.37 86.03
selection sort 1 300 16.60 0 16.49 0 16.10 0 2697.72 1192300 -3.11 -2.43 99.38 99.39
selection sort 3 60535 3288.82 2913602 2658.36 2480695 3411.95 3030568 4358.47 3828538 3.61 22.09 24.54 39.01
selection sort all 101773 623.13 521344 403.23 351101 629.13 526350 625.52 526350 0.95 35.91 0.38 35.54
dijkstra 11632 775.70 88726 724.14 83034 790.76 89990 862.19 99564 1.90 8.42 10.03 16.01
kruskal 7129 746.51 711343 678.89 658255 794.07 738072 830.87 789714 5.99 14.51 10.15 18.29
bellman-ford 326 760.89 91752 766.24 91752 763.01 91752 836.81 102876 0.28 -0.42 9.07 8.43
binary search all 4001 0.12 0 0.11 0 904.50 8000 905.90 8000 99.99 99.99 99.99 99.99
linear find all 1001 0.04 0 0.04 0 101.71 2000 102.66 2000 99.96 99.96 99.96 99.96
is permutation 96499 1483.62 1622733 532.04 794099 1649.28 1716634 1620.05 1716634 10.04 67.74 8.42 67.16
gcd 401 272.69 3183 269.13 3183 266.32 3188 279.13 3192 -2.39 -1.05 2.31 3.58
loop invgen 4098 401.34 22859 262.02 17369 580.93 29846 775.26 34440 30.91 54.90 48.23 66.20
min max all 19683 128.90 72067 129.89 74362 139.27 77706 137.76 77706 7.45 6.74 6.43 5.71
dirname 65535 2.05 0 2.06 0 2.01 0 326.42 815764 -1.97 -2.15 99.37 99.37
fibonacci 21 0.20 0 0.19 0 0.19 0 32.68 206554 -2.83 -1.92 99.40 99.41
half 1002 0.03 0 0.03 0 81.73 8006 81.36 8010 99.96 99.96 99.96 99.96
outer product 15625 0.36 0 0.36 0 189.72 140616 186.51 140616 99.81 99.81 99.81 99.81

TABLE III: The number of explored paths, the symbolic execution time, the number of reached queries to the SMT solver for
each of the ASE, the PARTI, and the baseline approaches. O1 and O2 stand for Observation 1 and Observation 2 which are
applied in the ASE approach. The reduction in symbolic execution time for the ASE compared to the PARTI and the baseline
approaches is reported in percentage and illustrated in last four columns.

to show the efficiency of employing the proposed SVI decision
procedure in practice by running the ASE engine on a set of
benchmark programs. We evaluate the engine by comparing
the following approaches: 1,2) ASE (O1) and ASE (O2) which
refer to the proposed engine and its decision procedure in this
paper by applying the heuristic methods of Observation 1 and
Observation 2 proposed in Section V, respectively. 3) PARTI
refers to the state-of-the-art approach [13]. 4) baseline is a
design strategy which uses an SMT solver for the constraint
solving component of the symbolic execution. In baseline
all the generated symbolic constraints out of the benchmark
programs are sent to the SMT solver as query to be solved.

A. Experimental Setup

We ran our experiments on a 512GB NUMA machine with
four 16-core 2.3 GHz AMD Opteron 6376 processors and
Linux kernel version 4.15. For our experiments, we used
Boolector [25] version 3.2.1 with CaDiCaL as backend SAT
solver, and incremental mode enabled. We used GCC and
G++ version 9.3 to build Boolector SMT solver and compile
our implemented ASE engine source code. We set depth first
search (DFS) strategy to explore the paths in benchmark
programs. The witnesses for each explored path are computed
but they are not printed for none of the approaches. While
executing, depending on the underlying abstraction the engine

keeps the set of values V (precise or under-approximation) for
variables on a path updated for all the approaches.

We run our experiments on a set of benchmarks from
different classes of programs typically used in evaluating
symbolic execution approaches [13], [26], [27], including
sorting, searching, graph, and computational algorithms. The
source code of the benchmark programs, which is written in
a subset of C, are compiled to a subset of RISC-V using a
non-optimizing compiler [28]–[30].

B. Experimental Results

Table III reports the execution results of running all ap-
proaches on a set of benchmarks. The reported data includes
the number of explored paths (which are identical for all
approaches), the symbolic execution time, and the number of
queries that reached the SMT solver. The suffixes added to
the names of the benchmarks indicate the number of involved
symbolic values in their input data (e.g. array, graph), namely
all, 3, and 1. For example, in bubble sort 1 and bubble sort 3
the input arrays for sorting contain one and three symbolic val-
ues respectively and the rest are concrete values. Similarly all
the values in the input array for bubble sort all are symbolic.

The last four columns of Table III report the reduction
in symbolic execution time caused by employing ASE using
two different heuristic methods of Observations 1 and 2



explained in Section V. Compared to the PARTI and the
baseline approaches, on average the ASE engine which is
based on Observation 1 led to 17.33% and 45.1% reduction
in symbolic execution time, respectively. The application of
the ASE engine based on Observation 2 showed an average
of 33.62% reduction in symbolic execution time compared
to the PARTI approach and an average of 59.84% reduction
compared to the baseline. The results show that the ASE
engine using either of the heuristic methods of Observations
1 and 2 performs effective while, whenever it does not work,
the overhead remains low. Moreover, the usage of the heuristic
of Observation 2 for generating under-approximating value
intervals often helps deciding more queries and consequently
leads to better performance than the heuristic of Observation 1.

The array sorting benchmark programs provide a useful case
study for our evaluation. By inserting different number of sym-
bolic values inside the input array to be sorted we can examine
the effectiveness of the techniques used in our engine. The size
of input arrays for benchmarks with 1, 3, and all suffixes are
300, 40, and 8, respectively. The inserted symbolic values are
represented by value intervals 〈0, 2∗size, 1〉 where size is the
array length. Selecting an interval with a larger upper bound
such as 〈0,MAX, 1〉 does not influence the number of ex-
plored paths for none of the approaches. However, selection of
the larger interval 〈0,MAX, 1〉 on average causes the under-
approximating decision procedure to perform more effectively.
As it is shown in Table III for the array sorting benchmarks
ASE performs almost as good as the PARTI approach when the
number of symbolic values in the input array is one. However,
when this number is increased ASE outperforms the PARTI
approach. When the number of involving symbolic values is
limited to one, the precise SVI decision procedure is enough
to make decisions over the set of generated constraints. For
sorting algorithms this means that always one side of the
involving comparison expressions on the path condition is
evaluated to a concrete value. However, when this number is
increased, the precise SVI decision procedure may not be able
to decide all sets of constraints generated out of the program.
In particular when the analysis involves the comparison of
variables with overlapping symbolic values (e.g., x < y where
x = 〈0, 80, 1〉 and y = 〈0, 80, 1〉). The interval theory in
PARTI does not support the backward propagation of such
constraints. Whereas, ASE tries to continue the analysis using
the SVI abstraction with under-approximation (Section V),
and thereafter if the engine still could not provide a decision
using the under-approximation abstraction it sends the set of
constraints to the SMT solver. As depicted in Table III the
application of the SVI abstraction with under-approximation
performs effective for the array sorting benchmarks when more
than one symbolic value in the input is involved and it reduces
the number of sent queries to the SMT solver.

The results for bellman-ford and gcd programs show cases
that the application of the under-approximating SVI deci-
sion procedure does not perform effective. However, the
induced overhead is very low which is the result of apply-
ing lightweight heuristics to compute under-approximating

boxes, and therefore this causes the ASE engine to work
almost as good as PARTI. On the other hand, the under-
approximating SVI decision procedure performs effective to
analyze binary search all and linear find all programs for
which all the required decisions are made by the precise and
under-approximating SVI decision procedures.

As depicted, all the generated constraints out of dirname,
fibonacci benchmarks can be solved by the precise SVI deci-
sion procedure. Thus, ASE performs almost as good as PARTI.
The half and outer product benchmark programs contain
expressions with linear symbolic multiplication operation. As
explained in Section IV this kind of expression has to be
dealt with the value interval abstraction with step. Hence, the
interval abstraction proposed in PARTI which only considers
value bounds cannot reason about such expressions. This is the
reason why ASE outperforms PARTI for these benchmarks.

In summary, we learned that many of the constraints
generated out of the programs use a handful of operations
with special features that can be solved by the SVI decision
procedure. Therefore, employing our theory integration in a
layered manner of increasing capability and complexity for
constraint solving of symbolic execution is effective. However,
a key design factor is to keep the former layers as lightweight
as possible so that it does not harm efficiency and performance
compared to SMTs or when former layers fail.

VIII. CONCLUSION

We presented abstract symbolic execution (ASE) with the
goal of speeding up reachability decision making in symbolic
execution. The ASE engine benefits from a theory integration
inside the constraint solving component of symbolic execution
in a layered manner of increasing capability and complexity by
employing SVI and bit-vector abstractions. We learned through
experiments on a set of benchmark programs that many of the
constraints generated out of the programs can be solved by the
less complex SVI decision procedure. Therefore, employing
our theory integration for constraint solving is often effective
in reducing symbolic execution time and the number of queries
reaching the SMT solver. However, keeping the former layers
lightweight is a key design factor to preserve the efficiency of
the analysis compared to SMTs or when former layers fail.

Extending the ASE engine to make decisions over floating-
point arithmetic is a promising future direction. Our conjecture
is that employing the existing, more complicated propagation
techniques for the box abstraction leads to an even better
speedup for floating-point numbers compared to integers.
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