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ABSTRACT. This paper presents a resolution decision procedure for
transitive propositional modal logics. The procedure combines the
relational translation method with an ordered chaining calculus de-
signed to avoid unnecessary inferences with transitive relations. We
show the logics K4, KD4 and S4 can be transformed into a bounded
class of well-structured clauses closed under ordered resolution and
negative chaining.

1 Introduction

The iterated modality in the schema 4 = Op — OOp is cause for some
difficulties. Because the number of modal operators does not diminish
during deduction in Hilbert calculi, tableaux-like calculi or modal resolution
calculi, as they would in systems, like K, KD or KT, in order to avoid
unlimited derivations, some form of cycle detection mechanism is essential.

Semantics-based translation approaches have similar problems. Trans-
lation approaches are based on the idea that modal inference can be done
by translating modal formulae into first-order logic and conventional first-
order theorem proving. Here the difficulty is caused by

transitivity: Vz,y,z2 (tRyAyRz) > xRz

which leads, in general, to unlimited growth of the size of formulae. A
makeshift solution for the optimised functional translation method uses
pre-computed term depth bounds, whereby termination can be guaranteed
(Schmidt 1998a, 1998b). However, in practice this solution is very poor
(Hustadt et al. 1998). For non-transitive modal logics, good performance
results have been obtained with the resolution theorem prover SPASS
(Hustadt and Schmidt 1997, 1999a, Hustadt et al. 1998, Schmidt 1998b).
Transitive relations play also an important role in automated deduction
for first-order logic. A general resolution calculus designed for binary rela-
tions satisfying the general scheme R; o R; C Ry, (including equality) is by



Bachmair and Ganzinger (1995), and combines ideas from rewrite systems
and resolution in a calculus of ordered chaining.

In this paper we show how this calculus may be used to obtain resolution
decision procedures for the relational translation of a range of propositional
modal logics. For the purpose of clarity we will focus on K4, KD4, and S4.
The method may be applied also to multi-modal logics with modal oper-
ators satisfying (a subset of) D, T, and 4 as well as combinations thereof.
The important ingredients of our method are structural transformation and
ordered chaining with selection. Structural transformation allows us to em-
bed the logics and formulae under consideration into a well-behaved class
of clauses.

This paper is both of theoretical and practical interest, for modal logic
as well as for automated deduction. Of interest to modal logic is that our
method provides a new inference method for extensions of K4. Mechanisms
like cycle detection as used in tableaux calculi are not required. There is
also no need to go through the search space determined by a pre-computed
proof depth bound. Our solution requires no specialised techniques, only
standard theorem proving techniques are used. In particular, the chain-
ing calculus is parameterised by an ordering and a selection function. The
whole effort has been to find a suitable ordering and selection function so
as to ensure termination for extensions of K4. Soundness and complete-
ness of this application follows from soundness and completeness of the
general chaining calculus. Of interest to automated deduction is that the
ordered chaining calculus, which has been developed to overcome problems
of traditional approaches in automated theorem proving with transitivity
axioms, also provides a basis for the development of decision procedures
for subclasses of first-order logic with transitivity.

The structure of the paper is as follows. Section 2 gives some pre-
liminary definitions and notation. Section 3 defines the modal logics under
consideration, the relational translation to first-order logic, and a structural
transformation of first-order formulae. The examples in Section 4 illustrate
the causes of non-termination by unrefined resolution. Our decision proce-
dure is based on the ordered chaining calculus defined in Section 5. Sec-
tion 6 describes a finitely bounded class of clauses which includes the input
clauses stemming from the translation of modal formulae. Section 7 proves
that this class is closed under inferences in the chaining calculus with eager
condensation and proves termination. The examples of Section 8 provides
a sample refutation and illustrate how ordered chaining avoids indefinite
computations. The examples also show that our method is different from
tableaux methods. The final section discusses further work.



2 Preliminary definitions and notation

In addition to propositional modal logics we consider first-order languages
with function symbols, predicate symbols, and variables. A term is an ex-
pression f(ti,... ,t,), where f is a function symbol of arity n and ¢, ... , t,
are terms, or a variable . An atom is an expression P(ty,... ,t,) where
P is a predicate symbol of arity n and ¢, ..., t, are terms. A [iteral is
an atom (a positive literal) or its negation —A (a negative literal). Atoms
with binary predicate symbol R will be written in infix notation, for ex-
ample s Rt. Clauses are finite multisets of literals and will be written as
disjunctions. Two atoms (literals or clauses) are variants of each other, if
they are equal modulo renaming of variables.

A position is a word over the natural numbers. The set Pos(¢) of
positions of a given formula ¢ is defined by: (i) the empty word e € Pos(¢),
(ii) .\ € Pos(¢) forall i with 1 <i < nif ¢ = ¢y *x -+ * ¢, and X € Pos(9),
where * is a first-order connective (quantifiers Yz and 3z are regarded to be
unary connectives). If A is a position in ¢, then ¢|) denotes the subformula
of ¢ at position A, that is, ¢|. = ¢ and ¢|;.x» = ¢;|x. The result of replacing
¢ at position A by ¢ is denoted by @[\ + ¥]. We write @[], for ¢ when
or = 9.

An occurrence of a subformula has positive polarity if it occurs inside
the scope of an even number of (explicit or implicit) negations, and an oc-
currence has negative polarity if it occurs inside the scope of an odd number
of negations. For example, both occurrences of the subformula =C' A D in
O(=C AD)AO(=C A D) have positive polarity, and both occurrences of C
have negative polarity.

The following notation will be adopted. First-order variables are de-
noted by z,y,z,2',y',2',..., terms by s,t,u,v,s’,t',u’,v',..., atoms by
A/ B,A",B' ..., and clauses by C,D,C",D’',.... By V(C) we denote the
set of free variables occurring in C'.

3 Translation of modal formulae

The language of the propositional modal logic KX is that of propositional
logic plus additional modal operators O and <. By definition, a formula of
KX is a Boolean combination of propositional and modal atoms. A modal
atom is an expression of the form O or Gip where 1) is a formula of KX, A
literal is a propositional atom or its negation. In the following we assume
that modal formulae are in negation normal form, containing no occur-
rences of the Boolean connectives — (implication) and <> (equivalence).
In general, ¥ is a (possibly empty) set of additional frame properties which



need not be modally definable. We assume ¥ includes transitivity and
possibly also other frame properties from Table 1.

The aim is to show the satisfiability of a modal formula ¢ in a logic KX.
We will do so by refuting the translation of ¢, and the translation we will
use is the standard relational translation.

By definition, the relational translation operator II> maps ¢ to

Axy Az 70 (0, 2),

where Axy is the conjunction of first-order formulae corresponding to frame
properties in ¥. The morphism 7, is defined by

) = P(z)

) = ~P(z)
7rr(¢1/\"'/\¢n;m) = 7Tr(¢1,l“)/\"'/\7fr(¢mﬂf)

) = (¢, ) VeV re(dn, )

) = Vy(zRy— m(d,y))

) = Fy (@RyAm(d,y))

p is a propositional variable and P is a unary predicate uniquely associated
with p. The symbol R is a special binary predicate denoting the accessibility
relation in the underlying Kripke semantics. As 7.(¢,z) is in negation
normal form, all non-atomic subformulae of =, (¢, z) have positive polarity.

In order to obtain a simple clausal form we make use of a particular form
of structural transformation. The idea of structural transformation is to in-
troduce for particular subformula occurrences 1 of a formula ¢ a new ‘name’
Q- Such transformations were used by Tseitin (1970) in studying the rel-
ative complexity of proof systems of propositional logic. They form a stan-
dard technique not only in the connection with resolution decision proce-
dures (de Nivelle 1998, Hustadt and Schmidt 1998, 1999b, Schmidt 1997),
but allow also linear transformation of first-order formulae into clausal
form (Baaz et al. 1994, Boy de la Tour 1992, Nonnengart et al. 1998).

Let A be a subset of Pos(¢) for a first-order formula ¢ in negation normal
form. We associate with each position A of A a new predicate symbol @)y

Seriality D|Op—<p |Vxdyz Ry

Reflexivity | T | Op —p Ve xRz

Irreflexivity Vo —(x Rx)

Transitivity | 4 | Op — OOp | Vz,y,2 (tRyAyRz) > TRz

Table 1: Frame properties



and a new literal Qx(z1,...,z,), where z1, ..., x,, are the free variables
of ¢|x. The definition Def(¢) of @y is the formula

V.Tl, e, T (Qx(xl, A ,xn) — ¢|)\)
Define Def s (¢) inductively by:

Defy(¢) = ¢
Defruqay(¢) = Defa (@A < Qr(z1, ... ,zn)]) A Defr()

where A is a maximal element of AU{A} with respect to the prefix ordering
on positions.

Since the mapping 7, preserves the structure of a formula, we can asso-
ciate with each position of a modal formula ¢ a unique position in (¢, x).
Let Pos;" (4) be the set of positions of non-literal subformulae of a modal
formula ¢. Let Pos, (¢) be the set of positions in 7,.(¢, ) associated with
Pos? (¢). By Z we denote the transformation taking II>(¢) to

I (@)1 A 3w Defpyt ) (15 (6)]21)

where IIZ(4)|2.1 = 7 (¢, ) and [IZ(¢)|; = Axy.
Theorem 3.1. Let ¢ be modal formula in negation normal form. Then:

1. ¢ is KS-satisfiable if and only if 11> (¢) is a satisfiable first-order
formula.

2. TIZ (@) is a satisfiable first-order formula if and only if ZI1= (¢) is a
satisfiable first-order formula.

Let Cls(¢) denote the clausification of a first-order formula ¢, which
is computed by removing all occurrences of the logical connectives —,
Skolemisation, and turning the Skolemised formula into clausal form. In
this paper we assume that outer or inner Skolemisation is used, but for
strong Skolemisation (Nonnengart 1996) the decision procedure and decid-
ability result are the same.

Using Theorem 3.1, we can show the satisfiability and unsatisfiability
of a modal formula ¢ by showing the satisfiability of the first-order for-
mula ZI1Z (¢) which in turn can be realised by showing the satisfiability of
CIsZIZ ().

4 Examples

The following example shows that even for the translation of the basic
modal logic K unrefined resolution is only a semi-decision procedure.



Consider IIT*(O0p) =

Ve xRz
ANVz,y,z (tRyAyRz) > T Rz)
Adx (Vy (z Ry — 3z (y Rz A P(z)))).

The result of applying = is

VexrzRx

AVz,y,z (tRyAyRz) >z Rz
A3Jz Qa(z)

AVz (Q2(7) = (Vy 2 Ry — Q1(y)))
AVz (Qi(z) = 3y 2 Ry A P(y))).

From the last two conjuncts we obtain the following three clauses.

=Q2(z) V a(zRy) Vv Q1(y)
—Q1(z) V =R fi(z)
=Q1(z) vV P(fi(z))

By resolving on the literals marked in gray, we get the following non-
terminating derivation.

Q1 (z) V2Qa(z) vV Qi(fi(x))
—Q1(z) vV -Qa2(x) vV fi(z) R fi(fi(x))
Q1 () V =Qa(z) V =Qa(fi(x)) V Qi (fi(fi()))

The problem is the unbounded growth of the depth of terms and the un-
bounded growth of the number of literals in the clauses in the derivation.

The standard approach for defining decision procedures based on reso-
lution for decidable classes of first-order formulae makes use of refinements
of resolution. These refinements, whilst preserving the soundness and com-
pleteness of resolution, are used to constrain the possible inferences by
resolution in such a way that both (i) the growth of the depth of terms
in resolvents, and (ii) the growth of the number of literals in resolvents
is bounded in any derivation. Then any derivation eventually terminates.
The most commonly used refinements are ordering refinements (see, for
example, Fermiiller et al. 1993, Joyner Jr. 1976, de Nivelle 1998, Hustadt
and Schmidt 1998, 1999b). Notably, ordering refinements have been in
the focus of research on automated deduction by resolution independent of
the consideration of decidability issues (Bachmair and Ganzinger 1997). In



the above example, the non-terminating derivation involves unordered in-
ferences which ordered resolution strategies do not generate (for any atom
ordering which is compatible with the subterm ordering on terms).

Transitivity did not come into the above derivation. In the presence of
transitivity ordering restrictions are too weak to prevent non-termination
of resolution: The formula Op results in an infinite derivation.

<

-(yRz)V Rz

=(zRy) Vv P(y)

“(zRy) V-(yR=z)V P(2)
(

—(z Ry)
~Q1(z)
~Q1(z)
~Q1(z)

< < <

-(zRy'") V-(y'Ry)V-(yRz)V P(2)

The first clause is the transitivity clause, the second clause represents Cp,
and the remaining clauses are derived clauses.

Transitive relations on terms may be considered as abstract reduction
systems. In the next section we introduce ordered chaining calculi which,
in particular, exploit the concept of rewrite proofs.

5 Ordered chaining

We recall the definition of the ordered chaining calculus C from Bachmair
and Ganzinger (1995). As usual we implicitly assume that the premises of
an inference have no common variables. If necessary, the variables in one
premise are renamed. Thus, it is also possible to use different variants of a
clause as premises in one inference.

The calculus is parameterised by a certain class of well-founded order-
ings > on ground terms and literals and by selection functions S. On
ground terms > has to be a total reduction ordering. On ground literals
the ordering must be “admissible” in the sense defined in Bachmair and
Ganzinger. A particular such ordering > will be given in Section 7 below.
A ground literal L is called (strictly) maximal with respect to a multiset of
ground literals T, if L = L' (L = L') for all L' in T'. A selection function
assigns to each ground clause a possibly empty set of (occurrences of) neg-
ative literals. If C' is a ground clause, then the literal occurrences in S(C')
are selected. The inference rules are restricted by constraints involving the
specific ordering and selection function that one is using. These are the
inference rules of the calculus C:



Ordered resolution:
CVA DV -B

Co V Do

where o is the most general unifier of A and B, and there is a ground
substitution 7 such that Ao is strictly maximal with respect to C'or, no
literal is selected in C'o7 V AoT, and either =BoT is selected or else =Bor
is maximal with respect to Dor. We call C'V A the positive premise and
D Vv —B the negative premise.

Ordered factoring:
CVAVB

CoV Ao

where o is the most general unifier of A and B, and there is a ground
substitution 7 such that Ao7 is maximal with respect to Cor, and no
literal is selected in Cor V Aor vV Bot. Note that factoring of negative
clauses is not necessary for completeness.

Additional inference rules for transitive relations R are:

Ordered chaining:
CVuRs DVtRv

CoV Do V uo Rvo
where o is the most general unifier of s and ¢, and there is a ground sub-
stitution 7 such that uorT Rsot is strictly maximal with respect to Cor,

toT RvoT is strictly maximal with respect to DoT, soT > uort, toT > voT,
and no literal is selected in Co7 V uotT Rsot and DotV toT RvoT.

Negative chaining:

CV-(uRs) DVitRv
CoV DoV =(vo R so)

where o is the most general unifier of v and ¢, and there is a ground
substitution 7 such that toT RvoT is strictly maximal with respect to Do,
no literal is selected in DoTV toT RvoT, either =(uoT R soT) is selected or
else =(uoT R soT) is maximal with respect to Cot, toT = voT, uet = sor,
and soT # voT and

CV—-(uRs) DVitRv
Co V Do V =(uo Rto)

where ¢ is the most general unifier of s and v, and there is a ground
substitution 7 such that toT R voT is strictly maximal with respect to Do,



no literal is selected in DotV toT RvoT, either =(uoT R soT) is selected or
else ~(uoT R soT) is maximal with respect to Cor, vor = toT, soT = uoT,
and uot # tor.

Ordered chaining and negative chaining are macro inferences with the
transitivity clause for R. Given ground clauses C'Vu Rs and DV s Rv we
can derive C'V D V u Rv by resolving with the first and second literal of
=(zRy)V—(y Rz)Vz Rz. Given ground clauses C'V—=(u Rs) and DV uRv
we may derive C'V DV —(v R s) by resolving with the first and third literal
of ~(z Ry)V-(y Rz)Va Rz with unifier {z/u,y/v,z/s}. In a similar way
the second form of negative chaining is justified.

With the ordering restrictions on the rules the explicit generation of the
full transitive closure of R can usually be avoided. The intuition behind the
way the ordering restrictions work arises from standard techniques in term
rewriting. Suppose that there is a transitive relation R given by s Rt and
t Ru where s,t,u are ground terms. The ordered chaining inference rule is
restricted such that s Rw is derived only if ¢ = s and ¢ > u. This situation
is called a peak. If s Ru has been computed the corresponding peak is said
to commute. A system in which any peak commutes has properties similar
to a convergent rewrite system in the equational case. In particular, the
search for proofs of R facts can be restricted to so-called rewrite proofs.
The ordering restrictions for negative chaining are designed to exclude the
enumeration of proofs which are not rewrite proofs. On the non-ground
level an inference is required whenever the existence of a ground instance
of the inference satisfying the respective restrictions cannot be excluded.

Note that the accessibility relation R in our fragment is monotone in
that the representation of R by first-order terms always grows in size from
one world to the next world. The ordering restriction of the chaining in-
ferences exploit this structure and thus avoid many useless inferences.

Depending on certain technical details that we cannot discuss here,
one additional inference is needed for certain occurrences of disjunctions of
positive R literals:

Transitivity resolution:

CVsRuVtRv
Co V —=(uo Rvo) V so Rvo

where o is the most general unifier of s and ¢, and there is a ground sub-
stitution 7 such that so7 RuoT is strictly maximal with respect to Cor,
toT RvoT is maximal with respect to CoT, soT = uor, toT > vor, and no
literal is selected in C'oT V soT Ruot V toT RvoT.



The calculus is refutationally complete and compatible with a certain
notion of redundancy for clauses and inferences by which additional don’t-
care non-deterministic simplification and deletion techniques can be justi-
fied. We do not want to repeat the formal definitions from Bachmair and
Ganzinger (1995). Assuming this definition of redundancy we say that a set
of clauses is saturated up to redundancy (with respect to ordered chaining)
if the conclusion of every inference from non-redundant premises in N is
either contained in N, or else is redundant in N. A clause set N is called
T-satisfiable whenever N has a model in which R is transitive.

Theorem 5.1 (Bachmair and Ganzinger 1995). If N is a clause set
which is saturated up to redundancy, then either N is T-satisfiable, or else
N contains the empty clause.

The eager replacement of a clause by a condensed variant is covered by
the notion of redundancy. We say that C' is the condensation of C'V D if o
is a substitution such that (C'V D)o and C contain the same set of literals
and C' is a minimal (with respect to size) proper subclause of C' V D.

Proposition 5.2. If C' is a proper subclause of C'V D, then C'V D is
redundant in N U {C}, for any set N of clauses.

The proof of this fact can be easily checked from the definition of redun-
dancy in Bachmair and Ganzinger (1995). The significance of this propo-
sition is that whenever an inference is to be computed, one may instead
add the condensation of its conclusion to the current set of clauses. This
is sound, and subsequently the conclusion of the inference becomes redun-
dant. The completeness theorem only requires to saturate a set of clauses
up to redundancy which, in turn, only requires that those conclusions of
inferences be present which are not redundant.

The remainder of the paper is devoted to the definition of a class of
condensed clauses that (i) is finite whenever the signature is finite; (ii)
the demonstration that input clauses from the structural translation are
within this class; and (iii) the proof of closure of this class under the infer-
ences of the ordered chaining calculus with eager condensation, provided
an adequate ordering and selection function is employed.

Under these circumstances, ordered chaining becomes an effective deci-
sion procedure for the modal logics we consider. Note that the constraints
which restrict the inferences may or may not be decidable. In particu-
lar, the lifting of the ordering to non-ground expression involves universal
quantification over all ground substitutions. Therefore all we can expect
for any implementation of the calculus is the availability of a sound, decid-
able approximation of the constraints such that whenever a constraint is
classified as unsatisfiable it is, in fact, unsatisfiable, while the converse need

10



not be the case. However, regardless as to how crude the approximation
may be, having proved (iii) once and for all, we simply may ignore any
inference which passes the approximative constraint check but produces a
clause outside of the class of condensed clauses.

6 A class of clauses

Structural transformation by Z ensures that clauses in CIsZII,.(¢) have a
characteristic structure. The definition of an occurrence of a O formula is
represented by a clause of the form

(1) —Qi(x) V ~(z Ry) V (7)P(y)-

A definition introduced for an occurrence of a & formula generates clauses
of the form

(2) —Qi(x) VxR fi(z)
(3) =Qi(z) V (=) P(fi(x)),

where f; is a unary Skolem function which is uniquely associated with the
renaming predicate @);. A definition introduced for a disjunction (—)P; V
..V (=) P, generates a clause of the form

(1) Qi) V (V@) V .V ()Pa(a).
For a conjunction (=)P; A ... A (=)P, we obtain a set of clauses

—Qi(x) V (=) P (x)

Qi(x) V () Pa(2),

which are special cases of (4). Note that clauses of the form (1) to (4)
contain at least one negative literal. In addition one positive unit clause is
produced

(5) Qr(v)

where ¢ is a Skolem constant. Finally, we have the clauses resulting from
the transformation of Axy to clausal normal form, except that we delete
the transitivity clause. For example, we will consider the reflexivity clause

(6) TRx

11



and the seriality clause

(7) z R f(x).

We introduce some more notation to abbreviate certain more general
forms of clauses. Subsequently we assume that:

=(Z, Rt) expands to \/ =(z; Rt),

1<i<n

P(Z,) expands to \/ P(zi), and
1<i<n

P(t) expands to (=)Pi(t) V...V (=2)Py(t),

where ¢ is a term and Z,, denotes a vector of variables. If the number of
variables is not important we write Z instead of Z,,. Any of the disjunctions
may be empty. The P; in P(t) are pairwise distinct monadic predicates
applied to the same term ¢. Different occurrences of P within a clause may
involve different sets of predicates. For an example, let Z» be the vector of
two variables, £; and x5, and assume that there are two monadic predicates
P and Q. Then P(Z;) V P(a) may expand to a clause P(x1) V =P(z2) V
Q(z1) V Q(a), but not to P(z1) V P(z1) V Q(a).

In generalising the forms (1), (3), and (4), we arrive at the class of
clauses C'

(8) P@)V-(@Ry)VP(E)V-(ZRf(Y) VPl VP()

such that, additionally, if = is a variable occurring in a monadic atom P(z)
in C and if C contains a (negative) R literal then = occurs in at least one
such R literal. We shall also write C' = C), to emphasise the special role of
y as the only variable that may occur as the second argument of R literals
in C, if there are any such literals. In that case, Cy» will denote the clause
in which y is replaced by y’.

In generalising from clauses of the form (5) we have to consider the class
of clauses:

9) P()

The clauses (2) and (7) are both instances of this slightly more general
form of clauses:

(10) P(x) VxR f(x)

In summary, the class I of clauses for which we want to show that satu-
ration under C terminates consists of the clauses of the form (6), (8), (9),

12



and (10). Clearly, K contains all clauses that might result from the struc-
tural translation of modal formula, as well as the frame axioms we consider
here, with the exception of transitivity.

The following theorem is true for finite signatures which we assume
here.

Theorem 6.1. K contains only finitely many condensed clauses (modulo
variable renaming).

Proof. Clearly there may be only finitely many condensed (hence fully fac-
tored) clauses of the form (6), (9), or (10), as these clauses are flat, i.e. terms
have at most height one, and contain at most one variable. So, the only
non-trivial case are the clauses of the form (8). These have the form

Cy=P@E)V-(ZRy)VP(E)V-(ZR () VP VP((y)

in which we may view y as a global parameter or constant. Under this view,
the R atoms z; Ry and z; R f(y), respectively, play the role of monadic
atoms R, (z;) and Rg (zj). Essentially, Cy is a monadic clause, which may
consist of exponentially many (in the cardinality of the signature) variable-
disjoint subclauses, each of which contains one variable (besides y). A
condensed clause of this form can be of at most exponential length. From
this finiteness modulo variable renaming follows. O

The proof shows that clauses of the form (8) may be exponentially long in
the size of the signature. That gives us a doubly-exponential space (and
time) bound for our decision procedure. A more space-economic (single-
exponential) representation would result from splitting the clauses C), into
their variable-disjoint components, connecting them with the help of aux-
iliary monadic predicates A(y). The resulting clauses are again of the form
(8) but have a linear length (in the size of the signature) only. Based on
this splitting technique, a saturation-based decision procedure using C can
be implemented in single-exponential time and space for any of the modal
logics that can be translated into . Observe that condensation of the
restricted form of clauses that we employ is an at most quadratic problem.

7 Closure under ordered chaining

For the clauses in K some of the inference schemes in C are obviously void.
In particular, ordered chaining and the first variant of negative chaining
cannot be applied. In fact, in any positive occurrence of R literals in either
(6) or (10) the second argument is greater or equal than the first argument

13



in any total reduction ordering. Similarly, transitivity resolution is void as
there is no clause in K that has more than one positive R atom.

For demonstrating that C is closed also with respect to the remaining
inferences of C we have to define an appropriate class of orderings and
selection functions.

Let > be any total reduction ordering on ground terms in which the
constant ¢ is the minimal term. Let >y be defined by 1 >y 0. For every
ground literal L, let

cr, = (maxy,, pol,sr,)

where (i) maxy, is the maximal argument of L with respect to >, (ii) pol;,
is 1, if L is negative, and 0 otherwise, and (iii) sy, is 1, if L is a binary literal
(=)(s Rt) and s > ¢, and 0 otherwise. The ordering >, on the complexity
measure is then defined to be the lexicographic combination of >, >y, and
>N-

For example, if s = ¢, then the complexity of s Rt is (s, 0, 1), whereas the
complexity of =(t Rs) is (s,1,0). The maximal term is the main criterion.
Observe also that a negative literal is considered more complex than a
positive literal with the same maximal term.

Note that ». represents a strict partial and well-founded ordering on
ground literals. Any total and well-founded extension (again denoted by
>) of >, is an admissible ordering in the sense of Bachmair and Ganzin-
ger (1995) so that the completeness theorem (Theorem 5.1) applies. Let
us assume for the remainder of this paper that = denotes one specific but
arbitrary such ordering based on >..

For the selection function S we use one that selects certain negative R
literals in a ground clause C'. More specifically, if C' contains a negative R
literal of the form —(s Rt) such that s is the maximal term in C, then one
such literal should be selected by S. Other literals must not be selected
by S. We now proceed with the analysis of C inferences on clauses in K,
assuming > and S as just specified.

Lemma 7.1. Let C and D be clauses of the form (8). Any inference in C
from premise(s) C (and D) produces a clause of the form (8).

Proof. Since there are no positive occurrences of R in clauses of the form
(8), inferences by ordered chaining, negative chaining, and by ordered reso-
lution and factoring with negative occurrences of R are not possible. Only
inferences by ordered resolution which resolve a monadic atom need to be
considered.

Suppose that the resolved literal in C' = C} is a positive literal of the
form P(z) where o denotes the most general unifier that is associated with
the inference. By the ordering requirements of ordered resolution, there
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is a ground substitution 7 such that P(z)o7 is strictly maximal in Cot
which implies that xoT is the maximal term in C'or. It follows that a term
of the form f(z) cannot occur in C'. Moreover, z cannot occur as the first
argument of an R literal, for otherwise this R literal would be selected.
Therefore,  may only occur as the second argument of an R literal, that
is, z is the distinguished variable y in CY.

Let =P(z') be the resolved literal in D = D,,. By a similar reasoning
we infer that f(z') does not occur in D and that z' is the distinguished
variable y'. Since the resolution inference from C' and D unifies z and 2/,
the conclusion satisfies also the other properties of clauses of the form (8).
If =P(f(a")) is the resolved literal in D = D,y then, by the form (8), 2
is again the distinguished variable y’. The resolution inference unifies the
variable z in C' with f(z'). Thus the result is again a clause of the form (8).
The remaining cases where the resolved literal in C is of the from P(f(z)),
as well as the cases with dual polarity of the resolved atoms are symmetric
to the first case. O

The class of clauses in Lemma 7.1 remains closed under the ordered
chaining calculus if we include reflexivity and certain ground clauses con-
taining monadic predicates only.

Lemma 7.2. Let C' and D be clauses of the form (6), (8), or (9). Any
inference in C from C and/or D produces a clause of the form (6), (8),

or (9).

Proof. By the Lemma 7.1, inferences from clauses of the form (8) produce
clauses of the same form. Let us now consider inferences between clauses
of the form (8) and (9). Let C' = Cy be a clause of the form (8) and let
D be a clause of the form (9). The only possible inference is by ordered
resolution. Suppose that (=) P(z) is the resolved literal in C'. Similar to the
proof of the Lemma 7.1, we may infer that = is the distinguished variable
y and that a term f(z) does not occur in C. If C' does not contain any R
literals, the result is a clause of the form (9).

Suppose that C' does contain at least one R literal. In this case the
variable z in C' will be bound to the constant . Since ¢ is the minimal
ground term, but at the same time the maximal term in C, all variables
are bound to ¢ in the respective ground instance of C'. Thus the occurrences
of R literals in that instance of C' must be selected. This is a contradiction
to the constraints of the ordered resolution inference rule.

Ordered resolution steps with the reflexivity clause (6) may resolve oc-
currences of R literals of the form —(x Ry) and —(z R f(y)) in the other
premise. The result is a clause of the form (8). The remaining cases are
trivial. O
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Lemma 7.3. Let C be a clause of the form (10) and let D be a clause of
the form (6), (8), or (9). Any inference in C from the two premises C' and
D produces only clauses of the form (8).

Proof. Suppose that C' is of the form C' V z' R f(2') where the literal
' R f(z'") in C' is maximal. Note that only if D is of the form (8), an
inference is possible either by ordered resolution or by negative chaining
where only literals L of the form —(z Ry) and —(z R f(y)) in D can be
involved as counterparts of the maximal literal ' R f(z') in C. We treat
the case in which L is of the form —(x Ry), the other case being essentially
the same.

Suppose the inference is by ordered resolution resolving z' R f(z') and
L. The most general unifier o binds z to z' and y to f(z'). Thus there is no
ground instance of Do such that the first argument of the R atom in L is
the maximal term. Consequently, there is no ground instance Do of Do in
which Lo is selected. However, for the inference to satisfy the constraints,
there must be a ground instance Do7 of Do such that Lo7 is maximal in
Dor. From this we conclude that it is impossible for D to contain any
occurrences of terms of the form f(y). As a result, the conclusion of the
inference will be of the form (8).

Suppose now the inference is by negative chaining. The most general
unifier o binds y to f(z'). By the ordering constraints for negative chaining
we need only consider ground instances Do7 of Do with yor > xo7T. Con-
sequently, there is no such ground instance Do in which Lot is selected.
However, again by the constraints of the inference, there must be a ground
instance Dot of Do such that Lot is maximal in Dor. From this we infer
that it is impossible for D to contain any occurrences of terms of the form
f(y). The conclusion of the inference will be of the form (8). O

Our main theorem now is this:

Theorem 7.4. Let ¢ be a modal formula, let ¥ be a possibly empty set of
frame properties from Table 1, and let N be the set of clauses obtained by
applying CIsZIIZ to ¢. Then,

1. any derivation from N in the ordered chaining calculus with eager
condensation terminates, and

2. ¢ is unsatisfiable in KX if and only if the saturation of N under C
contains the empty clause.

Proof. From the Lemmas 7.1, 7.2, and 7.3 we may infer that the class IC
of clauses is closed under C inferences. In the Theorem 6.1 we have shown
that /C is finite if clauses are fully condensed. This shows the first part of
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the theorem. The second part is implied by the Theorem 3.1, together with
the soundness and completeness of C, cf. Theorem 5.1. O

This result extends to multi-modal logics with transitive modalities.
The translation mapping 7, is then modified in the expected way. Each
pair of modal operators O; and <; is associated with a distinguished binary
relation symbol R;:

m(Hig,x) = Vy (zRiy — m(¢,y))
ﬂ-’r'(oid)v .’17) = Ely (.’17 Rz ) A ﬂ-T‘(d)v y))

The generalisation of Theorem 7.4 is the following. €, KX; denotes the
independent join (or fusion) of a family of logics KX;. Note, not all relations
need to be transitive.

Theorem 7.5. Let ¢ be a modal formula, let {£;}; be a family of possibly
empty sets of frame properties from Table 1, and let ¥ = J,X;. If N =
CIs=IIX (), then

1. any derivation from N in the ordered chaining calculus with eager
condensation terminates, and

2. ¢ is unsatisfiable in @, KE; if and only if N reduces to the empty
clause in C.

Proof. The general form of the clauses (8) needs to be adapted to:
PE)V=(ZRy) VPE)V-(ERIWY) VPV P(Y),

where, similar as before, =(Z,, Rt) expands to \/, ~(z; Rt) and ~(sRt)
expands to =(sRyt) V...V =(s Ry t). Because the modalities and the
relations do not interact, the proof is essentially as for Theorem 7.4. For
non-transitive relations no consideration of the application of the chaining
rules is necessary. O

Other frame properties can be embedded in our class of clauses. For
example, Yoy =(z Ry) or Vz,y =(z R; y) V ~(z R; y). We expect that the
class of clauses can be extended to include also n-ary function symbols as in
—(zR;y)Va R; f(z,y), for example. It is also safe to allow more constants,
in particular, ground clauses of the form (=)P(a) or (=)(a Rb).

8 More examples

Reconsider the sample modal formula ¢; = OOp from Section 4. The input
clauses obtained from IIT*(¢;) are

(11) xRz
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(12) Q2(¢)

(13) —Q2(z) V(z Ry) V Q1(y)
(14) —Q1(z) VR fi(z)

(15) —Q1(z) V P(fi(z)).

As in the derivation in Section 4, the inference step between clauses (13)
and (14) on the R-literals is still possible in the ordered chaining calculus,
and results in

(16) —Q2(x) V Q1(fi(z)) V -Q1 ().

But, an inference step by ordered resolution between clauses (16) and (14)
is now impossible. The literal =@ (fi(z)) is neither maximal nor is it
selected in the instance =Q1 (f1(x))V fi(z) R f1(fi(z)) of clause (14). Thus,
the ordering restrictions prevent an resolution inference step on Q1 (f1(x))
in clause (16). An inference step by ordered resolution between clauses (11)
and (13) gives

(17) ~Qa(z) V Q1 (z).

Without loss of generality we assume that instances of —Qs(x) are >-
maximal in this clause. Assuming that instances of ()1(x) are maximal
would not affect termination. Then

(18) —Q1(1)

is derived by resolving (17) and (12). Finally, it is possible to apply the
negative chaining rule to (17) and (13), giving

(19) —Q2(z) V(z Ry) V -Q1(y) V Q1 (f1(y))-

As with (16) and (14), further inference steps by negative chaining on (19)
are prevented by the ordering restrictions. The clause set is now saturated.
As it does not contain the empty clause, the clause set we have started
from, and therefore also ¢, are satisfiable.

Concerning the second example of Section 4, that is, the formula Op,
not a single inference step is performed in the chaining calculus. The input
clauses are:



There are no positive R literals, and any inference upon —Q1(x) and Q1(¢)
is blocked by the selection function which selects =(xz Ry).
We now consider a more complex example. The formula

¢2 = O(p1 V p2) A O(O(=p1 V p2) A OC—pa)

is unsatisfiable in K4. The clausal form of ZII%(¢2) includes among others
the following clauses.

(22) —Q1(z) VxR fi(z)

(23) =Q1(z) V P2 (fi(z))

(24) —Q2(z) VxR fr(z)

(25) —Q2(z) V Q1(f2(2))

(26) =Q3(z) V -P(z) V P ()
(27) —~Qu(z) V-(z Ry) V Qs(y)
(28) —Q5(z) V Q2(z)

(29) —Q5(z) V Qa(z)

(30) —Qs(z) VxR f3(z)

(31) —~Q6(z) V Q5(f3(z))

(32) —Q7(z) V Pi(z) V P2 ()
(33) —Qs(z) V-(zRy) V Q7(y)
(34) Qo (z) V Qo(z)

(35) Qo (z) V Qs(z)

(36) Qo (1)

Note that Qg(x) can be interpreted as ‘O(p; V po) holds at world 2’. The
literals Q4(x), Q2(z), and Q2(z) have an analogous meaning for the sub-
formulae O(=p; V p2), OO-pe, and Oy, respectively. In the following
derivation condensing steps are not explicitly stated. By [(1)2,R,(2)1] we
denote that the second literal of the first clause is resolved with the first lit-
eral of the second clause. Analogously, [(1)2,NC,(2)1] denotes an inference
by negative chaining.

[(26)2R (32)2] (37) —Qs(z) V=Qr(z) vV P2(2)
[(37)3,R, (23)2] (38) —Q3(fi(y) V-Q7(fi(y)) V-Q1(y)
[(27)2, NC ,(22)2] (39) —Qu(z)V-(zRy)V-Qi(y) Vv Qs(fi(y))
[(33)2,NC,(22)2] (40) —Qs(z)V=(zRy)V -Q1(y) VvV Q7(f1(y))
[(38)L,R, (39)4] (41) =Qu(z) V =(z Ry) vV -Q1(y) V-Q7(f1(y))
[(41)4,R, (40)4] (42) —Qu(z)V=(zRy)V

—Qs(2) V(2 Ry) V —Q1(y)



Clause (42) is interesting. It says that if O(=p; V p2) holds at a world z,
O(py V p2) holds at world z, and there is a world y which is accessible from
both = and z, then =O—ps, that is Ops, holds in y. No assumptions are
made as to whether z is accessible from z or vice versa. Note that this
property cannot be expressed without the object language containing ex-
plicit representations of (universally quantified) worlds and the accessibility
relation. This is one of the major factors which enables us to maintain all
the information which needs to be derived in the restricted form of (8).
The remainder of the refutation is as follows.

[(42)2,R, (24)2] (43) —Qa(z) V -Qx(x) V —~Qs(2) V

(2 R fa(x)) V Q1 (f2())
[(43)4,NC,(24)2] (44) =Qa(x) V ~Q2(z) V ~Qs(2) V

~(2 Rz) V ~Q1(f2())
[(44)5,R, (25)2] (45) =Q4(z) V =Q2(z) V ~Qs(2) V =(2 Rx)
[(45)4,R, (30)2] (46) —Q4(f3(z)) V =Q2(f3(z)) V =Qs(z) V Qs ()
[(46)1,R, (28)2] (47)  =Qa(f3(2)) V =Q5(f3(z)) V =Qs(x) V Qs ()
[(47)LR, (31)2] (48) =Qa(f3(x)) V =Qs(x) V Qs ()
[(48)1,R, (29)2] (49) —=Qs5(f3(z)) V =Qs(z) V —~Qs()
[(49)1,R, (31)2] (50) —=Qs(z)V =Qs(z)
[(50)2,R, (34)2] (51) =Qs(z) V =Qy(z)
[(B1)1,R, (35)2] (52) —=Qo(z)
[(52)L,R, (36)1] (53) L

9 Further work

The approach purported in this paper is that modal logics are fragments of
first-order logic, a view which has stimulated the work on the guarded frag-
ment (Andréka et al. 1998, de Nivelle 1998). Although the guarded frag-
ment is a generalisation of basic modal logic and includes also properties
of the accessibility relation, like reflexivity and symmetry, transitivity is
not within the scope of this fragment. Transitivity, however, has been our
primary interest here. Since de Nivelle (1998) has recently shown that a de-
cision procedure for the guarded fragment based on an ordering refinement
exists, it would be interesting to investigate the combination with chaining
to obtain practical decidability results for an even broader generalisation
of modal logics.
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