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CLOUD COMPUTING ON WINGS: APPLICATIONS TO
AIR QUALITY

Sengupta, R.∗, Hansen, R.∗, Pereira, E.∗, Huang, J.∗, Kirsch, C.†, Chen, H.‡,
Landolt, F.†, Lippautz, M.†, Rottmann, A.†, Swick, R.∗,

Trummer, R.† and Vizzini, D.∗

We extend the concepts from cloud computing developed in the cyber–world into the
physical world, creating a new paradigm called cyber–physical computing cloud. Under the
proposed framework, a cyber–physical server is allowed to move in space and perform real–
world interactions such as sensing and actuation. The analog for cloud computing’s virtual
machine, under cyber–physical cloud computing, is the “virtual vehicle”. Thus, cyber–
physical servers must be hosted by real vehicles, such as automobiles, planes, smartphones,
and unmanned air systems. A likely candidate for the application of cyber–physical cloud
computing is in air quality monitoring; a collaborative network of vehicle–mounted gas
sensors would make possible unique types of atmospheric sensing in three dimensions plus
time. We discuss the challenges involved in establishing systems according to this new
paradigm, and provide our envisioned solutions, and go on to describe specific applications
in air quality and our prototype implementation.

INTRODUCTION

The key innovations in cyber-physical cloud computing (CPCC) [1] are to have servers move in
space and carry sensors and/or actuators. As with regular cloud computing, CPCC customers
get a virtual machine (VM) running on a real server. Since a CPCC server moves in space, so
does a CPCC VM. Hence we call it a virtual vehicle (VV). The hardware of a CPCC server
is called a real vehicle (RV). By leveraging virtualization technology [2] and mobile agent re-
search [3, 4], we can also have VVs migrate over a network from one RV to another. This means
virtual vehicles have two modes of mobility: a short time–scale hop facilitated by network migra-
tion and called cyber-mobility, and a long time–scale mobility facilitated by RVs called physical
mobility. CPCC, like regular cloud computing, is designed to work at scale, i.e. for at least tens
of vehicle providers, hundreds of real vehicles, or potentially thousands of virtual vehicles.

Since a virtual vehicle is allowed to move in space, we envision a programming model for
virtual vehicles that expresses their location. CPCC aims to allow writing programs like “do
c every x units of space” where c is some computation permitted on usual cloud VMs.
Adding sensing and actuation to computation suggests a powerful programming model for en-
vironmental sampling problems in time and space. The innovation in the programming model
is to make space a first-class concept. This makes CPCC different from hybrid systems and em-
bedded computing where time alone is a first-class concept [5]. Our approach to programming
model research for CPCC will be to add space to models in embedded computing. The second
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implication of CPCC servers moving in space is logical mobility. Since CPU, memory, and I/O
are all virtualized, we propose virtualizing space and time as well. In a CPCC programming
model it should be perfectly legitimate to program “do c at location x” when there exists
no machine at location x. This is to be made meaningful by the runtime system using physical
mobility and cyber-mobility to move a real vehicle to x and hosting the virtual vehicle holding
the program on it.

Sensor networks, when organized as cyber-physical cloud, change from a deployment to a
service. For example, a virtual vehicle can be seen as an Amazon Elastic Compute Cloud
(E2C) unit [6] plus a virtual speed. If one has contracted a VV that accepts a program like
“do c every 10m and 1s” then one must have contracted for a VV with a speed in excess
of 10 m/s. Whether the cloud realizes this 10-m/s virtual vehicle using ten 1-m/s real vehicles
or realizes two 10-m/s virtual vehicles using one 50-m/s real vehicle should be a matter of no
concern to the programmer. This is the meaning of virtualizing speed (or space and time). The
abstraction resembles the Logical Execution Time (LET) [7] model where time is a specification
with semantics. Whether the runtime system implements it or not is a question to be evaluated
or proven. The important part is to have a specification that can derive a behavior from the
program that is also measurable on the runtime system executing the program.

The type of sensor network made possible by CPCC will provide an excellent platform
for environmental sensing and, in particular, air quality monitoring. We will present how we
envision CPCC to be utilized in this specific domain with two examples of sensing problems
solved uniquely by a collaborative network of virtual vehicles. We will also compare the proposed
solution to existing sensor deployments and discuss how a mobile air–based network can be
integrated with current systems for improved air quality modeling and forecasting.

Next we discuss the binding and migration problem of CPCC through a candidate solution
(Section “BINDING AND MIGRATION”), then describe our prototype implementation of a
CPCC infrastructure (Section “INFRASTRUCTURE”). In section “CPCC IN AIR QUALITY
APPLICATIONS” we discuss the use of CPCC for air quality applications. We proceed with a
description of our testbed (Section “CPCC TESTBED”) followed by a summary of current and
future work (Section “CONCLUSIONS AND FUTURE WORK”).

BINDING AND MIGRATION

In this section we address the binding and migration problem. We start by presenting informally
the semantics of our programming model. We then proceed by sketching an possible algorithm
for solving the problem.

Semantics

We assume a virtual vehicle is a Turing–equivalent machine with a virtual speed. Since such a
machine has a location in space, or even motion in space, if c denotes some computation, we
envisage programs such as “do c every x units of space & t units of time” where both
space x and time t are logical as previously discussed. Let 〈c, x, t〉 denote a configuration, i.e. a
snapshot of the current state of the computation. A semantics would then specify the behavior
of such programs as a sequence of configurations:

〈c0, x0, t0〉 → 〈c1, x1, t1〉 → 〈c2, x2, t2〉 → ...

where the ci denote computations specified by programs on the virtual vehicle, xi the specified
location of the i−th computation and ti its specified execution time. The virtual speed of the
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Figure 1: Binding of virtual vehicles to real vehicles.

virtual vehicle relates to this flow as a constraint. If the virtual speed is v m/s then we might
impose

Xi+1 −Xi

Ti+1 − Ti
< v

as a condition for the behavior to be in conformance with its virtual vehicle. Xi and Ti are
random variables denoting the realized physical location of the i-th computation and execution
time. The development of the semantics may accompany the development of the programming
model left to the future. The overall problem consists of how to instantiate a runtime system
of real vehicles that meets the behavior specified by the virtual vehicles.

Figure 1 illustrates our envisioned design. The (blue) dots denote real vehicles and the
(orange) discs denote computations emanating from the various virtual vehicles, i.e., the tuples
〈c, x, t〉. The runtime system needs algorithms to bind each virtual vehicle to a real vehicle and
to determine when to change the binding and migrate the virtual vehicle.

To solve the binding problem illustrated in Figure 1 we make an assumption. If ti and ti+1 are
the times of the i−th and (i+ 1)−th computations emanating from the virtual vehicle, and t is
the current time, then the tuples 〈ci, xi, ti〉 and 〈ci+1, xi+1, ti+1〉 are both known to the runtime
system at time t. In other words, the logical time and space of the (i + 1)−th computation
must be announced at the execution time of the i−th computation. Next we assume the linear
interpolation

x(t) = xi +
xi+1 − xi

ti+1 − ti
(t− ti)

and use x(t) as the position of the virtual vehicle at every time t in the interval (ti, ti+1). By
giving a virtual vehicle a position in logical space at every time, we can now leverage the idea of
Voronoi cells for partitioning the Euclidean space regarding the locations of real vehicles. Given
a set of locations (in this case, the locations of real vehicles) in the Euclidean plane, a Voronoi
cell for a given location p corresponds to all the points whose distance to p is not greater than
their distance to any other location. The black lines in Figure 1 illustrate the boundaries of
the Voronoi cells (also known as Voronoi tessellation) for all real vehicle locations. Our binding
algorithm design has the following steps:

• Given a time t, build a probability distribution for the geographic locations of the logical
space locations of all computations produced by all virtual vehicles in the system. If the
stochastic process is stationary, then the distribution is the same for all t.
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• If one has m real vehicles then tessellate the entire operating area of the cloud into m cells
by minimizing the continuous multi–median function for m medians. This can be done
using techniques in [8].

• Allocate each virtual vehicle to a Voronoi cell based on its logical position and thus to the
real vehicle in the Voronoi cell.

• Program each real vehicle with a sequencing algorithm used to determine the sequence
in which the real vehicle will travel through the 〈c, x, t〉 tuples presented to it by the
various virtual vehicles bound to it. This is illustrated by the black curve with an arrow
in Figure 1.

Algorithms

Common sequencing algorithms in the literature include “first-come, first-served”, the “nearest
task policy” [9], or optimal solutions to the traveling salesman problem [8, 9]. The latter is more
desirable, though it is NP-hard. For approximation algorithms see [10]. Our own contributions
are approximation algorithms for the multiple-vehicle TSP [11].

Once this allocation is done the virtual vehicle has a motion in both logical and physical
space. If the first is

〈c0, x0, t0〉 → 〈c1, x1, t1〉 → 〈c2, x2, t2〉 → ...

and the second
〈c0, x′0, t′0〉 → 〈c1, x′1, t′1〉 → 〈c2, x′2, t′2〉 → ...

then the error is
‖((x0, t0), (x1, t1), . . .)− ((x′0, t

′
0), (x′1, t

′
1), . . .))‖,

where ‖ · ‖ denotes an appropriate norm. The protocols for binding virtual to real vehicles
should be designed to minimize the norm. Observe that between ti and ti+1 there may be a
discrepancy between the logical position of the virtual vehicle obtained by linear interpolation
and the physical position of the real vehicle hosting it. We do not count this discrepancy in our
cost function. Nevertheless, this discrepancy at intermediate times is a useful signal for feedback
control working to keep the real vehicle moving on schedule to its next logical position.

Note the Voronoi tessellation at time t is not generated using the positions of the real
vehicle at time t. Rather, it is generated using the probability distribution described above and
the number of real vehicles in the system. Thus, as long as the first is stationary and the
number of real vehicles constant, the tessellation is time-invariant. This design choice leads to
the phenomenon of cyber-mobility. In a behavior

〈c0, x0, t0〉 → 〈c1, x1, t1〉 → 〈c2, x2, t2〉 → ...

it is possible xi and xi+1 will lie in different Voronoi cells, as the tessellation is time invariant.
In this case our design hops the virtual vehicle from the real vehicle in the first cell to the one
in the second cell. The process is called migration and the algorithm determining migration is
driven by the Voronoi tessellation computed for the cloud.

Permitting cyber-mobility via a virtual machine migration mechanism allows us to reduce the
physical mobility demand by using cyber-mobility. Real vehicles can stay in their own Voronoi
cells while, the virtual vehicles can migrate if they are “too mobile” for their real vehicle hosts.
The price of this is some network bandwidth and the migration delay.
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We choose this algorithm design for binding and migration because it is supported by opti-
mality results in queuing theory or more precisely a geographical extension of queuing theory
since the errors occur in time and space [9, 12], [8]. To use this literature

〈c0, x0, t0〉 → 〈c1, x1, t1〉 → 〈c2, x2, t2〉 → ...

is assumed to be a random process, that is further required to be at least wide-sense stationary,
i.e. at least the first two moments do not vary with respect to time and space. The objective
function to be optimized is then formulated as the expected value E[‖(X,T )− (X ′, T ′)‖] or the
standard deviation E[‖((X,T )− (X ′, T ′)− E[(X,T )− (X ′, T ′)]‖)2]. This two dimensional cost
is reduced to one dimension by treating the Xi as constraints, meaning X = X ′ and

E[‖(X,T )− (X ′, T ′)‖] = E[‖T − T ′‖].

The objective is then to minimize the expected value of the time spent by a computation in the
system TS , i.e., the difference in between the time at which the computation is first presented to
the real vehicle and the time at which it is executed. This objective function relates to ours in
the following way. The i−th computation from a virtual vehicle is executed in a timely fashion
if Ai + TSi ≤ Ti, where Ai is the arrival time of the i-th task. The probability a computation
will be late is determined by Ai, Ti, which are known to the system, and the distribution of TSi.

When the inter-arrival time Ai−Ai−1 is i.i.d. and exponentially distributed and the locations
X uniformly distributed over the entire operating area of the cloud, one can prove using results
in [9] that the expected value of the time spent by a computation in the system TS , is bounded
below by

T̄ ∗ ≥ 1
v
H∗m(Q) + s̄, %→ 0+ (1)

where T̄ ∗ is the minimum of TS under all policies, m is the number of vehicles, Q ⊂ Rd is a
compact set, P = (p1, . . . , pm) are the m points in Q. H∗m(Q) = Hm(P ∗m(Q),Q), P ∗m(Q) =
arg minP∈QmHm(P,Q), Hm(P,Q) .= E

[
mink∈{1,...,m} ‖ pk − x ‖

]
, and by

T̄ ∗ ≥
β2

TSP,2

2
λ[
∫
Q f

1/2(x)dx]2

m2v2(1− %)2
, %→ 1− (2)

where λ is the Poisson arrival rate, f(x) is the geographical distribution of tasks, and v is the
speed of vehicles. The problem is known in the logistics literature as the m−Dynamic Traveling
Repairman Problem (DTRP). In the light load case (ρ→ 0+) a sequencing policy executing the
computation nearest in location to the current one is optimal. In the heavy load case (ρ→ 1−)
it is asymptotically optimal for the real vehicle to follow a divide and conquer traveling salesman
tour of the computations in its cell [8].

The 〈c, x, t〉 arrival process in the geographical queuing literature is an extension of the
Poisson arrival model in queuing theory with a space dimension. Usually, the x in each job
〈c, x, t〉 is chosen from a uniform distribution over the entire operating area containing all the
real vehicles after choosing the t from a distribution such as the memoryless exponential inter-
arrival time one. However, the virtual vehicle abstraction viewed in queuing-theoretic terms
suggests a model we have not found thus far in the literature. In geographical queuing if Ti and
Xi are the desired execution time and location of computation Ci, and Ti+1 and Xi+1 that of
computation Ci+1, then the probability distribution over Xi+1−Xi is independent of the value
of the difference Ti+1 − Ti. Typically, Ti+1 − Ti. is Poisson with some rate parameter λT and
the sequence Xi is Poisson with another rate parameter λX . The virtual vehicle abstraction is
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better modeled by assuming the distribution of the difference Xi+1 − Xi should depend upon
the value of the difference Ti+1 − Ti.

For example, if one has purchased a 20 m/s virtual vehicle and Ti+1−Ti. is one second, then
perhaps Xi+1 should lie within the 20 meter circle about Xi with probability one. If Ti+1−Ti. is
two seconds, then perhaps Xi+1 should lie within the 40 meter circle about Xi with probability
one. One may note that such a model is only one of the many ways of introducing dependence.
Another way might be to think of the 20 m/s as an expected value and assume that ‖Xi+1−Xi‖
is distributed with expected value 20 meters if Ti+1−Ti. is one and with expected value 40 meters
if Ti+1 − Ti. is two, and so on. Such a model is closer to source rate constraints in the ATM
networking literature on quality of service [13]. Such a virtual vehicle is allowed to burst in the
same sense as the QoS networking literature if it has been beneath its rate in the past or will
be in the future. Intuition suggests this dependence of the space differences on time differences
should lead to better policies. When tasks are generated closely in time making it harder for
the real vehicles, the dependence dictates they must also be clustered closer in space, making it
easier for the real vehicles, and vice versa. In the usual geographic queuing model Xi+1 is just
as likely to be far from Xi as near it in a manner independent of Ti+1 − Ti. The vehicle in the
geographic queuing model can jump around more. This is an advantage of the virtual vehicle
abstraction. The actual E[TS ] achieved by virtual vehicles should be smaller than the one we
have analyzed here using the geographic queuing literature.

INFRASTRUCTURE

We have developed a virtualization infrastructure for CPCC called Tiptoe [14] based on the Xen
hypervisor [2]. Tiptoe runs bare-metal on Intel hardware and has been tested on a quadcore 19-
inch rack server machine as well as on a dualcore Pico-ITX embedded computer (which weighs
around 150 grams including WLAN and SSD).

The Xen hypervisor implements a so-called virtual machine monitor (VMM), which (para-
)virtualizes the underlying hardware (computer) into so-called domains, or virtual machines, of
which each appears as an (almost) exact copy of the hardware [2]. The virtual machine monitor
only implements basic (non-real-time) domain scheduling services as well as domain memory and
I/O isolation. There is one privileged domain and a dynamic number of unprivileged domains,
which may run any (almost) unmodified systems software, if it runs on the underlying hard-
ware without the virtual machine monitor, such as Linux or Windows. The privileged domain
runs Linux and serves two important and distinct purposes: domain management and device
abstraction. Domain management includes creating, monitoring, and destroying unprivileged
domains. Device abstraction is performed by running device drivers exclusively in the privileged
domain, and not in any unprivileged domain or in the virtual machine monitor. An unprivileged
domain that wishes to communicate with a device may only do so through a virtualized version
of the device, which is connected through the virtual machine monitor to the actual device
driver running in the privileged domain [2].

Tiptoe enhances Xen in three distinguished categories: (1) domain scheduling through a
hybrid EDF-credit scheduler for mixed real-time and non-real-time workloads [14], (2) sensor
virtualization through high-bandwidth sensor data multicast for efficient sensor data distribu-
tion, and (3) domain migration through runtime-level snapshotting and domain pre-booting for
low-latency, low-overhead migration performance. The work on multicast (2) and migration (3)
is new.

Tiptoe implements what we call a virtual vehicle monitor (VVM), which virtualizes the
underlying hardware (sensors, computer, storage, network, actuators) into virtual vehicles of
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Figure 2: Schematic overview of Tiptoe.

which each appears as an abstract version of the hardware, as opposed to domains, which are
(almost) exact copies of the underlying hardware. A virtual vehicle is a domain that essentially
runs a light-weight, single-address-space operating system with a Scheme interpreter on top.
Figure 2 provides a schematic overview of Tiptoe.

Sensor Virtualization

Our goal is to enable multiple virtual vehicles to access multiple, possibly high-bandwidth sensors
of the underlying hardware at the same time without overloading any processing elements. The
problem is that, by the very nature of virtualization, domains and virtual vehicles in particular
are isolated from each other in memory and I/O as well as from the underlying hardware.
Moreover, virtual vehicles change over time, i.e., they are created, executed, migrated, and
destroyed dynamically at runtime.

Our solution follows the same path that Xen has already taken for storage and network I/O
with additional support of device-to-domain multicast functionality. Given a sensor device, the
appropriate Linux device driver is installed and executed in the privileged domain. A daemon
called eyed which we developed from scratch processes in the user space of the privileged domain
the video feed obtained through the V4L2 video capture API for Linux [15]. The daemon can
handle multiple sensors of the same device type (e.g., CO2 and methane concentration sensors)
and is designed in a way that its process management code is largely decoupled from the actual
frame capturing logic. This separation facilitates the reuse of the management code for other
sensor devices. Using the so-called libxmc library, which we also developed from scratch, the
daemon maintains sensor-to-vehicle mappings to keep track of which virtual vehicle is interested
in receiving data from which sensors, and distributes sensor data to the possibly changing set
of virtual vehicles. Control data and actual sensor data is communicated through so-called
XenStore storage [16] and so-called XenSocket connections [17], respectively.

XenStore [16] is an information storage space which is part of Xen. It can be thought of as a
hierarchical data structure, similar to a device tree, that is shared between domains. XenStore
is used for device discovery and for storing device metadata. A virtual vehicle communicates its
interest in sensors to the eyed daemon using our libxmc library, which, in turn, implements the
necessary functionality for using XenStore (and XenSocket) services. The daemon advertises
the available sensors via XenStore for all virtual vehicles to see. The virtual vehicles that have
expressed interest in a given sensor will then receive its sensor data from the daemon through
dedicated XenSocket connections.

XenSocket [17] is a high-throughput inter-domain communication infrastructure. Note that
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the Xen hypervisor has been designed with minimalism in mind to keep the hypervisor as simple
and small as possible, no general-purpose inter-domain communication mechanism is included.
Although Xen’s virtualized networking infrastructure could be used to realize inter-domain
communication, the provided throughput falls far short of the bandwidth needed to transmit
large amounts of data such as video feeds. In contrast, XenSocket may provide up to 72 times
the throughput of a standard Xen domain-to-domain TCP stream [17].

XenSocket enables two domains to communicate asynchronously via shared memory by es-
tablishing an unidirectional communication link between the two domains. The shared memory
is allocated at the OS level and made accessible to user-level applications through a socket-like
API. Only minimal interaction with the hypervisor is required. Once the memory region is
mapped to the address spaces of both domains, the per-message call overhead is in our imple-
mentation one system and one hyper call in the privileged domain plus one hyper call in the
receiving domain. The message size is currently preset to 128 KB. Since the code base of the
XenSocket project was outdated, we forward-ported it to current versions of Xen (4.0.1) and
Linux (3.0).

The actual multicast functionality based on XenSocket is implemented in our libxmc library.
Each sensor-to-vehicle mapping is represented by a XenSocket connection. Whenever data is
available from a given sensor, the eyed daemon forwards the data to all XenSocket connections
for that sensor. The connected virtual vehicles may then asynchronously receive the data. In
our experiments, we have already been able to multicast a 300-KB/s video feed to three virtual
vehicles hosted on the same server, incurring negligible CPU utilization.

The CPU load imposed by our systems is moderate. We determined the daemons CPU
utilization using sysstat. The CPU load was ranging between 0 and 3 %. According to xentop,
CPU utilization of each VV was beneath 0.5 %.

Virtual Vehicle Migration

Our goal is to migrate virtual vehicles with low latency and low overhead on wireless networks.
This provides advantages beyond a physical network such as continuous sensing during pro-
longed virtual flights in spite of relatively low–endurance planes entering and leaving a region
of interest. Migration should be so cheap that, whenever beneficial, it may even become the
rule rather than the exception while leaving ample bandwidth for other uses such as imaging
streaming. The problem is, however, that the existing migration facilities in Xen only support
migration on domain level where all of a domain’s memory content is transferred at least once
per migration regardless of any runtime-level information. Migration in Xen transfers a do-
main’s memory content while the domain is still running. For correctness the memory content
that has changed during the last transfer is re-transmitted until the point in time when the
memory content changes faster in between two transfers than the available transfer bandwidth.
At an efficiently computable approximation of that point, the domain is suspended, the changed
memory content is transferred once more, and finally domain execution is resumed on the target
machine. This method works for any software running in a domain including whole operating
systems and provides low latency in the sense that actual domain downtime may be on the
order of a few milliseconds for software that exhibits locality in memory access behavior. How-
ever, total migration time is at least proportional to a domain’s memory size which may be
in the order of MBs and even GBs resulting in high bandwidth requirements [18]. The band-
width requirements may be somewhat reduced by applying memory compression algorithms on
migrating domains [19], which is nevertheless still not sufficient for our purposes.

Our solution is based on runtime-level snapshotting as well as on domain pre-booting. On
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each server, the previously mentioned virtual vehicle manager maintains a number of pre-booted
and then suspended domains as targets for virtual vehicle migration. Upon migrating a virtual
vehicle, its domain is immediately suspended to snapshot the vehicle state whose size is in
the order of a few KBs in our current setup. This includes virtual vehicle data as well as the
state of the vehicle’s network stack. The state is then transferred to a pre-booted domain on
the target server. Finally, the pre-booted domain completes its boot process, advances to the
received state, and then resumes the execution of the migrated virtual vehicle. The result is
low-latency and low-overhead migration performance. Snapshotting at the language runtime
level significantly reduces the bandwidth requirements of Xen migration but ties the use of the
migration facility to the language runtime; it is not possible to migrate arbitrary binary code,
as with Xen’s native migration, but only code written in a high-level programming language
extended with support for migration. Domain pre-booting is an optimization of runtime-level
snapshotting to further reduce latency.

Hosting a scalable number of virtual vehicles requires domains with small memory footprint.
We therefore chose the GUK microkernel [20] as foundation of a virtual vehicle operating system
(VVOS). GUK is a single-address-space, lightweight microkernel originally designed to support
a JVM running inside a Xen domain. GUK implements basic thread scheduling and device
drivers for virtual I/O devices only. A virtual I/O device provides a well-defined interface that
abstracts the low-level details of the underlying real I/O device, which is only accessible to the
privileged domain. Any access to a virtual I/O device is routed to the privileged domain which
then accesses the real I/O device on behalf of the connected domain. Moreover, since multiple
domains may share a single I/O device, the privileged domain performs I/O scheduling for all
incoming I/O requests from all domains.

We have combined GUK with the Newlib C library [21] to be able to run C applications
and libraries designed for POSIX-like operating systems with little porting effort. To allow
applications access to static data, we extended Newlib to support a simple, read-only file system
that can be linked into the image of a domain that hosts a virtual vehicle. Additionally, we
incorporated the memory allocator of the GNU C library into our system, as we ran into
fragmentation issues with the naive allocator provided by GUK when exposed to applications
via Newlib.

Virtual vehicles need network access to migrate but also to relay sensor data to the ground
station. We integrated the lwIP library [22] into GUK, providing TCP and UDP connectivity
to domains hosting virtual vehicles. We extended lwIP to allow for the migration of live TCP
and UDP connections, i.e., live TCP and UDP connections are kept alive across any number of
migrations. For prototyping virtual vehicle behavior, we integrated Chibi Scheme [23] into our
software stack. Chibi is an implementation of the Scheme programming language, specifically
of R5RS [24]. We supplemented Chibi’s libraries to expose the C APIs offered by the platform,
such as lwIP, to programs written in Scheme.

Upon migration, a virtual vehicle establishes a TCP connection to the virtual vehicle man-
ager of the target server, then sends a representation of its Scheme continuation over that
connection, and finally terminates after its continuation has been successfully transmitted. Af-
ter the virtual vehicle manager has received the representation of the continuation, it copies the
data constituting this representation into the address space of a pre-booted domain. After the
copying process has completed, the manager signals the domain to reinstate the continuation
and then continue the execution of the virtual vehicle.
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CPCC IN AIR QUALITY APPLICATIONS

The paradigm established by CPCC is well–suited to problems of air quality management and
atmospheric pollution detection. It is expected that, as global urbanization and climate change
continue, it will become increasingly necessary to sense, understand, predict, and control air-
borne pollutants, including greenhouse gases (GHG), primary and secondary aerosols and pre-
cursors, and trace gases [25, 26]. Among the critical measurements needed for successful and
accurate pollution budgeting is terrestrial and biotic gas flux, with species of interest including
CO2, water, methane, and isoprene. Currently, such measurements are carried out in the limited
set of locations where researchers have set up permanent or semi–permanent stations; airborne
sensing is limited to short, isolated flights in large manned research vessels [27].

Comprehensive understanding of air pollution demands ubiquitous sensing, which in turn
requires the integration of a multitude of sensing platforms. It is infeasible for permanent flux
towers to be constructed in every region of interest, due to maintenance considerations, concerns
over the safety of the site, property issues, and myriad other reasons. Likewise, airborne sensing,
in its current form, is of limited use—infrequent research flights may be used for such purposes
as verification and calibration of satellite imagery [28], but there is much valuable data to be
gained toward improved gas and aerosol budgets, and more effective pollution control, through
the facility of a real–time network of controlled, mobile atmospheric sensors. Such sensors could
provide data where geographical gaps exist between stationary sensors and, perhaps more im-
portantly, provide in–situ data that follows the phenomena it represents. An active Lagrangian
network [29] of airborne sensors could reveal the dynamics of otherwise unobserved reactions
such as secondary aerosol formation [26].

Air Sampling Example Cases

Consider two potential unique implementations of CPCC applied toward air quality monitoring.
First, an experiment requires periodic trace gas concentration sampling at a single point in space,
repeated at a certain frequency for a specified duration. This is the type of sensing carried
out by ground–based devices such as CO2 flux towers [30], but in certain cases structurally
supported sensors may be infeasible. For example, high altitude phenomena such as chemical
fluxes across the tropopause cannot be directly measured from the ground. Using the CPCC
paradigm, a programmer could write a program “do c at x”, with x evaluating to a single
spatial coordinate, i.e. latitude, longitude, and altitude at each time for which data is requested,
and c meaning “measure and report”. The cloud is then responsible for performing the requested
sampling and computation at the defined point however it can with the available VVs.

As a second example, assume one or more chemical tracers is distributed through a parcel
of air. A programmer in this instance is interested in maintaining the best possible estimate of
the entire distribution through the volume. Thus, x as provided to the CPCC interface would
define a finite volume, rather than a discrete point, and c, rather than being a simple command
to sense entails a degree of computational complexity involving some atmospheric modeling and
forecasting. This type of sensing involves a control problem inherently impossible with static
sensor networks but eminently solvable with the mobile sensing network made possible through
CPCC.
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Additional Benefits

One further contribution to atmospheric studies promised by CPCC is to remedy some character-
istic problems associated with RVs, such as finite flight duration and geographic range. Whereas
a single plane, particularly a small unmanned vehicle, might be constrained to a mission on the
order of hours in the time domain and up to several hundred miles spatially, a CPCC network
of vehicles can provide uninterrupted mission service by maintaining a continuous trajectory of
a VV by hopping among RVs.

Atmospheric scientists will benefit from this abstraction by gaining a network of sensors
with controllable grid resolution, thus capable of resolving phenomena on a wide range of scales.
Furthermore, CPCC will allow for significant supplemental to be shared with existing ground–
based networks such as FLUXNET [31] while simultaneously giving researchers access to a
means of more detailed study in one or multiple locations. Unmanned air vehicles are bound
to be an invaluable asset to atmospheric scientists and air quality engineers, and CPCC will
allow interested communities to systematically utilize the complex dynamic physical network
efficiently and valuably.

CPCC TESTBED

To evaluate the concept of CPCC and the developed protocols and architectures, we propose
experiments with RVs in the forms of: cars carrying CO2, CO, NOx and SOx, O3, and particulate
matter, sensors and cameras, people hosting computers with sensors, and two different sets of
air vehicles: small flying wings equipped with CO2 sensors and low cost cameras and JAviator
quad-rotors equipped with cameras. The project team has experience building and operating
these types of vehicles and sensors.

We aim at developing a testbed for CPCC that includes the following manifestations of real
vehicles:

• Private automobiles;

• Smartphones and their owners;

• Public transit vehicles;

• Weather Balloons;

• Flying Wing UAVs;

• JAviator quadrotor UAVs [32].

For the purpose of atmospheric monitoring, each of these RVs can be fitted with sensors for
detection of one or more of the following parameters: CO2, CO, NOx, SOx O3, Water vapor,
Temprature, and Multi–spectral imagery. This list certainly could be expanded as resources
are availed and research interest broadens, though the feasibility of any given sensing payload
is limited by the real vehicle on which it must be affixed. Furthermore, we acknowledge that
the motion of some of these hosts may be controllable, others partially controllable, and some
uncontrollable. For example, a bus hosting one of our servers will still move by its schedule,
i.e., it is completely uncontrollable by the cloud. People walking or driving cars may be par-
tially controllable through the use of a system of incentives, and others such as the UAVs, or
automobiles owned by the cloud, may be controllable subject to mode–specific constraints such
as wind or traffic congestion. One goal of CPCC is to have the smallest number of dedicated
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and controlled vehicles required to complement the uncontrollable hosts in the cloud, as we
anticipate the former are costlier than the latter.

Unmanned Air Vehicles

The Flying Wing we have developed for this use is a lightweight, low-cost UAV (see Figure
3(a)). It has a tailless fixed-wing airframe with elevons control surfaces and electric engine. We
are currently using two types of Commercial Off-The-Shelf (COTS) airframes: the Zagi and the
Zephyr. Either airframe is equipped with an open-source autopilot, Ardupilot Mega [33], that
provides waypoint control, meaning given a sequence of GPS waypoints (locations to visit) the
autopilot controls the aircraft to meet those waypoints without the need of human intervention.
The JAviator is a high-performance quadrotor helicopter UAV built from scratch [32] (see Figure
3(b)).

(a) Flying Wing (b) Javiator

Figure 3: UAVs

The Flying Wing is our best candidate platform for performing air quality sampling. Since
the propeller is on the back of the wing, its influence on the sensors measures due to air dis-
turbances is minimized. We also studied the use of a blimp for this kind of mission. Although
this is a good solution regarding minimizing disturbances it doesn’t satisfy our requirements in
terms of speed.

Environmental payload

The sensors currently in our testbed are webcams, CO2 concentration sensors, temperature, and
pressure sensors. We developed a low-cost, self-contained, lightweight sensing payload that can
be used by small scale UAVs (see Figure 4). The payload gathers data from several sources,
tags each sample with GPS information, and logs the data into an SD card. The overall payload
is composed of the following components:

• Arduino Uno micro-controller;

• GPS Logger Shield;

• GPS;

• K30 CO2 Sensor;

• BMP085 Air Pressure sensor;

• SHT15 Temperature/Humidity sensor;

• 5V NiCd Battery;

• Power/I2C board;
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(a) Inner vision (b) Outer vision

Figure 4: Payload

The sensor selected for CO2 detection is the K-30 Sensor [34]. The measurement range is
from zero to 10,000 ppm, with an accuracy of +/- 30 ppm and a sensitivity of +/- 20 ppm of
the measured value. This resolution is coarse in comparison to ambient CO2 levels, but will still
provide a notion of any greatly increased concentrations on a localized basis. Non-dispersive
infrared waveguide technology is used to detect the CO2 concentration.

Relative humidity and temperature (RH/T) detection is achieved in a combined sensor
package, the Sensirion SHT15. This sensor comes pre-calibrated, and includes an amplifier, an
Analog to digital converter, and a digital interface. Under typical operating conditions, such as
those likely to be encountered in environmental sensing, relative humidity sensing is accurate
to within 2%, and temperature within 0.3◦C.

A GlobalSet EM-406a GPS unit is used for horizontal tracking and speed estimates. This
information provides location tags for every point of data collected by the environmental sensors.
The unit provides accuracy to within 5 meters when Wide Area Augmentation System is enabled.
A cold start requires 42 seconds, on average, to acquire a satellite lock, while a hot start takes
only 8 seconds. The unit is capable of withstanding accelerations up to 4G which should be
sufficient to survive typical airplane landings and minor collisions.

While GPS is used for horizontal locating, altitude is determined from barometric pressure.
This is accomplished using a Bosch BMP085 digital pressure sensor. This model uses the piezo
resistive effect to measure strain across a vacuous vessel. The package comes pre-calibrated
and features an internal thermal sensor to compensate for temperature fluctuations. Pressure
readings are typically accurate to within 1.0 hPa between 300 and 1100 hPa, and between 0 and
65.

Scenario: Greenhouse gas sampling

The Greenhouse Gas Sampling exercise will be carried out with multiple persons, cars, and
aircraft (around 5) that walk, drive, and fly to cover an area around UC Berkeley’s Richmond
Field Station. We will setup multiple virtual vehicles. Each will have several kinds of sense and
act programs. The programs will sample a trace gas (i.e. CO2, CO, or O3) and simultaneously
monitor a video feed from an on–board camera, raise in alarm if the gas concentration exceeds a
set threshold or if a specific pattern is recognized from the image sensor. All or some vehicles will
be equipped with the required sensors. By separating the mission of measuring different kinds
of gas and taking pictures at different rates and places, we aim to simulate the existence of one
cloud instead of multiple mobile sensor networks. This experiment is geared towards providing
a low cost and flexible alternative to existing expensive greenhouse gas measurements efforts
using fixed towers or large UAVs. The idea behind using different sensors (GHG and Camera)
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is to evaluate the system under different task loads, which have different communication and
hardware requirements.

Figure 5 presents CO2 concentration samples collected driving around Berkeley, CA, in May
2011. The data samples are overlapped in Google Maps using a color code: blue (concentration

Figure 5: CO2 concentration samples collected at Berkeley, CA, in May 2011.

of 330 ppm) to brown (concentration of 654 ppm). Figure 6 presents data collected in another
experiment using the same CO2 concentration sensor installed together with a low-cost air
pressure and temperature sensor in a tethered weather balloon. The color code now represents

Figure 6: CO2 concentration, temperature and air pressure samples collected at Berkeley, CA,
in May 2011.
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the temperature: from blue (16.5◦ C) to red (29.8◦ C). Note that at higher air pressure (low
altitude) the concentration of CO2 and the temperature is higher than at lower air pressure
(higher altitude). This testing is in preparation for an experiment in which the cloud will host
a virtual application able to raise an alarm if a CO2 threshold is surpassed or take a picture
and raise an alert if a possible environmental threat is detected. The application specification
will abstract out the real platform. By separating the mission of measuring different kinds of
physical quantities and taking pictures at different rates and places, we aim at simulating the
idea of one cloud instead of multiple mobile sensor networks.

CONCLUSIONS AND FUTURE WORK

We aim at devising models, algorithms, and protocols for solving the binding and migration
problem of CPCC as well as developing a diverse testbed for CPCC (in simulation and for real)
that includes several types of hosts such as cars, buses, people with smartphones, and unmanned
aerial vehicles (UAVs). So far we have developed a low-cost lightweight Flying Wing UAV based
on the Zephyr airframe, and the JAviator—a high–performance quadrotor UAV built from
scratch [32]. The UAVs are equipped with an autopilot and will carry a computational platform
for CPCC such as the aforementioned Pico-ITX board. We plan to equip the UAVs with sensors
ranging from CO2 concentration sensors to EO/IR cameras. A system implementation of an
ensemble Kalman filter to control a sensor network for optimal sampling and estimation of a
distributed atmospheric chemical such as CO2 is under development. We have also started
working on an Android port of our virtualization infrastructure so that virtual vehicles may
seamlessly migrate across UAVs and smartphones.
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