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ABSTRACT

We have recently proposed a coordination language, called H
archical Timing Language (HTL), for distributed, hard réate
applications. HTL is a hierarchical extension of Giotto glilc its
predecessor, based on the logical execution time (LET dggraof
real-time programming. Giotto is compiled into code for Euwél
machine, called the Embedded Machine (or E machine). If HTL i
targeted to the E machine, the hierarchical program streicteeds
to be flattened which makes separate compilation difficudtraay
result in code of exponential size. In this paper, we propogen-
eralization of the E machine which supports a hierarchicagmam
structure at runtime through real-time trigger mechanitmas are
arranged in a tree. We present the generalized E machinea and
modular compiler for HTL that generates code of linear siiee
compiler may generate code for any parts of a given HTL progra
separately in any order.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms

Language, Compiler, Virtual Machine

Keywords

Real Time, Hierarchy, Code Generation

1. INTRODUCTION

Hierarchical Timing Language (HTL) is a hierarchical caosd
tion language for distributed, hard real-time applicasi¢®]. HTL
programs determine portable and predictable real-timawehof
periodic software tasks running on a possibly distributesiean of
host computers. An HTL program specifies task-to-host nrapi
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task frequencies, mode switching, and 1/O times and depende
cies but not task implementations, which are assumed to be do
in some general purpose language such as C or Java. A task in
HTL is essentially sequential code that reads input, coeguwnd
writes output. HTL offers two fully hierarchical programmgj con-
structs: (sequential, conditional, parallempositionof tasks as
well asrefinemenbf abstract into concrete tasks. An abstract task
has a frequency, specific I/0 times and dependencies, ands&wo
case execution time (WCET) but no implementation. An abstra
task is a temporally conservative placeholder for a coactatk
with an implementation. A concrete task refines an absteasit t

if the concrete task has the same frequency but at least as muc
time to compute, i.e., possibly relaxed I/O times and depraigs,

and as much or smaller WCET than the abstract task. The igsult
that a concrete HTL program is time-safe (schedulableyéfines

a time-safe abstract HTL program [6]. In general, checkiag r
finement in HTL is exponentially faster than checking timéega
(schedulability). However, there are abstract HTL progratmat

are not time-safe but for which time-safe refinements exist.

After checking refinement and time safety, HTL programs are
compiled into so-called E code of the Embedded Machine [9] or
E Machine. E code is virtual machine code with specific irstru
tions for timing 1/O activity, native task computation, ahdst-
to-host communication. Time-safe E code is portable and pre
dictable, and therefore provides a hardware- and OS-irmkswe:
target abstraction for compiling possibly distributedl+ae pro-
grams. Further compiling E code into native code is posdibte
has so far not been necessary even for high-performanceappl
tions such as helicopter flight control [12, 11]. Howeverode has
originally been designed as target for compiling non-highrical
programs written in Giotto [8], which is the predecessor GfiLH
As a consequence, HTL compilation into conventional E code i
volves flattening the input HTL programs and may therefoseilte
in exponentially larger output E code programs. Flatteralgp
prohibits compiling parts of large HTL programs separately

In this paper, we propose to extend E code by adding instmti
for maintaining hierarchical program structure at runttmenable
separate compilation of (parts of) HTL programs into E code p
grams whose size linearly bounded by the size of HTL code. Our
solution trades off runtime performance for compile-tintane-
nience and E code size because execution of E code compmied fr
flattened HTL programs may result in lower runtime overhéoht
the execution of suchierarchical E codeor HE code All original
and most new instructions can be executed in constant tiroe- H
ever, a single new instruction that involves traversingdrehical
structure requires linear time with respect to the size efdtigi-
nal HTL program. This may only be avoided by again flattening



HTL programs prior to compilation. For simplicity and clgriwe
have chosen to define new instructions in RISC style whereg mos
instructions have rather simple, “atomic” semantics. Sprian-
time performance has not been an issue but may easily beveagbro
using CISC-style macro instructions.

The contributions of this paper are the design of HE code-(Sec
tion 5), the design of compile-time support for separate Hdm-
pilation (Section 6, Section 7) into HE code, the implemgateaof
runtime support for HE code as part of an existing E Machine im
plementation, and the implementation of compile-time supfor
separate HTL compilation into HE code in an existing HTL com-
pilerimplementation [1]. Throughout the paper we use a sasgy
(Section 2) to illustrate the contributions of the paperctias 3
and Section 4 discuss the key features of HTL and E Machire, re
spectively. Section 8 compares our approach with relatett.wo

2. CASE STUDY

The case study implements a distributed real-time coetrédr a
three-tank system (3TS in short). There are three tadkg2 and
T3 (Fig. 1) each with an evacuation ta@apl, t ap2 andt ap3
respectively. The tanks are interconnected via tapp13 and
t ap23. Two pumps,P1 andP2, feed water in the tank§1 and
T2 respectively. The goal of the controller is to maintain texel
of water in tanksT1 and T2 under the presence and absence of
perturbations (simulated by the evacuation taps). If tieen® per-
turbation, a P (proportional) controller is used; undetymbations,
a PI (Proportional Integral) controller is used [10]. Thedaling
generates four possible scenarios: (1) both pumps coedirdiy
P controllers, (2)P1 and P2 controlled by P and PI controllers
respectively, (3P1 andP2 controlled by Pl and P controllers re-
spectively, and (4) both pumps controlled by Pl controllers

T T2
tap13 tap23

I ——
ﬂq tap1 ‘H tap3 ‘H tap2

Figure 1: Overview of threetanks system
The controller is implemented in a distributed fashion are¢h
E machines (Fig. 2). Each E Machine is implemented in C on a
Unix machine. The three E machines implement the contrier
P1, the controller forP2, and the interface controller. The tasks

T3

are implemented in C. The schedulers in the Unix machines are

used for scheduling the released tasks. The E Machines commu
nicate with each other through UDP. Communication with the 3
plant (reading heights of water in the tanks and sending ditiid

for each pump) is done via a TCP server implemented on a Win-
dows 98 machine. Refer tatp://htl.cs.uni-salzburg.at/HEcoder
implementation details and online demo.

3. HIERARCHICAL TIMING LANGUAGE

HTL is centered around two constructs: the core computation
and communication model, and the hierarchal programming-st
ture. The first deals with task specification and commuroocabie-
tween tasks, while the second deals with composition anderefi
ment of tasks.

Computation and Communication Model. The computation
model is theLogical Execution Mode(LET) of task execution. A
LET task is a sequential code block with no internal synctanan
tion points. Each task has a release event and a terminatom e
specified by clock ticks or completion events of other taskise
task reads the inputs at the release event (even if the @$k ek-
ecuting later) and the task updates the outputs at the tatimin

Interface
Controller

(HE Code)
Task Code
E Machine (C)
Unix Machine 2
TCP/IP
Windows 98 |
DAC 98 ’:> Command to motor P2

T T T

Height of water in tanks

P1 Controller
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E Machine )
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E Machine ()
Unix Machine 3 |
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Figure2: Overview of implementation

event (even if the task terminates earlier). The LET modebde
ples time when the input is read and output is written fronualct
execution which makes the model time- and value-detertignis
portable and composable [9].

The communication model of HTL is based@@mmunicatof6],
a typed variable that can be accessed (read from or writjemitio
a specified periodicity. Communicators are used to exchdate
with environment (sensors and actuators are special chsese
municators) or between tasks. A task in HTL reads from certai
stances of some communicators, computes a function anelsoit
certain instances of other communicators. Fig. 3 showe thoen-
municators,h1 (period 100ms)ul (period 100ms) angl1 (500
ms): h1 denotes the height in tarkl, ul denotes the motor cur-
rent (for pumpP1) computed by the controller amgll denotes the
perturbation in tank'1. Taskt 1 reads the fourth instance bfl,
computes control law for tankK1 and writes to the fifth instance
of ul. The latest read and earliest write time implicitly specifg
LET of the task; in case df 1, the LET is from 300 to 400 ms.
The sequential code of the task is not expressed in HTL but in a
“foreign” language (e.g. C in our example).

reads h1 I task t1 J updates u1

ul h1 ul hi

1 2 4
port p /./
readHeights

Figure 3: Interaction between tasks and communicators

Tasks can also communicate with one another through untimed
variables referred gzorts Fig. 3 shows two taskseadHei ght s
andest i mat eP1 communicating via potb. Taskr eadHei ght s
reads the sensors and writes to the fourth instance of coficaton
h1l. Taskest i mat eP1 reads porp and fifth instance ofi1, com-
putes perturbation for tarkl and writes to the second instance of
pl. Taskest i mat eP1 reads the porp and hence reads the out-
put of the task eadHei ght s as soon as the tasleadHei ght s
completes execution and does not have to wait until the licuart
stance ohl.

Hierarchical Programming Structure. A set of interacting
tasks with the same frequency form an Hmodewith a spec-
ified mode period. For example, the tasksadHei ght s and
est i mat eP1 belong to modé node, which has a period of 500ms.
All tasks in a mode execute with the periodicity of the modae T
tasks within a mode interact through ports and communisator
tasks from different modes interact only through commumica
For exampler eadHei ght s andt 1 are in different modes and
interact through communicatbid ; r eadHei ght s writesh1 while
t 1 readshl. HTL allows mode switching (at the end of mode pe-
riods) to model changes in real-time controllers. In the plate
specification we define two modesieP andonePl invoking P
and PI control tasks for pumpl respectively; the modes switch
between themselves based on the perturbation in Tartke. the

ul h1 ul p1

|

ul p1 h1
|

|

|
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value of the communicatqrl). A network of modes (with one be-
ing the start mode) and mode switches is an Hiiddule e.g. modes
oneP andonePl are grouped in one module. An HTrogram

is a set of modules and a set of communicators. The modeswithi
a module are composed sequentially while modes from differe
modules are composed in parallel. The communicators am use
to exchange data between tasks in same module (but possfibly d
ferent modes) and between tasks in different modules. Thie HT
program (Fig. 4) for the controlleBTS_Cont r ol | er, consists

of three modulepunpOne, i nt er f ace andpunpTwo and six
communicators. Refer thttp://htl.cs.uni-salzburg.at/HEcoder
the full specification and the complete program.

3TS_Controller

pumpOne interface pumpTwo
ESE L
programOne programTwo
QneP)+—~(@nePD | | (woP)—~(woPD
2y 1k
refOne refTwo

Program

[ ] Modue < > Mode @ Refinement
Figure4: HTL program for 3TS controller

A mode (referred aparent modg can berefined by another
HTL program (referred agefinement prograjn any mode in the
refinement program is ehild modeof the parent mode. The mode
nodeOne is refined (Fig. 4) by progranpr ogr amOne which
has a single module with two modeseP andonePI . Both the
modesoneP andoneP! are child modes to parent moaedeOne.
Each task (referred aild task in a child mode maps to a unique
task (referred agarent taskin the parent mode. ModesdeOne,
oneP andonePl invokes taskg 1, t 1P andt 1Pl respectively
with t 1 being the parent of the other two tasks. During execution,
the parent task is replaced by the child task i.e. insteadlofei-
thert 1P or t 1P1 executes. Whilg 1 represents a control task
for pumpP1, t 1P andt 1Pl are the P and PI version of the con-
troller respectively. In other words, parent task isatstractspec-
ification while children tasks areoncreteimplementations of the
specification. Instead of specifying a functional behawéoparent
task specifies the timing behavior of the concrete task eugenp
mode and child mode have identical periods, child task cabao
released (resp. terminated) later (resp. earlier) thapdhent task
and the WCET of the child task is bounded by that of the parent
task; these constraints are referrededmiement constraintsThere
can be tasks (in parent mode) which are not parent to any tefsikd
and will execute in parallel with tasks in child mode. Mode re
finement does not add expressiveness; an HTL program with mul
tiple levels of refinement can be translated into an equindlat
program without refinement. ModendeOne can be replaced by
the switching modesneP andonePI . However mode refinement
helps in astructured and concisspecification. In the top-level,
mode nodeOne invokes control task for pumpl; however no
distinction is made for different scenarios. In the secavell (pro-
grampr ogr anOne) the distinction is made between absence and
presence of perturbations and thus requiring the use of FPand
control tasks. There can be subsequent refinementr(efgone)
which distinguishes slower and faster invocations of Plicdtask.
Refinement helps in succinct expressiortiobice(a task is parent
to several chidren tasks in different sequential mod#sngepar-
ent and child task have different I/Opace(empty parent tasks
that can be refined later) ameplacemen{replacing a refinement

program with another). Mode refinement helps in conserebtiv
simplifying program analysis: e.g. schedulability cheel only
be done for the top-level program, and the refinement canttra
preserve [6] the schedulability across the hierarchy.

Distribution. HTL modules can be distributed over several hosts.
Distribution is specified through a mapping of top-level mied to
hosts. All refinements of all modes in a top-level module anarol
to the same host to which the module is mapped. The distoibuti
is implemented by replicating shared communicators onaatd)
and then have the tasks that write to shared communicatoaslbr
cast the outputs. For this purpose, the LET model is extetaled
include both WCETSs as well as the worst-case output trarssoms
times (WCTTs). The semantics (i.e., the real time behawbr)
an HTL program is independent of the number of hosts, but code
generation and program analysis take the distributionantmunt.

In the case study, the three modufasnpOne, i nt er f ace and
punpTwo are implemented on three different hosts.

4. THE EMBEDDED MACHINE

The Embedded Machine or E Machine controls the release of
tasks and the time when variable values are exchangeddpict
or initialized). The variables are accessed through seddtivers
A task or a driver is implemented in any other language e.dnC.
the original E Machine definition there are six E code ingtomns.
There are three non-control flow instructionsall, release and
future. The instructioncall(d) executes a drived. The instruc-
tion release(t) releases a taskfor execution. The task may not be
immediately executed; the actual execution of the taskdeiiend
on the real-time schedular being used. The instrugtignre (e, a)
marks E code at addreador future execution when the predicate
e evaluates to true, i.e., wheris enabled The pair(e, a) is a trig-
ger: predicate observes events such as time tick events (raised by
the real-time clock) and completion events of tasks (raisethe
executing platform) and is enabled when all observed evente
occurred. The E machine maintains a FIFO queue of triggérs. |
multiple triggers in the queue are enabled at the same ingten
corresponding E code is executed in FIFO order, i.e., in tdero
in which thefuture instructions that created the triggers were exe-
cuted. There are two control flow instructiong:and jump. The
conditional instructionif (¢cnd, a) branches to the E code at address
a if predicatecnd evaluates to true. Aonditioncnd observes vari-
able states. The non-conditional control flow instructjamp(a)
executes an absolute jump to E code addtesEhere is one ter-
mination instructionreturn which completes the execution of an
E code sequence.

Trigger ([eent] et

Children information

@ Implicit Tree structure

Parent information Trigger Queue

Figure5: Triggers, queue of triggers and implicit tree

We make the following changes to allow execution of hierarch
cal code on E MachineFirst, the trigger definitions are modified.
Each trigger in addition to an event predicate and E codeeaddr
tracks a parent trigger and a set of children triggers. Wiéhrtew
trigger definition, a trigger queue is an implicit tree (F&. Sec-
ond two stacks are added to track the hierarchy of the program.
The stacks are used to remember the position of code beirg exe
cuted in the hierarchy of the whole program and to add pamht a
children information to newly created triggef&hird, the modified
E machine maintains three trigger queues instead of onele\ihe
FIFO queue order the actions of simultaneously orderederiy



parallel FIFO queues provide second ordering on simultasigo
enabled triggers. In case of code generated for HTL programs
the multiple queues are used to order communicator updatede
switche checks, communicator reads and task releaBeasrth,

E code instructions are modified/ added to operate on thenigw t
gers and to access the stacks and the queues. The new E code
referred adHierarchical E codgHE code).

5. SEMANTICSOF HE CODE

The E machine isvaiting if none of the triggers in any of the
queues are enable®C = L and address stack is empty. The
machine is in statevriting if there exists at least one enabled trigger
in the write queue. The machine is in stateitchingif there exists
no enabled trigger in the write queue but there exists at l@aes
msnabled trigger in the switch queue. The machine is in glase-
switchif there exists no enabled trigger in the write and the switch
queue but there exists at least one enabled trigger in tegrezue.

If the machine is waiting, a time tick or a task completionrgve
updates the event for the triggers. For a time tick eventalidrig-

The semantics of an HE code program can be represented as gers((n,-),-,-,-) wheren > 0, the trigger is updated tQ(n —

set of traces where each trace is a sequence of configuraianb
configuration tracks the following: state of program valésh set
of released tasks, queues of triggers, address of the timetruc-
tion being executed, set of registers storing trigger nastask of
trigger names and stack of addresses. Formathgaeis a (possi-
bly infinite) sequence of configurationg, ui, - - - wherewy is the
starting configuration. Each configuration is a tupi&te, write@,
switch@, read@, tasks, PC', RO, R1, R2, R3, parent_stack,
address_stack), wherestate is variable statewriteQ, switchQ
and read@ are FIFO queues of triggersgasks is a set of tasks,
PC' is a program counter0, R1, R2, and R3 are registers to
store trigger namegiarent _stack is a stack of trigger names, and
address_stack is a stack of addresses. For any two consecutive
configurationsu;—1, u; wherei > 0, ; is the result of progress of
clock (time tick event), completion of task (task complat&vent)
or execution of an instruction (see below) at configuratipn, .

The variable statetate tracks the values of program variables;
e.g. for HTL programs the variables are communicators amt po
The task setasks tracks the set of tasks released for execution;
once a task completes execution the task is removed fra#s.
The program counteP (' is the address of the current instruction
being executed. The set of program addressesliset U {L};
PC = 1 signifies there is no instruction being executed and the
E machine is either checking for enabled triggers or waitgrgan
event. We will denote the instruction at addresasins(a) and
the next address following asnezt(a).

A trigger g is a tuple(e, a, par, clist), wheree is an eventa
is an addresspar is a trigger name, andiist is a list of trigger
names. Areventis a pair(n, cmps), wheren € N>, and cmps
is a set of task names. The positive integedenotes the num-
ber of time tick events being waited for. The seips denotes the
tasks whose completion event is being waited for. A triggemi
abledwhenn = 0 and cmps = . When a trigger is created, it
is assigned an unique name until the trigger is removettfigger
nameis the reference to a trigger; a trigger can be accessedghrou
trigger names. The registers store trigger names. A regiatebe
copied and/or reset without affecting the trigger unlessttlgger
is removed or modified by HE code instructions. The triggees a
unique identities and are not duplicated; however they eamd-
ified when events occur. A trigger may bedifiedby updating the
associated event, changing the parent, or by modifyingtiiéren
list. The trigger queuesrite@, switch@ andread( are FIFO
queues of triggers. A trigger can be present in at most oneeque

The address stack tracks the hierarchical position of tle pr
gram, mode and module for which code is being executed. The
parent stack remembers the hierarchy of the switch triggérere
are two operations to access the stagkssh and pop. Operation
push(address_stack, a) pushes addresson address_stack. Op-
erationpop (address_stack) returns the top value afddress_stack;
the value is an addressif the stack is non-emptyl otherwise.
Operationpush(parent_stack, Rz) pushes the trigger name stored
in register Rx (wherez € 0,1,2,3) on parent_stack. Opera-
tion pop (parent_stack) returns the top value gfarent_stack; the
value is a trigger name if the stack is non-emptyotherwise.

1,+),+--). For a completion event for task for all triggers
((-, emps), -, -, ) andt € cmps, the trigger is updated t@-, cmps\
{t}),-, -, ). If the E machine enters into non-waiting state (by en-
abling some triggers) after handling an event, the writeuguis
traversed in FIFO order until an enabled trigger is found red
trigger is handled. When a triggér, a, -, -) is handled program
counterPC is set toa, the name of the trigger is stored in regis-
ter RO and the trigger is removed from the queue. The E machine
continues the execution at addresses followingntil a return in-
struction is executed. Whenmturn execution is executed, the
trigger (which triggered the code execution) is deletednfrine
system and code execution starts from the address poppadHeo
address stack. This is continued until the address stachps/e At
this point the control starts searching for other enabliggérs in
the write queue; if no other trigger is enabled, the machimers
into switching state. If the E machine enters istgitchingstate,
the switch queue is traversed in FIFO order (and enabledersy
are handled) until the machine is in statast-switch If the E ma-
chine enters intgost-switchstate, the read queue is traversed in
FIFO order (and enabled triggers are handled) until the madk

in statewaiting. The handling of triggers in all the three queues are
identical.

Next we discuss the effect of executing the HE code insosti
Let the configuration béstate, write@, switch@, read@, tasks,
PC,R0,R1,R2, R3, parent_stack, address_stack) when anin-
struction at address is being executed (i.e?C = a). Once the
instruction is executed, the new configuration(b&ite’, writeQ’,
switch@’, readQ’, tasks’', PC’', R0’, R1', R2', R3', parent_stack’,
address_stack’). If ins(a) is being executed?C’ = nezt(a) un-
less otherwise mentioned. A parameter has the same valuéheve
execution unless otherwise mentioned.

e ins(a) = call(d): driver d is executed which updates vari-

able state tatate’

ins(a) = release(t): tasks’ = tasks U {t}

ins(a) = writeFuture(e, a): writeQ’ = writeQ o g’
whereg’ = (e, a, L,()) andR1’ stores the name gf
ins(a) = switchFuture(e, a): switchQ' = switchQ o g’
whereg’ = (e, a, L,0) andR1’ stores the name gf
ins(a) = readFuture(e, a): readQ’ = read@ o g’ where
g = (e,a,1,0)andR1’ stores the name af

ins(a) = jumplf(cnd, a): if condition cnd is true, then
PC’ = a' elsePC’ = next(a)

ins(a) = jumpAbsolute(a’): PC' = o

ins(a) = jumpSubroutine(a’): PC' = o’ and
address_stack’ = push(address_stack, next(a))

ins(a) = copyRegister (Rz, Ry) wherez,y € {0, 1,2, 3}
andz # y: copy the content of registétz to registerRy
ins(a) = pushRegister (Rz) wherez € {0, 1,2, 3}:

push the content of registd&x on to parent_stack i.e.
parent_stack’ = push(parent_stack, Rx)



e ins(a) = popRegister (Rz) wherez € {0,1,2,3}: queue. The writing of communicators in a module, readingafi-c

pop content fromparent_stack to registerRz i.e. municators in a mode and releasing of tasks in a mode areendep
Rz’ = pop(parent_stack) dent of other modes, modules and programs. The above holds if
o ins(a) = getParent(Rz, Ry) wherez,y € {0,1,2,3} the HTL program is race free (ensured by structural checkd) a

if all communicators are written before they are read (ezdiny
handling triggers in the write queue before that of the gwéad
the read queue). However checking switches (and subseqaent

andx # y: load the name of parent of trigger pointed to
by Rz into registerRy

e ins(a) = setParent(Rz, Ry) wherez,y € {0,1,2,3} tions) in a mode depend on other modes. For code generated fro
andz # y: the trigger name iRy is stored as the parent  HT| triggers in the write and the read queue have no parest an
of the trigger pointed to by registé. children information; in other words they do not carry angrhi-

e ins(a) = copyChildren(Rx, Ry) wherezx, y € {0, 1, 2, 3} chy information. Only triggers in the switch queue have diehy
andz # y: the children list of the trigger pointed to iy is information.
stored as the children list of the trigger pointed to by regis In HTL, switches for a parent mode and its children modes are
Rx enabled simultaneously due to constraints on timing benavhe

HTL semantics prioritizes the mode switch check (and sulrseiq
action) of the parent mode over those of the children. Cemsid
an instance when modemdeOne, onePl andoneS| ow are
active (Fig. 6). ModenndeOne has no mode switches i.e. it is
invoked repeatedly. There are three possible scenarigsofie

e ins(a) = setParentOfChildren(Rx, Ry) wherexz,y €
{0,1,2,3} andz # y: set the trigger name iRy as the
parent of all the triggers in the children list of the trigger
pointed by registeRx

e ins(a) = deleteChildren(Rz) wherez € {0,1,2,3}: for of the modes switches, (2) onneS| ow switches tooneFast
alltrigger names in children list of trigger referred by istgr i.e. the new combination isndeCOne, onePl andoneFast , and
Ra: (recursively) delete the triggers pointed by the children (3) onePl switches i.e. the new combination i@deOne and
list and remove the triggers from the queue oneP; the switch ofoneS| owdoes not matter in the transition.

e ins(a) = replaceChild( Rz, Ry, Rz) wherez,y, z € {0,1,

2,3} andz # y # z: in the children list of trigger pointed ‘ ‘ modeOne || oneP! || oneSlow —
to by registerRz, replace the trigger name identical to that
in Ry by the trigger name ifz D 1. modeOne || onePlI || oneSlow

e ins(a) = cleanChildren(Rx)wherex € {0, 1, 2, 3}: delete 2.modeOne || oneP! || oneFast

the children list of trigger pointed by regist&r ‘ ‘ 3. modeOne || oneP
Program [ |Module OMode l,Refmement

o ins(a) = return(): PC' = pop(address_stack)

Once a trigger is handled and removed from the queue, the trig

ger is deleted from the system when the code block (startebeoy Figure6: Mode switch for HTL programs

trigger) ends. For general HE code program, a garbage tmilec o . ) )

may be necessary to proper|y remove all de_referencecbhs'gg-\d The SWltChlng.aC“On of HTL is I'eﬂ_ected in the HE code as _f0|-
to ensure that there is no reference fault (trigger nameiighesed lows. The compiler generates code in such a way that theve is e
but the trigger itself has been deleted). Code generated o actly one trigger per mode in the switch queue i.e. the irftrifiee
HTL program does not create any such problem; so we avoid the in the switch queue is the hierarchy of the modes in the progra
definition of a formal garbage collector. All of the abovetins- When a trigger in the switch queue is enabled, the correspgnd

tions exceptdelete Children can be executed in constant time. The Mode switch is checked; if the mode switch is false then theemo
execution ofdelete Children requires time linear in the size of the 1S reinvoked, otherwise all triggers (in the switch quewted to

original HTL description of the involved children. the modes in the refinement program of the mode are removed and
The E machine starts with the following configuratiostate the target mode is invoked.
is default value of each variableyrite@Q = 0 , switch@Q = 0, , \ ‘ _ , _ _
read@ = 0, tasks =0, PC = 1, R0 = 1L, R1 = 1, R2 = 1,
R3 = 1, address_stack = (), andparent_stack = (. (onePD | ConePD (onePD  (oneP) CnePD  (@nePD
@ueslow Gueslow Gaeslow
6. HANDLING HIERARCHY IN HE CODE ) ® © @ © ®
There are two major concerns for handling HTL programs in
HE code: tracking the current position in the hierarchy. fivhich Figure 7: Handling switch checksin HE code
program, module or mode is being executed) and maintaitieg t Consider the situation when modesdeOne, onePl andoneS| ow
hierarchical relation between modes. The firstis done byosuine- are executing and switch condition f@neP! is true. Fig. 7.a
like calls to initialize and execute programs, modules amndies; shows the associated triggers in the switch queue; instetteo

refer Section 7 for details. Intuitively, the address stsitkes the queue, the implicit tree structure has been shown. Firsttrig-
addresses of programs, modules and modes in a tree like fash-gers in the switch queue from refinement progranooéPl are
ion so that E Machine knows which program, module or mode removed (Fig. 7.b). A new trigger for the target moaleeP is

is to be initialized/executed once the current one has hagald generated (Fig. 7.c), the parent information is transtetethe
ized/executed. Maintaining the hierarchical relation isrenin- new trigger(Fig. 7.d) and the trigger for modaePI is removed.
volved and is done through triggers and HE code instructiéos The trigger for mod®neS| owis removed without even checking
HTL programs, the compiler generates triggers as followsrig- whether the switch condition is true or false. In anothenace,
gers associated with writing communicators are storedemttite consider the mode switch conditionahePl is false i.e. the mode
queue, all triggers associated with mode switch checkstareds will be reinvoked. First a new trigger is created for maxtee Pl

in the switch queue and all triggers associated with readorg- in the switch queue (Fig. 7.€) with no parent and childreorimfa-

municators (and subsequently releasing tasks) are stothd fead tion. Next, the parent and children information of the oldder



for onePl is redirected to the new trigger famePl (Fig. 7.f)
and the old trigger foonePl is removed from the switch queue.
The E machine will next traverse the queue to check mode switc
for oneS| ow.

7. HTL COMPILER

The compiler (Fig. 8) for HTL ensures that the program sassfi
the constraints on parallel composition of modules, refe@nof
modes and timing of tasks relative to the target platform [Bie
WCET/ WCTT information for tasks are provided by an external
tool. If the checks go through, HE code generator generaigés ¢
for a distributed implementation. The code generation isedoy
compiling the whole program for each host. Each host maistai
its own copies of all communicators and ports; however tasks
executed on the host only if the corresponding mode (in wtkieh
task is invoked) is mapped onto that host. Whenever a task com
pletes execution, the output is broadcast to all hosts arddin
local ports; when a communicator (on a host) is to be writtee,
value of the local port is copied to the communicator. Radeasks
are dispatched for execution by an EDF scheduler; the stdreidu

external to the E Machine.
WCET-WCTT
Program Estimator

| no
Satisfy Parallel Composition Constraints ?
Satisfy Refinement Constraints ?
Schedulable ?

——

‘ HE Code Generator ‘ ‘ Schedule Generator

‘ Compiler ‘

Timing

[HE Code] [Schedule] [HE Code]

HController

[ [] [
‘E Machinem Scheduler‘ ‘ E Machine Li_[ Scheduler‘

‘ host 1 host 2 ‘
‘ Inter Hosts Communication

[Schedule]

Task Code
‘ ‘/Fyz%naury

Figure8: Structure of compiler and runtime system

‘ sensors / actuators ‘ ‘ sensors / actuators ‘

PLANT

sets up the execution order of communicator writes, switgtks
and communicator reads (and task releasespige_body_address|m].
Instructions may forward reference to any of the above syimbo
addresses and therefore need fix up during compilation.

Alg. 1 generates code for a prograton a hosth. The code
at addres@rogram_init_address[P] initializes all communicators
declared inP by calling respective initialization driversifit(-)
denotes the initialization driver for a communicator or atpand
then calls initialization subroutines for each of the medulCode
at addres®rogram_start_address[P] calls the start subroutine for
each modulet in P.

Algorithm 1 GenerateECodeForProgramOnHBsH)

setprogram_init_address[P] to PC and fix up
Il initialize communicators
Ve € communicators(P):emit(call(init(c)))
/linitialize all the modules i®
VM € modules(P):

emit(jumpSubroutine (module_init_address[M]))
Il return from initialization subroutine &f
emit(return)
setprogram_start_address[P] to PC and fix up
// start all the modules iR
VM € modules(P):

emit(jumpSubroutine (module_start_address[M]))
Il return from start subroutine &f
emit(return)

Alg. 2 generates code for a moduleon hosth. Code at ad-
dressmodule_init_address[M] initializes all task ports (denoted by
taskPorts(M)) of the tasks iM by calling respective initialization
drivers. All tasks maintain two sets of local ports, caftask input
portsandtask output portswhich are not accessible by other tasks.
At release, the tasks reads communicators and ports tortpsk i
ports and execute on the value of the task input ports. At éemp
tion, the task output ports are updated. The communicatus a
ports are written from the task output ports when the writingue.

The compiler generates code for program, module and mode by Code atmodule_start_address[M] calls the execution code for the

invoking Alg. 1, Alg. 2 and Alg. 3 respectively. The compileses
symbolic addresses to refer to different parts of the code ekch
progranmP, program_init_address[P] andprogram_start_address|[P]
denotes the address of the HE code block that initializeseasd
cutesP respectively. For each modulle module_init_address[M]
andmodule_start_addressM] denotes the address of the HE code
block that initializes and execut@srespectively. For each mode
m, mode_start_address[m] is the address of the HE code block that
startsm and target-mode_address[m] is the address of HE code
block that will be executed when another mode switches ®ach
modenmn is divided in uniform units corresponding to the smallest
period between two time events (i.e., write of a communicato
read of a communicator) im. Given a moden, the duration of
an unity[m] is the gcd of all access periods of all communicators
accessed (i.e. read or written) fnand the total number of units
is w[m|/~y[m], wherer[m] is the period of. For each unit of ev-

start modestart[M], for the moduleM.

Algorithm 2 GenerateECodeForModuleOnHastg)

setmodule_init_address[M] to PC and fix up

[l initialize task ports

Vp € taskPorts(M):emit(call(init(p)))

Il return from initialization subroutine of

emit(return)

setmodule_start_address[M] to PC and fix up

IIstart the start mode of
emit(jumpSubroutine(mode_start_address[start [M]]))
Il return from start subroutine af

emit(return)

We will use the following auxiliary operators for Alg. 3. Tiset
readDrivers(m, ¢) contains the drivers that load the tasks in mode

ery modem the compiler generates separate code blocks for up- m with values of the communicators that are read by these &sks

dating communicators, checking switches (and relatedm&}tiand
reading communicators (and releasing tasks): the addfete o
HE code block that writes communicatorsigde _unit_write[m, ],
the address of the HE code block that checks switch condigion
mode_unit_switchm, ¢], and the address of the HE code block
that reads communicators isode_unit_read|m, i]. HTL seman-
tics constraints that at any instance, communicator writesde
switch checks, communicator reads and task releases sbheuld
done in the above order to maintain consistency of commtoica
values across all modules. The address of the HE code blatk th

unit . The setwriteDrivers(m,4) contains the drivers that load
the communicators with the output of the tasks in madeat write

to these communicators at uriit The setportDrivers(t) con-
tains the drivers that load task input ports of taskith the values
of the ports on whictt depends. The sefomplete(t) contains
the events that signal the completion of the tasks on whisk ta
t depends, and that signal the read time of the taskThe set
releasedTasks(m, 7) contains the tasks in mode with no prece-
dences, that are released at unifThe setprecedenceTasks(m)
contains the tasks in modethat depend on other tasks.



Alg. 3 first emits code (at addressode_start_address[m]) for trigger is added teeadQ: the trigger is activated at the completion
checking all the mode switches (linés 3) in a modemn, so that of preceding tasks of; and the subsequent code writes input ports
they are tested first time is invoked. Next, code is generated of t and releases. Lines (72 - 76) emit code to jump from one unit
(at addressarget-mode_address[m]) to handle the case when no  to the next; the codes add triggers to the write and the readequ
switch is enabled: a call to code atode_body_address[m], fol- only as switches are not possible in the middle of HTL modes.
lowed by a call to the refinement program (if any). This se&s th The code generation algorithm for a program/ module/ moee ac
execution of a mode before the execution of the refinement pro cesses other programs, modules or modes through symbelic ad
gram. Code ainode_body_address[m| (lines 40 - 49) sequences dresses and does not influence the code generation of ottver pr
the execution order of communicator writes, switch cheakd a  grams, modules and modes. Thus parts of HTL programs can be
communication reads (and subsequent task release), forenoi compiled in any order separately.
of modem. This is done by emitting a future instruction (lidé&)

for mode_unit_write[m, 0] (trigger added tavrite@), a future in- 8. COMPARISON AND RELATED WORK

strl_Jtct;lon g'nn de;?L)Jth;re mgﬁiﬁgﬁi:ﬁg hf[(r)nr, 0] Eitrlgge_; addded t(;) E codevs. HE Code. The E code and the HE code are compared
f:;fl Ce?e)tdded tocad0). Whene ((er atz' eT'l?s z;::tlearg‘;d[“;déed in two ways: runtime overhead and code size generated byThe H
99 ead@). v 'gger | compiler. We measured the time spent in interpreting E code a

to a queue, the relevant trigger pointer is stored in registe. . .

. ) . . . i HE code for the 3TS case study HTL program; the delay intreduc
ane atrigger is added In the switch queue, the hlerarcl_my o by code interpretation is below 1% for both E code and HE code.
tion has to be updated (lind8 - 48). There are two scenarios: one,

the code is invoked by handling an enabled trigger in thecswit
queue i.e. a mode switch has occurred or a mode is being rein-
voked (lines28 - 39) and two, the code is invoked when a mode
is executed for the first time (ling). In both the scenarios register
RO records the relevant hierarchy information. In the firshsc®

it stores the name of the last trigger in the switch queue wat
handled (by semantics, if any trigger is handled the nammisd

in R0). In the second scenario, it stores the name of the lasEtrigg
in the switch queue that was created. Code in l#8s47 redirects

the parent and children d®0 to R1. A copy of RI needs to be

Generated E Code Size

Generated HE Code Size
NOh 9 ®©
o © 9 9
2 9 g ©°
S & & ©°©

stored inR2 (line 48), as a new trigger for the read queue may re-  Figure 9: Number of E code | Figure 10: ~ Number of
move the information of the last trigger added to the switcbue Instructions HE codeinstructions
from R1.

Code emission at line& - 17 checks whether a refinement pro- The code size is compared for HTL descriptions withpro-
gram exists and subsequently updates the hierarchy infimmid grams (i.e. one top-level program amd— 1 refinement programs)

there is one. Before the code generation for refinement gnogr  andn» modules fn < n i.e. we ruled out empty programs) where
(line 12), the hierarchy is updated (lin@s- 11) as refinement adds  each module has two modes switching between themselves. For

one level of hierarchy; once the code generation of the netéms each such scenario there are a number of possible HTL descrip
program completes the level is restored (lid8s 16). The hier- tions. Consider the case whem = 2 andn = 3; with the above
archy is updated through registB0. The parent ofR0 is pushed restrictions there is one top-level program and one refimeme-
onto the stack (line8 - 9); the parent of the trigger pointed @y0 gram (refining one of the modes of the top-level program).r&he

is changed to the trigger name R2 (which contains a pointer to are two possible HTL descriptions: top-level program witiot

the last trigger added to the switch queue) and childrerslistset modules (i.e. refinement program with one module) and refemem
(code for refinement program has yet to be generated andiéiest  program with two modules (i.e. top-level program with onedno

is no children information). In effect, for the code geni&nabf the ule). For eachn andn, the worst-case code size for E code and
refinement program, parent &f0 points to the parent trigger of all  HE code are compared. The number of HE code instructions de-
the triggers to be added in the switch queue for that progrémn. pends upon the number of programs and modules and is thus fixed
restore the hierarchy level, the parentrtf is updated by popping  for any description for givem andn. The number of E code in-

the parent stack and is used by modes of parallel modules. structions depends upon the flattening and thus widely vadeoss
The code atnode_unit_write[m, ] (lines23 - 27) calls the driver the different descriptions for givem andn. Fig. 9 and Fig. 10
for each communicator being written at the uniaf modem. The compares the code size for the E code and the HE code resggctiv

code atmode_unit_switchm, ¢] (lines29 - 39) checks the mode for1 <m < 10andl < n < 10. The worst case E program (7177
switches. In HTL, modes can switch only at period boundases E code instructions) is an order of magnitude larger thandfhihe

the switches are checked only for unit zero (I28). If no mode HE program (555 HE code instructions).
switch occurs (line83) the code jumps tenode_body_address|m|. Code Generation for Timed L anguages. Timed languages have
If a mode switch occurs, then all children of the last enabiieger been pioneered by Giotto [8]. In Section 1 we discussed the di

in the switch queue (the name is stored in regi&@) are removed ference in code generation for a flat structure like Giottd aar
(lines34 - 37). The removal of children is recursive, thus all chil-  proposed approach for HTL. Other LET based languages iaclud
dren of subsequent children are also removed. Once ther@hild  TDL [5] and Timed-Multitasking (TM) [13]. Like Giotto, TDL
are removed, the code jumps (lin88 - 39) to the target address s restricted to one level of periodic tasks and the code rgéioa

of the destination modeurget_mode_address[m'], wheren' is the technique does not address hierarchical programs. TM, &m ac

destination mode. The coderabde_unit_readm, 7] (lines52 - 71) based language, uses an event-triggered approach by sixgres

reads all communicators (by calling drivers that copy froome LET through deadlines. TM can express hierarchy by having ac
municators into task input ports) that are to be read at yrind tors defined in other actors; however the code generatios wioe

releases all tasks (with no precedences), that should éased at explicitly addresses the hierarchical structure.
unit 7. For unit zero (lines8), code is generated to release prece- Code Generation for Synchronous Languages. Synchronous
dence tasks (lineS9 - 69). For each task with precedences, a  languages (e.g. Esterel [3] and Lustre [7]) theoreticallgssime



Algorithm 3: GenerateECodeForModeOnHastg)

0 setmode_start_address[m| to PC and fix up

1 // check mode switches

2 Y(end,n’) € switches(m):

3 emit(jumplf(cnd, target-mode_address[m']))
4 settarget_-mode_address[m] to PC and fix up

5 emit(jumpSubroutine (mode_body_address(m]))
6 if (programp refinesm)

7 Ilincrement the level

8 emit(getParent(R0O, R3))

9 emit(pushRegister(RS3))

10 emait(setParent(R0O, R2))

11 emit(cleanChildren(R0))

12 emit(jumpSubroutine (program_start_address[program(m|]))

13 //decrement the level

14 emit(popRegister(R3))

15 emit(setParent(R0O, RS))

16 emit(cleanChildren(R0))

17 end if

18 // return from start subroutine af

19 // OR wait for other triggers to become enabled
20 emsit(return)

21 1:=0

22 whilei < 7[m]/~[m] do

23 setmode_unit_write[m, 1] to PC and fix up
24 [/ write communicators from task output ports
25 Vd € writeDrivers(m, ¢):emit(call(d))

26 // wait for other triggers to become enabled
27 emit(return)

28 if (1 =0)

29 setmode_unit_switch[m, 0] to PC and fix up
30 /I check mode switches

31 V(cnd,m’) € switches(m):

32 emit(jumplf(cnd, PC + 2))

33 emit(jumpAbsolute(PC + 4))

34/l cancel all triggers related to the refining
35 // program ofm, and its subprograms

36  emit(deleteChildren(R0))

37 emit(cleanChildren(R0))

38  // switch to mode m’

39 emit(jumpAbsolute(target-mode_address[m’]))
40 setmode_body_address[m] to PC and fix up

41 emit(write Puture(m[m], mode_unit_write[m, 0]))
42 emit(switchFuture (m[m], mode_unit_switch[m, 0]))
43  emit(getParent(R0O, R3))

44 emit(replaceChild(R3, RO, R1))

45  emit(setParentOfChildren (R0, R1))

46 emit(setParent(R1, R3))

47  emit(copyChildren(R1, RO))

48 emit(copyRegister(R1, R2))

49  emit(readFuture (0, mode_unit_read(m, 0]))

50 emit(return)

51 end if

52 setmode_unit_read[m, 7] to PC and fix up

53 if (modem is contained in a module on hadst

54 // read communicators into task input ports

55 Vd € readDrivers(m, i):emit(call(d))

56 // release tasks with no precedences

57 Vt € releasedTasks(m, i):emit(release(t))

58 if (i = 0)

59 /I release tasks with precedences

60 Vt € precedenceTasks (m):

61 // wait for tasks on whick depends to complete
62 emit(readFuture(complete(t), PC + 2))

63 emit(jumpAbsolute(PC + 3 + |portDrivers(t)|))
64 // read ports of tasks on whichdepends,

65 //then release

66 Vd € portDrivers(t):emit(call(d))

67 emit(release(t))

68 // wait for other triggers to become enabled

69 emit(return)

70 end if

71 end if

72 if( < 7[m]/y[m] — 1)

73 [l jump to the next unit of mode

74 emit(writeFuture(y[m], mode_unit_write[m, i + 1]))
75 emit(readFuture(y[m], mode_unit_read[m, i + 1]))
76 end if

77 I/ wait for other triggers to become enabled

78 I/ OR return from body subroutine af

79 emit(return)

80 ¢i:=i+1

81 end while

HTL; however HTL offers an explicit hierarchical progranmust-
ture that supports refinement of tasks into task groups withep
dences. Simulink-to-SCADE/Lustre-to-TTA [4] is a tool ahéhat
accepts discrete time models written in Simulink, trareslad Lus-
tre models, verifies system properties (e.g. schedulghdiid gen-
erates code for a target time-triggered architecture. 348y, a

tool chain that combines Esterel and model checker Kroners; g

erates an application specific scheduler that ensuresdigom-
mitment of tasks. Our code generation technique differmftbe
above two approaches in accounting for the hierarchicatsire
(e.g. Simulink models are hierarchical but Lustre is notahimie-
cessitates the code generator to flatten the structurepayeherat-
ing code for a virtual machine (both the above tool chainegse

code for specific target) which makes the generated codalgert

across implementations.

9. CONCLUSION

Previously we presented an implementation of HTL, a hierar- [10]

chical coordination language for distributed hard realetiapplica-
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