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What is a Memory Leak?

Memory Leak (explicit memory management)

A program that uses explicit memory allocation and deallocation
has a memory leak when it fails to free objects that it will no
longer access in the future.

Memory Leak (garbage collection)

A program that uses garbage collection has a memory leak when it
retains references to objects that it will no longer access in the
future.
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What we want?

Problem:

Memory leaks are especially problematic for server programs that
must execute for long (in principle unbounded) periods of time.

Goal: detect and eliminate memory leaks
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Definitions

Allocation Site

An allocation site is a location in the program that allocates
memory (e.g.: malloc call).

m-Bounded Access Property

An allocation site is m-bounded if, at any time during the
execution of the program, the program accesses at most the last m
objects allocated at that site.
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Memory Leaks Elimination Procedure

1. Identification
(find m-bounds empirically)

2. Elimination
(use specific memory management)

3. Evaluation
(check correctness)
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Instrumentation

The following values are maintained for each allocation site:
e number of objects allocated at that site so far in the
computation
e number of objects allocated at that site that have been
deallocated so far in the computation

e an observed bound m

Valgrind addrcheck tool is used to obtain the sequence of
addresses that the program accesses as it executes
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How to find fitting m-bounds?

Procedure

e run instrumented version of a program on a sequence of
training inputs of increasing size

e compare the observed bounds m for each allocation site

o if all of these bounds are the same for all of the inputs = the
site is m-bounded with bound m

Hannes Payer Computational Systems Group, University of Salzburg



Implementation
000000

How to find memory leaks?

Procedure

if number_allocations — number _deallocations > m,
there is a memory leak if the difference either

1) increases during a single run or

2) increases as the size of the input increases
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Cyclic Memory Management

e supports programs written in C that explicitly allocate and
deallocate objects

e each m-bounded allocation site is given a cyclic buffer with
enough space for m objects (preallocated)

e allocation: use the last allocated object slot of cyclic buffer
e deallocation: perform no-op

e application changes are not required

Key issue: distinguish references to objects allocated in cyclic
buffers from references to objects allocated via the normal
allocation and deallocation mechanism
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Variable-Sized Allocation Sites

Some allocation sites allocate objects of different size at different
times

e find maximum size of object allocated at each allocation site
empirically
e set initial size = m x max_size

e allocate additional memory at runtime, if buffer runs out of
memory
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Failure-Oblivious Computing

Program Transformation

sound versus unsound transformation

Unsound Transformation Strategy

enables programs to execute through anomalies to continue to
deliver acceptable service

Advantages:
e eliminates security weaknesses

e enables programs to execute successfully through
buffer-overflows (e.g.: server attacks)
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Experiments

Open-source programs:
e Squid (web proxy cache): 104,573 LOC
e Freeciv (multi-player game): 342,542 LOC
e Pine (email client): 366,358 LOC
e Xinetd (security tool): 23,470 LOC

Evaluation:
e ability to eliminate memory leaks

e potential impact of an incorrect estimation of the bounds m
at different allocation sites
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Experiments

Procedure:
e training runs: find suitable m-bounded allocation sites

e validation runs: test accuracy of the estimated bounds from
the training runs and effect of overlaying live objects

e conflict runs: for each m-bounded allocation site (m > 1) test
[m/2] bound (overlaying)

o long-term usage: several months lasting experiments
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Results

Program % m-bounded % memory %invalidated

Squid 55.7 86.0 2.9
Freeciv 48.3 84.9 0.0
Pine 48.3 15.0 15
Xinetd 58.8 89.8 0.0
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Squid

e training inputs: different HTTP, FTP, SNMP queries with
different attributes

e training and validation runs:

m 1 2 3 14
#sites 30 2 1 1

e overlaying live objects: problem with tree data structure
e memory leaks: memory leak found in the SNMP module
e conflict runs: able to process other requests

° Iong—term usage: no errors
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Squid

Squid memory consumption
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Xinetd

e training inputs: 10-200 requests

e training and validation runs:
m 1
# sites 10

e memory leaks: in the connection-handling code

no overlaying and conflict experiments
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Memory consumption (KB)
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Xinetd

Xinetd memory consumption
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Conclusion

Contribution:
e detection and

e avoidance of memory leaks without changing the program
source code

Advantages of cyclic memory management:
e eliminates any memory leaks at allocation sites

e simple to implement and does not require the development of
heavyweight static analysis

Future work:
e support other resource leaks (e.g.: file descriptors)

e use static analysis to find correct m-bounds
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