
ESE CPCC Project

M. Kleber, C. Krainer, A. Schröcker, B. Zechmeister

Department of Computer Sciences
University of Salzburg
Austria

WS 2011/2012
February 10, 2012

Abstract

For the hands-on part of the Embedded Software Engineering Course, Winter 2011/2012
of Prof. C. Kirsch (Department of Computer Sciences, University of Salzburg) we
decided to build a simulation system that demonstrates information-acquisition-as-a-
service of mobile sensor networks for cyber-physical cloud computing.

This paper presents the main concepts of our project. First, this document describes
the goals of this project, followed by implementation characteristics, limitations, and
applied technologies. Second, this document outlines the system, reveals sensor simu-
lation, explains configuration parameters, describes vehicle virtualization, and pictures
cyber-mobility. Third, it elaborates on the class demonstrations, which exemplify data
collection, vehicle migration, and varying sensor equipment. Finally, this paper sum-
marizes the implemented system and depicts proposals for future enhancements.

Contents

1 Introduction 3

2 Implementation 4

2.1 System Overview . 4

2.2 Sensor Simulation . 5

2.3 Configuration . 6

Pilot Web Application . 6

Engine Web Application . 8

Mapper Web Application . 8

GM-Viewer Web Application . 9

2.4 Vehicle Virtualization . 9

Virtual Vehicle Programming Language 9

Parsing Virtual Vehicle Programs . 10

Executing Virtual Vehicle Programs . 10

Migration . 11

Types of Mobility . 11

2.5 Mapping . 11

Registration Service . 11

Mapper . 12

3 Results 14

3.1 Demonstration 1: Data Collection . 14

3.2 Demonstration 2: Migration . 15

3.3 Demonstration 3: Different Sensors . 17

3.4 Demonstration 4: Multiple Virtual Vehicles 18

1

CONTENTS 2

4 Conclusion 20

References 21

List of abbreviations 22

1. Introduction
Our goal was to build a simulation system that demonstrates information-acquisition-
as-a-service of mobile sensor networks for cyber-physical cloud computing (CPCC) as
proposed in [4]. Based on the JNavigator project [6] our implementation provides

• the simulation of physical helicopter swarms,

• the simulation of sensors,

• the virtual abstraction of autonomous vehicles (virtual vehicles), and

• the migration of virtual vehicles among flying physical helicopters (real vehicles).

We consider this project as a first step into the domain of information-acquisition-as-
a-service and therefore allow the following limitations:

• Real vehicles follow strict flight plans.

• There are no network bandwidth limits.

• There are no processing power limits.

In this project,

• we apply HTTP [1] as protocol for sensor abstraction and data exchange,

• we use Java as programming language,

• we implement the software as web applications, and

• we utilize Apache Tomcat [3] as web server and servlet container.

This document describes the highlights of the implemented software. Chapter 2 reveals
the implementation details, chapter 3 describes the project results, and chapter 4
summarizes this paper and depicts proposals for future enhancements.

3

2. Implementation
This chapter presents the implementation of our system. After outlining the struc-
tural elements, it briefly describes the simulation of sensors and explains configuration
parameters. Then, this chapter describes vehicle virtualization, and elaborates on
cyber-mobility.

2.1 System Overview

Figure 2.1 presents an overview of the complete system containing the ground station
and one simulated helicopter referred to as Real Vehicle (RV).

The simulated RV mainly comprises an Apache Tomcat web container, which executes
a Pilot web application and an Engine web application. The Pilot web application
consists of a model helicopter plant simulator, that is, the MockJAviator, a flight
control system, an auto pilot, and a sensor simulator. The MockJAviator emulates the
helicopter’s flight dynamics and Inertial Measurement Unit (IMU), the flight control
system operates attitude and altitude of the simulated vehicle, and the autopilot stirs
the simulated vehicle along a Vehicle Control Language (VCL) script defined trajectory.
The sensor simulator supports GPS receivers, belly mounted cameras, thermometers,
barometers, and sonar sensors. The Engine web application consists of a Virtual Vehicle

Real Vehicle X

Web Container (Tomcat)

Flight
Control
System

Mock-
JAviator

Sensor
Simulation

Autopilot
(VCL)

Virtual
Vehicle
RTE

Sensor
Proxy

Pilot Web Application

Engine Web Application

Ground Station

Web Container (Tomcat)

GM-Viewer
Web Application

Mapper Web Application

Engine Web Application

Virtual
Vehicle
RTE

Mapping
Algorithm

Registry

Figure 2.1: System Overview.

Runtime Environment (VV RTE) and a sensor proxy. The VV RTE handles Virtual
Vehicle (VV) execution and the sensor proxy abstracts the access to sensors, as well as
optimizes the network traffic for accessing the sensors.

The ground station executes an Apache Tomcat web container, which runs a Google
Maps Viewer web application, a Engine web application, and a Mapper web application.
The Google Maps Viewer web application allows an operator to supervise ongoing
missions. The ground station Engine web application provides a VV RTE for uploading
and downloading VVs. Registry and mapping algorithm are the main components of

4

2. Implementation 5

the Mapper web application. The mapping algorithm assigns VVs to RVs, based
on fight plans and available sensors. Each Engine web application registers with the
Mapper’s registry.

2.2 Sensor Simulation

Figure 2.2 visualizes the simulation of sensors. The current implementation supports
belly mounted cameras, random number generators for emulating thermometers and
barometers, GPS position sensors, and sonar sensors.

Simulated Real Vehicle X

XXX.xwd
(Image File)

Xvfb
(Virtual X11
Screen)

Thermometer
(Random)

GPS Receiver
Simulator

MockJAviator
(Plant)

Air Pressure
(Random)

Position

Firefox
Web Browser

xwd
(Screen Shot)

convert
(xwd to png)

Pilot
Web Application

XXX.png
(Image File)

Engine
Web Application

GM-View
Web Application

GM-Viewer
(HTML and
 JavaScript)

Belly
Mounted
Camera

Sonar

Web Container (Tomcat)

Engine
Web Application

Mapper
Web Application

Firefox
Web Browser

Autopilot
(VCL)

Flight Control
System

Figure 2.2: Sensor Simulation.

The belly mounted camera delivers a Google Maps satellite image indicating the posi-
tion of the simulated vehicle by means of a visual marker, exemplified by Figure 2.3.
To achieve this, the Pilot web application supplies a JavaScript enhanced HTML page.

Figure 2.3: A photo captured by the belly mounted camera.

2. Implementation 6

Once the Firefox web browser selects this page, the embedded JavaScript program
periodically polls the Pilot web application for the vehicle’s current position. After that,
the JavaScript program slides the center of the displayed satellite view to this position
and repositions the marker. To allow several belly mounted cameras being simulated
on the same machine, the utilized web browsers use X11 virtual frame buffer (Xvfb)
devices as output screens. Whenever the belly mounted camera needs to deliver a
photo, it applies the xwd utility to take a snapshot of the corresponding Xvfb device,
converts this snapshot to an image in PNG format by using program convert, and
delivers it via the Hyper Text Transport Protocol (HTTP).

Thermometer and air pressure sensors apply random number generators to simulate
values. The position sensor queries the GPS receiver simulator for the current position
of the vehicle, and the sonar sensor reads the current altitude over ground from the
instantiated MockJAviator.

2.3 Configuration

This section covers the configuration of the web applications Pilot, Engine, Mapper,
and GM-Viewer.

Pilot Web Application

The configuration of the Pilot web application consists of three parts. The first part
is the configuration of the simulated model helicopter hardware, the second part is the
configuration of simulated sensors, and the third part is the assigned VCL script.

Listing 2.1 depicts a fully simulated RV. With the property plant.simulated equal
to true, the Pilot web application simulates the model helicopter’s flight dynamics
of the physical body including the IMU. The simulated model helicopter of type
MockJAviator awaits instructions via UDP on address localhost port 9011 from a
controller that operates attitude and altitude.

Listing 2.1: Virtual Hardware Configuration Example

p lant . s imulated = true
p lant . type = MockJAviator
p lant . l i s t e n e r = udp :// l o c a l h o s t :9011
p lant . l o c a t i o n . system . type = gpssim
plant . l o c a t i o n . system . l i s t e n e r = tcp :// l o c a l h o s t :9012
p lant . l o c a t i o n . system . update . r a t e = 10

c o n t r o l l e r . s imulated = true
c o n t r o l l e r . type = JControl

p i l o t . type = JP i l o t
p i l o t . name = P i l o t One
p i l o t . c o n t r o l l e r . connector = udp :// l o c a l h o s t :9014

2. Implementation 7

The simulated model helicopter has a simulated GPS receiver onboard, which listens
on localhost port 9012 for TCP clients. It delivers the vehicle positions at a rate of
10 updates per second.

In the configuration, shown in Listing 2.1, the Pilot web application also emulates
the controller for operating attitude and altitude. The controller uses the property
plant.location.system.listener to determine how to access the helicopter plant,
and uses the property pilot.controller.connector to identify the parameters for
configuring a connection for incoming commands.

The properties prefixed by pilot show the type and name of the autopilot component,
as well as define the connection to the attitude and altitude controller.

Listing 2.2 depicts the configuration of simulated sensors. Property sensor.list de-
fines the sensors to be simulated. The names in this list prepended by sensor are part
of the configuration that follows.

Listing 2.2: Sensor Configuration Example

s enso r . l i s t = gps , sonar , temp , photo

senso r . gps . name = GPS r e c e i v e r
s enso r . gps . path = p o s i t i o n
senso r . gps . u r i = gps :///

senso r . sonar . name = Sonar
s enso r . sonar . path = sonar
s enso r . sonar . u r i = sonar :///

senso r . temp . name = Thermometer
s enso r . temp . path = temperature
s enso r . temp . u r i = rand :///18/22
senso r . temp . p r e c i s i o n = 1

senso r . photo . name = Be l ly Mounted Photo Camera
senso r . photo . path = photo
senso r . photo . u r i = x 11 :/// : 21
s enso r . photo . type = snapshot

Each sensor configuration defines a name, a path, and an uri parameter. The pa-
rameter name of a sensor simply indicates its name, which is used for visualization
only. The parameter path is a suffix to an URL dependent on the deployment con-
text of the corresponding Pilot web application. Let’s assume, for example, the Pilot
web application is deployed in a web container’s context /pilot listening on machine
nanook port 9010. To access the Pilot web application, an operator uses the URL
http://nanook:9010/pilot. In this example the URL to access the above configured
belly mounted photo camera is http://nanook:9010/pilot/sensor/photo.

GPS receiver and sonar sensor only have the protocol part of their URI specified to
indicate their data source. The thermometer utilizes a random number generator to
simulate values between 18 ◦C and 22 ◦C providing a precision of one decimal digit.

2. Implementation 8

The belly mounted photo camera captures snapshots of the X11 screen identified by
display number 21.

Listing 2.3 illustrates a VCL script example. The character # indicates lines containing
comments. The first command in this example, “go auto”, switches the vehicle into
autopilot mode. Without this command, all following commands are ignored. Com-
mand “takeoff” starts the vehicle’s engines and lifts it off the ground to an altitude
of 1 m within 5 s. The “fly to” commands define waypoints the vehicle has to tra-
verse by specifying latitude, longitude, and altitude above ground in absolute values.
Additionally, this commands define a certain precision to determine when a waypoint
has been reached, e.g., a sphere of 1 m radius. Furthermore, this commands assign an
average velocity to approach waypoints, e.g., 2 m/s.

Listing 2.3: Vehicle Control Language Example

##
@(#) r e a l v e h i c l e s e t course example
##
go auto
t a k e o f f 1m f o r 5 s
f l y to (47 .82204197 , 13 .04086670 , 20) abs p r e c i s i o n 1m 2mps
f l y to (47 .82206088 , 13 .04092035 , 20) abs p r e c i s i o n 1m 2mps
f l y to (47 .82195102 , 13 .04488063 , 20) abs p r e c i s i o n 1m 2mps
hover f o r 20 s
land
go manual

As soon as all waypoints have been traversed, command “hover” instructs the vehicle
to hold its position at the last waypoint for, in this example, 20 s. After that, command
“land” directs the vehicle to land. Finally, command “go manual” switches back to
manual control.

Engine Web Application

As depicted in Listing 2.4, the Engine web application configuration consists of two
parameters. Parameter pilot.url specifies the Pilot web application the Engine trav-
els with, and parameter mapper.registry.url defines the Mapper registry service to
register with.

Listing 2.4: Engine Configuration Example

p i l o t . u r l = http :// l o c a l h o s t :9010/ p i l o t
mapper . r e g i s t r y . u r l = http :// l o c a l h o s t :9040/ mapper/ r e g i s t r y

Mapper Web Application

Since every Engine web application registers with the Mapper, the Mapper web ap-
plication needs no configuration parameters. The selection of mapping algorithms is
built-in and not for configuration yet.

2. Implementation 9

GM-Viewer Web Application

Currently, the Google Maps Viewer web application needs to know every Pilot web
application and every Engine web application. As shown in Listing 2.5, the JSON [2]
query service URLs for the current position, the set course’s list of waypoints, and the
list of currently assigned vehicles have to be configured for each RV carrying a Pilot
and an Engine.

Listing 2.5: Google Maps Viewer Configuration Example

p i l o t . l i s t = one , two

p i l o t . one . name = P i l o t One
p i l o t . one . p o s i t i o n . u r l = \

http :// l o c a l h o s t :9010/ p i l o t / j son / p o s i t i o n
p i l o t . one . waypoints . u r l = \

http :// l o c a l h o s t :9010/ p i l o t / j son / waypoints
p i l o t . one . v e h i c l e . s t a t u s . u r l = \

http :// l o c a l h o s t :9010/ engine / j son / v e h i c l e

p i l o t . two . name = P i l o t Two
p i l o t . two . p o s i t i o n . u r l = \

http :// l o c a l h o s t :9020/ p i l o t / j son / p o s i t i o n
p i l o t . two . waypoints . u r l = \

http :// l o c a l h o s t :9020/ p i l o t / j son / waypoints
p i l o t . two . v e h i c l e . s t a t u s . u r l = \

http :// l o c a l h o s t :9020/ engine / j son / v e h i c l e

2.4 Vehicle Virtualization

A Virtual Vehicle (VV) is a software implementation providing an isolated environment
to the end user of the service. VVs are hosted on Real Vehicles (RVs) and offer an
abstracted interface to the host’s functionality. It should be possible for the end user
to specify the behavior of VVs and the jobs that should be executed by them.

Virtual Vehicle Programming Language

For abstraction of services to end users a dedicated VV programming language has been
defined. The language is targeted to be simple in usage. Listing 2.6 shows a program
example. The program represents a list of commands. Each command consists of a
point and a list of actions that have to be executed at this point. The point definition
contains the geographic location (latitude, longitude, altitude) and the specification of
a tolerance radius. The tolerance radius defines a sphere around the point in which
the actions have to be performed.

2. Implementation 10

Listing 2.6: Virtual Vehicle Sample Program

Point 47.82201946 13.04082647 1 .00 t o l e r a n c e 12 .3
P ic ture
Temperature

Point 47.82203026 13.04084659 25 .00 t o l e r a n c e 100
Temperature

Point 47.82211311 13.04076076 30 .00 t o l e r a n c e 1 .2
P ic ture

Parsing Virtual Vehicle Programs

When a VV is activated the program file is read and parsed. The implemented scan-
ner allows extending the language by adding control structures like “if (...) else”
or “for (...)” loops. Keywords can be added easily and parsing of doubles, inte-
gers, and identifier is already implemented. Parsing is done based on on the EBNF
specification shown in Listing 2.7.

Listing 2.7: Virtual Vehicle EBNF

Command = Pos i t i on Action−L i s t
Pos i t i on = Point Tolerance
Point = ” Point ” double double double
Tolerance = ” Tolerance ” double
Action−L i s t = Action {Action}
Action = ”Temperature” | ” Pic ture ” | ” Ai rp r e s su r e ” |

” Al t i tude ” | ”Speed”

If an error occurs during program parsing, the parser stops and throws an exception.
For easier debugging, the exception contains a detailed error description. If the parser
succeeds parsing the program, it returns a list of command objects. Each of this objects
contains a position and a list of actions. A position includes a point with a tolerance
as described above.

Executing Virtual Vehicle Programs

A RV can host one or more VV. Each VVs executes in a separate thread. When a VV
is scheduled the first time, it takes the first command from its command list, which
was returned from the parser, and starts executing this command. A command can
be executed if the position of the RV is within the tolerance sphere specified in its
position, that means, the actions, like taking a picture, measuring the temperature,
etc., can be performed. If it’s not possible to finish a command, because of a wrong
position or actions can not be done, the VV keeps active.

2. Implementation 11

Migration

VVs have the ability to suspend while they are executing their job. In this mode the
entire internal state information is persisted to a file. While being in the suspended
state it is possible to migrate the VV to another RV host and resume the operation
there. To store the state the Java serialization is used. The whole command list
is serialized to a file, that means the already finished commands and the command
that have to be executed are written to disk. The results of the executed actions are
stored in different files. After migration when the state is read back, the VV looks at
the command list and begins again to execute commands. All commands which are
already executed are skipped. The VV continues with the first unfinished command.
Unfinished could also mean that some of the actions where already executed.

Types of Mobility

The migration process is denominated as cyber mobility, because no real vehicle move-
ment is taking place when a VV changes its location. Movements that are carried out
on board of a not changing RV host are known as physical mobility.

Each VV records its movements. This historical track is represented by a list of way-
points. Each waypoint contains a timestamp, the geographic location and the name
of the host. The host name is necessary to differ between cyber mobility and physi-
cal mobility. Waypoints are stored when a VV executes a cycle and its location has
changed more than a specific distance (physical mobility) or its host has changed (cy-
ber mobility). With the information that is stored in the track detailed analysis of VV
moving behavior will be possible, which means that there is no way to access this data
by now.

2.5 Mapping

The Mapper is responsible for automatically mapping VVs to RVs. To accomplish this,
the mechanism invokes the migration of VVs based on a mapping decision made by a
mapping algorithm. Additionally to the Mapper itself with its mapping algorithm, a
registration service is present.

The servlet stores all registration information persistent in a file, otherwise registered
Engines would be lost in a restart. This is important because only registered Engines
are considered during the mapping process.

Registration Service

An Engine registers itself with the registration service upon start up using its ID. If
the registration was successful, the service fetches some useful information and stores
it together with the Engine ID. The fetched information are available sensors and way
points (flight plan), in our case, these is static information. If a registration attempt
was not successful, the Engine keeps trying to register until it succeeds.

2. Implementation 12

Mapper

The mapper periodically executes the following three steps:

1. Fetch the status of all VVs from all registered Engines. The returned message
includes the current active action point, and its unfinished actions.

2. Fetch the status of all RVs on which an Engine is running. The returned message
includes the current position, the next position, and the average velocity.

3. Execute the mapping algorithm.

At the time of writing, there are two algorithms available that can be set in the con-
figuration file: a random mapping algorithm and a simple mapping algorithm.

Random Mapping Algorithm

This algorithm does not use any information concerning flight plans and available
sensors. It randomly selects two different Engines. If one of these has VVs, then it
selects one of this VVs and initiates a migration to the other Engine.

Simple Mapping Algorithm

Listing 2.8 reveals the simple mapping algorithm as pseudo code.

Listing 2.8: Simple Mapping Algorithm

for a l l v i r t u a l v e h i c l e s do
i f v i r t u a l v e h i c l e program i s complete
then

invoke migrat ion to c e n t r a l eng ine
else

f i n d f a s t e s t r e a l v e h i c l e with at l e a s t one f i t t i n g
s enso r and a d i s t anc e between the l i n e Current to Next
and ActionPoint sma l l e r than the t o l e r a n c e

endif
i f found v e h i c l e
then

invoke migrat ion to i t
endif

endfor

The fastest vehicle is the vehicle with the shortest flight time from its current position
to the action point of the VV.

Figure 2.4 shows the current flight path of a RV, its current location C, and the end

point of the current flight plan segment N . The flight path
−−→
CN intersects with the

tolerance sphere of action point AP , thus the distance is smaller than the tolerance
and the RV is a candidate for migration. With the given speed of the RV, the mapping
algorithm calculates the flying time of the RV to reach action point AP . The algorithm
selects the RV with the smallest flying time to reach AP as a migration target for the

2. Implementation 13

x

x

x

d

C

N

AP

C... current location of RV

N... next way point of RV

d ... the calculated distance

AP...next action point of VV

S

S... sphere with AP in its centre

and tolerance as its radius

Figure 2.4: Intersection of flight path and next action point.

concerned VV. With this behavior of the algorithm, a VV stays on a RV or the
central Engine until a RV enters a flight plan segment that satisfies the VV’s sensor
and location requirements.

3. Results
This chapter summarizes the four demonstrations held in class on January 24, 2012.
The main goals of this demonstrations were to show data collecting VVs carried by
RVs, as well as VVs migrating among RVs. All images shown in this chapter were
rendered by utilizing Google Maps [5] in a web browser.

3.1 Demonstration 1: Data Collection

In this demonstration one flying RV carries one VV, which collects data at four lo-
cations. Figure 3.1 a displays RV Pilot One with VV VV 1.1 onboard. The color

a)

b)

c)

d)

e)

f)

g)

h)

Figure 3.1: Data Collection Demonstration.

green of Pilot One indicates that the RV is still on the ground, and the color yellow

14

3. Results 15

of VV 1.1 shows that the VV still has action points to process. The action points of
VV 1.1 command accessing the sensors belly mounted photo camera, thermometer,
barometer, sonar, course over ground, random, GPS altitude, and speed over ground.
In Figure 3.1 b Pilot One approaches the first action point. The red label indicates
that the RV is flying. After completing the first action point Pilot One approaches the
second action point of VV 1.1, as depicted in Figures 3.1 c and 3.1 d. Figures 3.1 e,
3.1 f, and 3.1 g visualize Pilot One heading for the third and fourth action point. After
processing the fourth action point, the VV’s label becomes green, which denotes the
completion of VV 1.1 ’s mission.

3.2 Demonstration 2: Migration

In this demonstration two RVs fly along their set courses and one VV collects data
at five locations. The blue line in Figure 3.2 suggests the virtual path of vehicle
VV 2.1. Initially, RV Pilot Two carries VV 2.1. After the RVs take off, a migration

Figure 3.2: Path of Virtual Vehicle VV 2.1.

of VV 2.1 from Pilot Two to Pilot One must take place to allow the VV to reach
the first action point. The currently available mapping algorithm considers only the
current set course segment of a RV for mapping decisions. In this demonstration the
first action point resides on the second segment of the set course of Pilot One. As
displayed in Figure 3.3, the mapper migrates VV 2.1 as soon as Pilot One enters its
second set course segment. VV 2.1 resides on Pilot One until the RV reaches the

Figure 3.3: First migration of VV 2.1 from Pilot Two to Pilot One initiated by a
decision of the mapping algorithm.

first action point (Figure 3.4 a). As soon as VV 2.1 has captured an image via the
belly mounted camera, the mapping algorithm decides to initiate a migration of the
VV to Pilot Two (Figure 3.4 b). Then, VV 2.1 takes a picture on the second action
point. Now, there are no action points in the current set course segments of both RVs.
In such a case the currently implemented mapping algorithm can not decide whether
migrating the VV would be beneficial or not. So, the VV stays on board of Pilot Two

3. Results 16

a)

b)

c)

d)

e)

f)

Figure 3.4: Pilot One and Pilot Two mutually carrying VV 2.1 caused by migration
decisions of the mapping algorithm.

until the mapping algorithm decides otherwise. The RVs continue to traverse their
set courses until Pilot Two enters the fourth segment. The mapping algorithm detects
that VV 2.1 already is onboard Pilot Two and suppresses a migration. In Figures 3.4 c
and 3.4 d VV 2.1 captures photos at the third and at the fourth action point. For
the fifth action point, the mapping algorithm decides a migration of VV 2.1 back to
Pilot One, as visualized in Figure 3.4 e. After taking a picture at the last action point,
VV 2.1 has completed its mission. To indicate this, the label of VV 2.1 turns green
(Figure 3.4 f). Finally, the mapping algorithm decides a migration back to the central
Engine.

3. Results 17

3.3 Demonstration 3: Different Sensors

The RVs in this demonstration do not have the same set of sensors. The first RV,
Pilot One, carries a thermometer, the second RV, Pilot Two, ferries a barometer, and
the third RV, Pilot Three, transports a belly mounted camera. All three RVs follow the
same set course in sequence and keep a flying distance of 10 s. The task list of VV 3.1
consists of two action points, which require capturing photos, temperature values, and
air pressure values.

Figure 3.5 a shows all three RVs approaching the first action point. Since Pilot One
arrives first and provides a required thermometer sensor, the mapper algorithm already
initiated a migration of VV 3.1 to Pilot One. At this point in time, the indicator of
the first action point visualizes all three required actions as incomplete. After VV 3.1
has completed the temperature measurement, Pilot Two is the next in line to reach the
action point supplying a fitting sensor. Therefore, the mapping algorithm commands a
migration to Pilot Two. As shown in Figure 3.5 b, the action point indicator no more
views the thermometer.

a)

b)

c)

d)

Figure 3.5: RVs Pilot One, Pilot Two, and Pilot Three mutually carrying VV 3.1
repeatedly to the first action point caused by migration decisions of the mapping algo-
rithm.

Figure 3.5 c presents the situation after VV 3.1 has measured the air pressure. The
mapper algorithm already ordered a migration of VV 3.1 to Pilot Three and the action
point indicator views the remaining action for taking a photo. Then, VV 3.1 stays
onboard of Pilot Three, because the mapping algorithm can not find a eligible RV for
processing the next action point.

3. Results 18

In Figure 3.6 a Pilot One enters a set course segment that leads to the next action
point. Since Pilot One facilitates an adequate sensor and is the only one, as the
mapping algorithm considers it, to reach the action point, the mapper algorithm directs
a migration of VV 3.1 to Pilot One.

As Pilot One catches the action point, VV 3.1 queries the thermometer and the mapper
algorithm orders a migration to Pilot Two (Figure 3.6 b). Again, the action point
indicator no more views the thermometer.

a)

b)

c)

d)

Figure 3.6: RVs Pilot One, Pilot Two, and Pilot Three mutually carrying VV 3.1
repeatedly to the second action point caused by migration decisions of the mapping
algorithm.

After that, Pilot Two arrives at the action point, VV 3.1 measures the air pressure
and the mapper algorithm commands a migration to Pilot Three (Figure 3.6 c). Con-
sequently, the air pressure symbol vanishes from the action point indicator. Now,
Pilot Three gets to the action point and VV 3.1 completes its mission by taking a
picture, as shown in Figure 3.6 d. The VV’s label turns green to show this. At last,
the mapping algorithm initiates a migration back to the central Engine.

3.4 Demonstration 4: Multiple Virtual Vehicles

In this demonstration three RVs fly along their set courses and four VVs collect data at
several locations. Each RV provides the same set of sensors. Initially, the VVs idle on
the central Engine and wait for the mapping algorithm to assign an eligible RV. The
blue lines in Figure 3.7 a display the virtual paths of the VVs. All VV paths progress
top-down, as indicated by black arrows.

3. Results 19

Figure 3.7 b shows an advanced stage of this demonstration mission displaying all four
VVs in action.

a)

b)

Figure 3.7: Demonstration 4: a) Virtual Vehicle Paths. b) Multiple VVs in action.

4. Conclusion
This work has presented an implementation of a simulation system that demonstrates
information-acquisition-as-a-service of mobile sensor networks for CPCC as proposed
in [4]. This chapter concludes the paper by summarizing the current situation, and
providing suggestions for future enhancements.

Our goal was to implement a flexible and scalable simulation system. We applied the
Java programming language and standard Internet technologies like web services to
meet this challenge.

The implemented system currently allows the simulation of helicopter fleets of several
dozens of vehicles and supports the simulation of sensors like GPS receivers and photo
cameras. To simulate air-pressure sensors, temperature sensors, etc. the system utilizes
random number generators, which deliver values in a defined range and precision.
Support for hardware-in-the-loop testing is available for flight control systems and
helicopter plants.

Simulated helicopters follow strict flight plans, but do not access the onboard sensors
for data collection. It is a virtual abstraction of autonomous vehicles, Virtual Vehicles
(VVs) for short, that gathers data. One helicopter is able to carry several VVs. To
complete their missions, VVs may migrate between helicopters.

Future works could cover the following topics:

• The implemented mapping algorithm considers only the current flight plan seg-
ment for migration decisions. Future implementations should include all heli-
copter set course segments.

• Flight plans for helicopters should be derived from VV mission requirements.

• Although the implementation is able to simulate dozens of helicopters, the net-
work traffic between helicopters and ground station needs optimization to achieve
higher scalability.

• More advanced camera sensors may allow for directing the sensors towards defined
targets, which requires extending the VV programming language.

• In VV missions action points define where to capture sensor values. Video cam-
eras and other streaming sources need new VV programming language commands
to trigger recordings.

20

References

[1] RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999. http://www.

ietf.org.

[2] RFC 4627, The application/json Media Type for JavaScript Object Notation
(JSON), July 2006. http://www.ietf.org.

[3] Apache Software Foundation: Apache Tomcat Project, 2012. http://tomcat.

apache.org.

[4] Craciunas, S.S., Haas, A., Kirsch, C.M., Payer, H., Röck, H., Rottmann, A.,
Sokolova, A., Trummer, R., Love, J., and Sengupta, R.: Information-acquisition-
as-a-service for cyber-physical cloud computing. In Proc. Workshop on Hot Topics
in Cloud Computing (HotCloud). USENIX, 2010.

[5] Google Inc.: Google Maps, 2012. http://maps.google.at.

[6] Krainer, Clemens D.: JNavigator - An Autonomous Navigation System for the JAvi-
ator Quadrotor Helicopter. Master’s thesis, University of Salzburg, Austria, 2009.

21

http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://tomcat.apache.org
http://tomcat.apache.org
http://maps.google.at

List of Abbreviations

CPCC cyber-physical cloud computing

HTTP Hyper Text Transport Protocol

IMU Inertial Measurement Unit

JSON JavaScript Object Notation

RV Real Vehicle

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Unified Resource Locator

URI Unified Resource Identifier

VCL Vehicle Control Language

VV Virtual Vehicle

VV RTE Virtual Vehicle Runtime Environment

Xvfb X11 virtual frame buffer

22

	Introduction
	Implementation
	System Overview
	Sensor Simulation
	Configuration
	Pilot Web Application
	Engine Web Application
	Mapper Web Application
	GM-Viewer Web Application

	Vehicle Virtualization
	Virtual Vehicle Programming Language
	Parsing Virtual Vehicle Programs
	Executing Virtual Vehicle Programs
	Migration
	Types of Mobility

	Mapping
	Registration Service
	Mapper

	Results
	Demonstration 1: Data Collection
	Demonstration 2: Migration
	Demonstration 3: Different Sensors
	Demonstration 4: Multiple Virtual Vehicles

	Conclusion
	References
	List of abbreviations

