Introduction Implementation Experiments Conclusion
000 0000000 0000000 o]

Detecting and Eliminating Memory Leaks
Using Cyclic Memory Allocation

Huu Hai Nguyen and Martin Rinard

Massachusetts Institute of Technology
presented by: Hannes Payer
Computational Systems Group, University of Salzburg

June 18, 2008

Hannes Payer Computational Systems Group, University of Salzburg

Introduction Implementation Experiments Conclusion
000 0000000 0000000 o]

Table of Contents

Introduction

Implementation

Experiments

Conclusion

Hannes Payer Computational Systems Group, University of Salzburg

Introduction
@00

What is a Memory Leak?

Memory Leak (explicit memory management)

A program that uses explicit memory allocation and deallocation
has a memory leak when it fails to free objects that it will no
longer access in the future.

Memory Leak (garbage collection)

A program that uses garbage collection has a memory leak when it
retains references to objects that it will no longer access in the
future.

Hannes Payer Computational Systems Group, University of Salzburg

Introduction
oeo

What we want?

Problem:

Memory leaks are especially problematic for server programs that
must execute for long (in principle unbounded) periods of time.

Goal: detect and eliminate memory leaks

Hannes Payer Computational Systems Group, University of Salzburg

Introduction
ooe

Definitions

Allocation Site

An allocation site is a location in the program that allocates
memory (e.g.: malloc call).

m-Bounded Access Property

An allocation site is m-bounded if, at any time during the
execution of the program, the program accesses at most the last m
objects allocated at that site.

Hannes Payer Computational Systems Group, University of Salzburg

Introduction Implementation Experiments Conclusion
000 9000000 0000000 o]

Memory Leaks Elimination Procedure

1. Identification
(find m-bounds empirically)

2. Elimination
(use specific memory management)

3. Evaluation
(check correctness)

Hannes Payer Computational Systems Group, University of Salzburg

Implementation
0@00000

Instrumentation

The following values are maintained for each allocation site:
e number of objects allocated at that site so far in the
computation
e number of objects allocated at that site that have been
deallocated so far in the computation

e an observed bound m

Valgrind addrcheck tool is used to obtain the sequence of
addresses that the program accesses as it executes

Hannes Payer Computational Systems Group, University of Salzburg

Implementation
00e0000

How to find fitting m-bounds?

Procedure

e run instrumented version of a program on a sequence of
training inputs of increasing size

e compare the observed bounds m for each allocation site

o if all of these bounds are the same for all of the inputs = the
site is m-bounded with bound m

Hannes Payer Computational Systems Group, University of Salzburg

Implementation
000000

How to find memory leaks?

Procedure

if number_allocations — number _deallocations > m,
there is a memory leak if the difference either

1) increases during a single run or

2) increases as the size of the input increases

Hannes Payer Computational Systems Group, University of Salzburg

Implementation
0000e00

Cyclic Memory Management

e supports programs written in C that explicitly allocate and
deallocate objects

e each m-bounded allocation site is given a cyclic buffer with
enough space for m objects (preallocated)

e allocation: use the last allocated object slot of cyclic buffer
e deallocation: perform no-op

e application changes are not required

Key issue: distinguish references to objects allocated in cyclic
buffers from references to objects allocated via the normal
allocation and deallocation mechanism

Hannes Payer Computational Systems Group, University of Salzburg

Implementation
0000080

Variable-Sized Allocation Sites

Some allocation sites allocate objects of different size at different
times

e find maximum size of object allocated at each allocation site
empirically
e set initial size = m x max_size

e allocate additional memory at runtime, if buffer runs out of
memory

Hannes Payer Computational Systems Group, University of Salzburg

Implementation
000000

Failure-Oblivious Computing

Program Transformation

sound versus unsound transformation

Unsound Transformation Strategy

enables programs to execute through anomalies to continue to
deliver acceptable service

Advantages:
e eliminates security weaknesses

e enables programs to execute successfully through
buffer-overflows (e.g.: server attacks)

Hannes Payer Computational Systems Group, University of Salzburg

Experiments
000000

Experiments

Open-source programs:
e Squid (web proxy cache): 104,573 LOC
e Freeciv (multi-player game): 342,542 LOC
e Pine (email client): 366,358 LOC
e Xinetd (security tool): 23,470 LOC

Evaluation:
e ability to eliminate memory leaks

e potential impact of an incorrect estimation of the bounds m
at different allocation sites

Hannes Payer Computational Systems Group, University of Salzburg

Experiments
0Oe00000

Experiments

Procedure:
e training runs: find suitable m-bounded allocation sites

e validation runs: test accuracy of the estimated bounds from
the training runs and effect of overlaying live objects

e conflict runs: for each m-bounded allocation site (m > 1) test
[m/2] bound (overlaying)

o long-term usage: several months lasting experiments

Hannes Payer Computational Systems Group, University of Salzburg

Introduction Implementation Experiments

Conclusion

000000C 00@0000

Results

Program % m-bounded % memory %invalidated

Squid 55.7 86.0 2.9
Freeciv 48.3 84.9 0.0
Pine 48.3 15.0 15
Xinetd 58.8 89.8 0.0

Hannes Payer Computational Systems Group, University of Salzburg

Experiments
000e000

Squid

e training inputs: different HTTP, FTP, SNMP queries with
different attributes

e training and validation runs:

m 1 2 3 14
#sites 30 2 1 1

e overlaying live objects: problem with tree data structure
e memory leaks: memory leak found in the SNMP module
e conflict runs: able to process other requests

° Iong—term usage: no errors

Hannes Payer Computational Systems Group, University of Salzburg

Introduction Experiments Conclusion

0000e00

Squid

Squid memory consumption
9000 T T T T

Original —+—

8000 | I Cyclic allocation ——-x---
7000 E

6000 | 1
5000 | -
4000 | -
3000 |- 1
2000 | .
1000 -

0 1 1 1 1
0 100 200 300 400 500

Number of SNMP requests

Memory consumption (KB)

Hannes Payer Computational Systems Group, University of Salzburg

Experiments
0O0000e0

Xinetd

e training inputs: 10-200 requests

e training and validation runs:
m 1
sites 10

e memory leaks: in the connection-handling code

no overlaying and conflict experiments

Hannes Payer Computational Systems Group, University of Salzburg

Introduction
000

Memory consumption (KB)

Hannes Payer

Implementation Experiments Conclusion
0000000 O00000e o]

Xinetd

Xinetd memory consumption
120 I I I T

Original —+—

100 Cyclic allocation ---x---

80
60

40

0 1 1 1 1
0 200 400 600 800 1000

Number of rejected requests

Computational Systems Group, University of Salzburg

Conclusion
[]

Conclusion

Contribution:
e detection and

e avoidance of memory leaks without changing the program
source code

Advantages of cyclic memory management:
e eliminates any memory leaks at allocation sites

e simple to implement and does not require the development of
heavyweight static analysis

Future work:
e support other resource leaks (e.g.: file descriptors)

e use static analysis to find correct m-bounds

Hannes Payer Computational Systems Group, University of Salzburg

	
	Introduction
	Motivation

	Implementation
	Implementation

	Experiments
	Experiments

	Conclusion
	Conclusion

