
Concurrent
Compact-fit



Concurrency & Scalability
versus

Fragmentation & Compaction



© C. Kirsch 2009

Questions

• Does allocation/deallocation throughput 
scale with multiple processors?



© C. Kirsch 2009

Questions

• Does allocation/deallocation throughput 
scale with multiple processors?

• Which aspects influence scalability?



© C. Kirsch 2009

Questions

• Does allocation/deallocation throughput 
scale with multiple processors?

• Which aspects influence scalability?

• Does compaction of large objects harm 
system latency?



© C. Kirsch 2009

Questions

• Does allocation/deallocation throughput 
scale with multiple processors?

• Which aspects influence scalability?

• Does compaction of large objects harm 
system latency?

• Does concurrency and incrementality affect 
memory consumption?



© C. Kirsch 2009

Partial Compaction

• Per-size-class partial compaction bound κ 
bounds size-class fragmentation:

• κ = 1: fully compacting

• 1 < κ < ∞: partially compacting

• κ = ∞: non-compacting



© C. Kirsch 2009

Partial Compaction

• Per-size-class partial compaction bound κ 
bounds size-class fragmentation:

• κ = 1: fully compacting

• 1 < κ < ∞: partially compacting

• κ = ∞: non-compacting

• Non-compacting CF can be optimized by 
not using abstract addresses



© C. Kirsch 2009

Fragmentation through 
Partitioning

• Fragmentation through partitioning is fixed 
at compile time and is not controlled by 
partial compaction:

• Page-block-internal fragmentation

• Page-internal fragmentation



© C. Kirsch 2009

Fragmentation through 
Partitioning

• Fragmentation through partitioning is fixed 
at compile time and is not controlled by 
partial compaction:

• Page-block-internal fragmentation

• Page-internal fragmentation

• May dominate overall fragmentation



© C. Kirsch 2009

3 Compact-fit (CF)

Given that there are n predefined page-block sizes S1, . . . , Sn and a page is of size P ,
the total size-external fragmentation is bounded by

TFS =
n∑

i=1

P − Si.

The more size-classes there are in the system, the less block-internal fragmentation oc-
curs, but therefore the size-external fragmentation grows. Hence, there is a trade-off
between block-internal and size-external fragmentation, which must be considered when
designing the size-classes.

For example, the free page-blocks of size-class 3 in Figure 3.7 represent size-external
fragmentation.

3.4.4 Fragmentation overview

Figure 3.7 shows an exemplary view of the organization of the concrete address space:
There are three size-classes: in one of them there are two pages, in the other two there
is a single page per class.

Figure 3.7: Size-classes and different types of fragmentation

24



© C. Kirsch 2009

3 Compact-fit (CF)

Given that there are n predefined page-block sizes S1, . . . , Sn and a page is of size P ,
the total size-external fragmentation is bounded by

TFS =
n∑

i=1

P − Si.

The more size-classes there are in the system, the less block-internal fragmentation oc-
curs, but therefore the size-external fragmentation grows. Hence, there is a trade-off
between block-internal and size-external fragmentation, which must be considered when
designing the size-classes.

For example, the free page-blocks of size-class 3 in Figure 3.7 represent size-external
fragmentation.

3.4.4 Fragmentation overview

Figure 3.7 shows an exemplary view of the organization of the concrete address space:
There are three size-classes: in one of them there are two pages, in the other two there
is a single page per class.

Figure 3.7: Size-classes and different types of fragmentation

24

size-class
fragmentation



© C. Kirsch 2009

Incremental Compaction

• Global compaction increment ι bounds 
size of memory involved in any atomic 
compaction operation:

• 1 < ι < ∞: incremental compaction of 
objects larger than ι

• ι = ∞: non-incremental compaction



© C. Kirsch 2009

Incremental Compaction

• Global compaction increment ι bounds 
size of memory involved in any atomic 
compaction operation:

• 1 < ι < ∞: incremental compaction of 
objects larger than ι

• ι = ∞: non-incremental compaction

• Incremental compaction creates 
transient size-class fragmentation



© C. Kirsch 2009

CF Configurations

• 1-CF(κ, ι)

• one CF instance for multiple threads

• partial compaction bound κ

• compaction increment ι



© C. Kirsch 2009

CF Configurations

• 1-CF(κ, ι)

• one CF instance for multiple threads

• partial compaction bound κ

• compaction increment ι

• n-CF(κ, ι)

• n CF instances for n threads

• allows to control degree of sharing



© C. Kirsch 2009

object itself so that the object’s entry in the A2C map can be determined in
constant time. Otherwise, determining the abstract addresses of objects selected
for compaction, for which only the concrete addresses are known, would require
searching the A2C map.

After discussing related work (Section 2) and discussing the previously de-
scribed, moving (and non-incremental) version of CF in detail (Section 3), we
first argue probabilistically that, for any mutator behavior, both compaction
and worst-case size-class fragmentation are less likely to happen with increas-
ing partial compaction bounds κ. For systems whose memory resources are less
constrained and applications that do not require tight guarantees, partial com-
paction may therefore be set to large κ, or even turned off entirely. This observa-
tion has lead us to develop an optimized, non-compacting version of CF without
abstract addressing that does not maintain the A2C map and can therefore
be used in any application without modifications. Macrobenchmarks show that
the optimized version performs almost as fast as other constant-time systems
but requires up to 35% more memory, of which less than 5% can be attributed
to size-class fragmentation and the rest to fragmentation through partitioning
(Section 8). We argue that partitioning memory as in CF still has the benefit
of being subject to a probabilistic and not just an experimental fragmentation
analysis (Section 4), at the expense of increased memory consumption.

Low

Medium

High
Low

Medium

High

Low

Medium

High

LatencyThroughput

M
e
m

o
ry

n!CF(!,!)

1!CF(!,!)

n!CF(1,!)

n!CF(",!)

1!CF(",!) 1!CF(",#)

1!CF(1,!) 1!CF(1,#)

in
cr

e
a
si

n
g
 "

Fig. 1. Deallocation throughput, system latency, and memory fragmentation with dif-
ferent versions and configurations of Compact-fit

We then introduce incremental CF for slow systems, at the other end of
the spectrum, whose memory resources are constrained and that run applica-
tions requiring tight guarantees, in particular on system latency and memory
consumption (Section 5). Incremental CF uses a global compaction increment
ι > 0, which breaks up compaction into logically atomic operations that do not
move more than ι bytes at a time. If n is the degree of concurrency, then there



To make CF
concurrent and incremental

we model the algorithm
as a

finite state machine
whose transitions
must be atomic!



© C. Kirsch 2009

!"#$% &'((

Fig. 3. Size-class automaton with π = 1

the interested reader to [7]. We extend the non-incremental CF with blocking and
non-blocking synchronization mechanisms so that multiple threads can share a
single (or multiple) instance(s). In particular, we make the size-class automaton
transitions (including a combination of a deallocating transition followed by a
compacting step) atomic. As a result, multiple threads can execute and use CF
in parallel, interleaving between the atomic transitions. The details of the par-
ticular implementation and the various choices of synchronization mechanisms
are discussed in Section 7. The results are encouraging for throughput oriented
environments, see Section 8.

4 Probabilistic Analysis

We present initial results of a probabilistic CF analysis. A complete study re-
mains for future work. Interestingly, it is the partitioned memory layout of CF
that allows for such an analysis, since the partitioning into pages and size-classes
significantly reduces the state space of the model. We aim at answering the fol-
lowing two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of
allocations A and deallocations D, hence a word in {A, D}∗. A mutator is not
aware of the internal CF configuration, e.g. in which page deallocation happens.
Therefore, we abstract away from the index i in the deallocation label Di and the
CF size-class automaton becomes a probabilistic I/O automaton (PIOA) [25],
with input actions A and D provided by the mutator, and an output action C
provided by CF. Note that the states of this automaton are either input states
in which A and D are enabled, or output states in which C is enforced, which
makes it simpler than general PIOA. For brevity we only discuss the behavior
of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon deallocation D,
there are several possible next states that are reached with different probabilities:
for all i with ui > 1, with probability ui

h deallocation happens in the not-full
page i which will remain not-full afterwards and the next state becomes 〈h −
1, n, u1, . . . , ui−1, ui − 1, ui+1, . . . , un〉; for all i such that ui = 1 with probability

Size-Class Automaton
for π = 1



© C. Kirsch 2009

!"#$% &'((

Fig. 3. Size-class automaton with π = 1

the interested reader to [7]. We extend the non-incremental CF with blocking and
non-blocking synchronization mechanisms so that multiple threads can share a
single (or multiple) instance(s). In particular, we make the size-class automaton
transitions (including a combination of a deallocating transition followed by a
compacting step) atomic. As a result, multiple threads can execute and use CF
in parallel, interleaving between the atomic transitions. The details of the par-
ticular implementation and the various choices of synchronization mechanisms
are discussed in Section 7. The results are encouraging for throughput oriented
environments, see Section 8.

4 Probabilistic Analysis

We present initial results of a probabilistic CF analysis. A complete study re-
mains for future work. Interestingly, it is the partitioned memory layout of CF
that allows for such an analysis, since the partitioning into pages and size-classes
significantly reduces the state space of the model. We aim at answering the fol-
lowing two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of
allocations A and deallocations D, hence a word in {A, D}∗. A mutator is not
aware of the internal CF configuration, e.g. in which page deallocation happens.
Therefore, we abstract away from the index i in the deallocation label Di and the
CF size-class automaton becomes a probabilistic I/O automaton (PIOA) [25],
with input actions A and D provided by the mutator, and an output action C
provided by CF. Note that the states of this automaton are either input states
in which A and D are enabled, or output states in which C is enforced, which
makes it simpler than general PIOA. For brevity we only discuss the behavior
of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon deallocation D,
there are several possible next states that are reached with different probabilities:
for all i with ui > 1, with probability ui

h deallocation happens in the not-full
page i which will remain not-full afterwards and the next state becomes 〈h −
1, n, u1, . . . , ui−1, ui − 1, ui+1, . . . , un〉; for all i such that ui = 1 with probability

Size-Class Automaton
for π = 1

allocation 
step



© C. Kirsch 2009

!"#$% &'((

Fig. 3. Size-class automaton with π = 1

the interested reader to [7]. We extend the non-incremental CF with blocking and
non-blocking synchronization mechanisms so that multiple threads can share a
single (or multiple) instance(s). In particular, we make the size-class automaton
transitions (including a combination of a deallocating transition followed by a
compacting step) atomic. As a result, multiple threads can execute and use CF
in parallel, interleaving between the atomic transitions. The details of the par-
ticular implementation and the various choices of synchronization mechanisms
are discussed in Section 7. The results are encouraging for throughput oriented
environments, see Section 8.

4 Probabilistic Analysis

We present initial results of a probabilistic CF analysis. A complete study re-
mains for future work. Interestingly, it is the partitioned memory layout of CF
that allows for such an analysis, since the partitioning into pages and size-classes
significantly reduces the state space of the model. We aim at answering the fol-
lowing two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of
allocations A and deallocations D, hence a word in {A, D}∗. A mutator is not
aware of the internal CF configuration, e.g. in which page deallocation happens.
Therefore, we abstract away from the index i in the deallocation label Di and the
CF size-class automaton becomes a probabilistic I/O automaton (PIOA) [25],
with input actions A and D provided by the mutator, and an output action C
provided by CF. Note that the states of this automaton are either input states
in which A and D are enabled, or output states in which C is enforced, which
makes it simpler than general PIOA. For brevity we only discuss the behavior
of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon deallocation D,
there are several possible next states that are reached with different probabilities:
for all i with ui > 1, with probability ui

h deallocation happens in the not-full
page i which will remain not-full afterwards and the next state becomes 〈h −
1, n, u1, . . . , ui−1, ui − 1, ui+1, . . . , un〉; for all i such that ui = 1 with probability

Size-Class Automaton
for π = 1

deallocation 
step



© C. Kirsch 2009

!"#$% &'((

Fig. 3. Size-class automaton with π = 1

the interested reader to [7]. We extend the non-incremental CF with blocking and
non-blocking synchronization mechanisms so that multiple threads can share a
single (or multiple) instance(s). In particular, we make the size-class automaton
transitions (including a combination of a deallocating transition followed by a
compacting step) atomic. As a result, multiple threads can execute and use CF
in parallel, interleaving between the atomic transitions. The details of the par-
ticular implementation and the various choices of synchronization mechanisms
are discussed in Section 7. The results are encouraging for throughput oriented
environments, see Section 8.

4 Probabilistic Analysis

We present initial results of a probabilistic CF analysis. A complete study re-
mains for future work. Interestingly, it is the partitioned memory layout of CF
that allows for such an analysis, since the partitioning into pages and size-classes
significantly reduces the state space of the model. We aim at answering the fol-
lowing two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of
allocations A and deallocations D, hence a word in {A, D}∗. A mutator is not
aware of the internal CF configuration, e.g. in which page deallocation happens.
Therefore, we abstract away from the index i in the deallocation label Di and the
CF size-class automaton becomes a probabilistic I/O automaton (PIOA) [25],
with input actions A and D provided by the mutator, and an output action C
provided by CF. Note that the states of this automaton are either input states
in which A and D are enabled, or output states in which C is enforced, which
makes it simpler than general PIOA. For brevity we only discuss the behavior
of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon deallocation D,
there are several possible next states that are reached with different probabilities:
for all i with ui > 1, with probability ui

h deallocation happens in the not-full
page i which will remain not-full afterwards and the next state becomes 〈h −
1, n, u1, . . . , ui−1, ui − 1, ui+1, . . . , un〉; for all i such that ui = 1 with probability

Size-Class Automaton
for π = 1h is the total # of 

allocated page-blocks 
in the size-class



©
 C

. K
ir

sc
h 

20
09

an incremental soft real-time garbage collector designed for memory constrained
devices, which cannot provide hard guarantees on maximum pause time and
CPU utilization, but comes with low space overhead and tight space bounds.
Stopless [21] is another garbage collector with soft guarantees on response times.
It provides low latency while preserving lock-freedom, supporting atomic opera-
tions, controlling fragmentation by compaction, and supporting multiprocessor
platforms. The main contribution of Stopless is a compaction algorithm which
moves objects in the heap concurrently with program execution. Exact bounds
for response times, as well as fragmentation, are missing in Stopless.

We remark that CF, like many of the above mentioned systems, is based on
segregated lists. Approaches that are not based on segregated lists, but rather on
data structures which maintain locality of objects, are known to perform better
when accessing objects by utilizing memory caches more effectively. However,
the use of segregated lists enables providing and trading-off temporal and spatial
guarantees.

3 Non-incremental Compact-fit

!"#$% &'$()*++

)*++

,'"#-,$.'&

Fig. 2. Size-class automaton with π > 1

Compact-Fit (CF) is a dynamic memory management system that provides
strict temporal and spatial (fragmentation) guarantees. Allocation as well as
deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [7], but in this paper we
only focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In
total there are finitely many available page-block sizes, which determine to which
size-class a page belongs (namely all pages with a given page-block size belong
to one size-class). The pages are assigned to a size-class only if they are used
(non-empty). The number of page-blocks π per page in a size-class is therefore

Size-Class Automaton
for π > 1

h is the total # of allocated page-blocks in the size-class
n is the # of not-full pages
ui is the # of used page-blocks in a not-full page i


