
The Microcosm Principle

and Concurrency in Coalgebra

Ichiro Hasuo1,3,⋆, Bart Jacobs1,⋆⋆, and Ana Sokolova2,⋆ ⋆ ⋆

1 Radboud University Nijmegen, the Netherlands
2 University of Salzburg, Austria
3 RIMS, Kyoto University, Japan

Abstract. Coalgebras are categorical presentations of state-based sys-
tems. In investigating parallel composition of coalgebras (realizing con-
currency), we observe that the same algebraic theory is interpreted in two
different domains in a nested manner, namely: in the category of coalge-
bras, and in the final coalgebra as an object in it. This phenomenon is
what Baez and Dolan have called the microcosm principle, a prototypical
example of which is “a monoid in a monoidal category.” In this paper we
obtain a formalization of the microcosm principle in which such a nested
model is expressed categorically as a suitable lax natural transformation.
An application of this account is a general compositionality result which
supports modular verification of complex systems.

1 Introduction

Design of systems with concurrency is nowadays one of the mainstream chal-
lenges in computer science [21]. Concurrency is everywhere: with the Internet
being the biggest example and multi-core processors the smallest; also in a mod-
ular, component-based architecture of a complex system its components collabo-
rate in a concurrent manner. However numerous difficulties have been identified
in getting concurrency right. For example, a system’s exponentially growing
complexity is one of the main obstacles. One way to cope with it is a modular
verification method in which correctness of the whole system C1 ‖ · · · ‖ Cn is
established using correctness of each component Ci. Compositionality—meaning
that behavior of C ‖ D is determined by behavior of C and that of D—is an
essential property for such a modular method to work.

Coalgebras as systems This paper is a starting point of our research program
aimed at better understanding of the mathematical nature of concurrency. In its
course we shall use coalgebras as presentations of systems to be run in parallel.
The use of coalgebras as an appropriate abstract model of state-based systems is

⋆ Supported by PRESTO promotion program, Japan Science and Technology Agency.
⋆⋆ Also part-time at Technical University Eindhoven, the Netherlands.

⋆ ⋆ ⋆ Supported by the Austrian Science Fund (FWF) project no. P18913-N15. During
the work on this paper A.S. was employed at Radboud Univ. Nijmegen.

2

increasingly established [13,28]; the notion’s mathematical simplicity and clarity
provide us with a sound foundation for our exploration. The following table
summarizes how ingredients of the theory of systems are presented as coalgebraic
constructs.

system behavior-preserving map behavior

coalgebraically coalgebra
FX

X

morphism of coalgebras

FX
F f

FY

X
f

Y

by coinduction

FX FZ

X
c

beh(c)
Z

∼=final

(1)

This view of “coalgebras as systems” has been successfully applied in the cate-
gory Sets of sets and functions, in which case the word “behavior” in (1) refers
(roughly) to bisimilarity. Our recent work [7, 8] has shown that “behavior” can
also refer to trace semantics by moving from Sets to a suitable Kleisli category.

Compositionality in coalgebras We start with the following question: what is
“compositionality” in this coalgebraic setting? Conventionally compositionality
is expressed as: C ∼ C′ and D ∼ D′ implies C ‖ D ∼ C′ ‖ D′, where the relation
∼ denotes the behavioral equivalence of interest. If this is the case the relation
∼ is said to be a congruence, with its oft-heard instance being “bisimilarity is a
congruence.”

When we interpret “behavior” in compositionality as the coalgebraic behavior
induced by coinduction (see (1)), the following equation comes natural as a
coalgebraic presentation of compositionality.

beh

(

FX

X
c

∥

∥

∥

∥

FY

Y
d

)

= beh

(

FX

X
c

)
∥

∥

∥

∥

beh

(

FY

Y
d

)

(2)

But a closer look reveals that the two “parallel composition operators” ‖ in
the equation have in fact different types: the first one CoalgF × CoalgF →
CoalgF combines systems (as coalgebras) and the second one Z × Z → Z
combines behavior (as states of the final coalgebra).4 Moreover, the two domains

are actually nested: the latter one Z
∼=→ FZ is an object of the former one

CoalgF .

The microcosm principle What we have just observed is one instance—
probably the first one explicitly claimed in computer science—of the microcosm
principle as it is called by Baez and Dolan [1]. It refers to a phenomenon that
the same algebraic theory (or algebraic “specification,” consisting of operations
and equations) is interpreted twice in a nested manner, once in a category C and

4 At this stage the presentation remains sloppy for the sake of simplicity. Later in
technical sections the first composition operator will be denoted by ⊗⊗⊗; and the
second composition operator will have the type Z ⊗ Z → Z instead of Z × Z → Z.

3

the other time in its object X ∈ C. This is not something very unusual, because
“a monoid in a monoidal category” constitutes a prototypical example.

monoidal category C monoid X ∈ C

⊗ : C × C → C multiplication X ⊗ X
µ
→ X

I ∈ C unit I
η
→ X

I ⊗ X ∼= X ∼= X ⊗ I unit law
X X ⊗ X X

X

X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y) ⊗ Z associativity law
X ⊗ X ⊗ X X ⊗ X

X ⊗ X X

(3)

Notice here that the outer operation ⊗ appears in the formulation of the an
inner operation µ. Moreover, to be precise, in the inner “equations” the outer
isomorphisms should be present in suitable places. Hence this monoid exam-
ple demonstrates that, in such nested algebraic structures, the inner structure
depends on the outer. What is a mathematically precise formalization of such
nested models? Answering this question is a main goal of this paper.

Such a formalization has been done in [1] when algebraic structures are spec-
ified in the form of opetopes. Here instead we shall formalize the microcosm
principle for Lawvere theories [20], whose role as categorical representation of
algebraic theories has been recognized in theoretical computer science.

L

1

C

⇓X
CAT

As it turns out, our formalization looks like the situation on
the right. Here L is a category (a Lawvere theory) representing
an algebraic theory; an outer model C is a product-preserving
functor; and an inner model X is a lax natural transformation.
The whole setting is 2-categorical: 2-categories (categories in categories) serve
as an appropriate basis for the microcosm principle (algebras in algebras).

Applications to coalgebras: parallel composition via sync The categorical
account we have sketched above shall be applied to our original question about
parallel composition of coalgebras. As a main application we prove a generic
compositionality theorem. For an arbitrary algebraic theory L, compositionality
like (2) is formulated as follows: the “behavior” functor beh : CoalgF → C/Z
via coinduction preserves an L-structure. This general form of compositionality
holds if: C has an L-structure and F : C → C lax-preserves the L-structure.

Turning back to the original setting of (2), these general assumptions read
roughly as follows: the base category C has a binary operation ‖; and the end-
ofunctor F comes with a natural transformation sync : FX ‖ FY → F (X ‖ Y).
Essentially, this sync is what lifts ‖ on C to ‖ on CoalgF , hence “parallel com-
position via sync.” It is called a synchronization because it specifies the way two
systems synchronize with each other. In fact, for a fixed functor F there can be
different choices of sync (such as CSP-style vs. CCS-style), which in turn yield
different “parallel composition” operators on the category CoalgF .

4

Related work Our interest is pretty similar to that of studies of bialgebraic
structures in computer science (such as [3,14,16–18,29]), in the sense that we are
also concerned about algebraic structures on coalgebras as systems. Our current
framework is distinguished in the following aspects.

First, we handle equations in an algebraic theory as an integral part of our ap-
proach. Equations such as associativity and commutativity appear explicitly as
commutative diagrams in a Lawvere theory L. We benefit from this explicitness
in e.g. spelling out a condition for the generic associativity result (Theorem 2.4).
In contrast, in the bialgebraic studies an algebraic theory is presented either by
an endofunctor X 7→

∐

σ∈Σ X |σ| or by a monad T . In the former case equations
are simply not present; in the latter case equations are there but only implicitly.

Secondly and more importantly, by considering higher-dimensional, nested
algebraic structures, we can now compose different coalgebras as well as different
states of the same coalgebra. In this way the current work can be seen as a higher-
dimensional extension of the existing bialgebraic studies (which focus on “inner”
algebraic structures).

Organization of the paper We shall not dive into our 2-categorical explo-
ration from the beginning. In Section 2, we instead focus on one specific algebraic
theory, namely the one for parallel composition of systems. Our emphasis there is
on the fact that the sync natural transformation essentially gives rise to parallel
composition ‖, and the fact that equational properties of ‖ (such as associativity)
can be reduced to the corresponding equational properties of sync.

These concrete observations will provide us with intuition for abstract cate-
gorical constructs in Section 3, where we formalize the microcosm principle for
an arbitrary Lawvere theory L. Results on coalgebras such as compositionality
are proved here in their full generality and abstraction.

In this paper we shall focus on strict algebraic structures on categories in
order to avoid complicated coherence issues. This means for example that we
only consider strict monoidal categories for which the isomorphisms in (3) are
in fact equalities. However, we have also obtained some preliminary observations
on relaxed (“pseudo” or “strong”) algebraic structures: see Section 3.3.

2 Parallel composition of coalgebras

2.1 Parallel composition via sync natural transformation

Let us start with the equation (2), a coalgebraic representation of composition-
ality. The operator ‖ on the left is of type CoalgF × CoalgF → CoalgF . It
is natural to require functoriality of this operation, making it a bifunctor. A
bifunctor—especially an associative one which we investigate in Section 2.3—
plays an important role in various applications of category theory. Usually such
an (associative) bifunctor is called a tensor and denoted by ⊗⊗⊗, a convention that

5

we also follow. Therefore the “compositionality” statement now looks as follows.

beh

(

FX

X
c ⊗⊗⊗

FY

Y
d

)

= beh

(

FX

X
c

) ∥

∥

∥

∥

beh

(

FY

Y
d

)

(4)

The first question is: when do we have such a tensor ⊗⊗⊗ on CoalgF ? In many
applications of coalgebras, it is obtained by lifting a tensor ⊗ on the base category
C to CoalgF .5 Such a lifting is possible in presence of a natural transformation

FX ⊗ FY
syncX,Y
−→ F (X ⊗ Y), used in

FX

X
c ⊗⊗⊗

FY

Y
d :=

F (X ⊗ Y)

FX ⊗ FY

syncX,Y

X ⊗ Y
c ⊗ d

. (5)

We shall call this sync a synchronization because its computational meaning is
indeed a specification of the way two systems synchronize. This will be illustrated
in the coming examples.

F (Z ⊗ Z) FZ

Z ⊗ Z

ζ⊗⊗⊗ζ

‖
Z

ζfinal

Once we have an outer parallel composition ⊗⊗⊗, an
inner operator ‖ which composes behavior (i.e. states
of the final coalgebra) is also obtained immediately by
coinduction as on the right. Compositionality (4) is
also straightforward by finality: both sides of the equation are the unique coal-
gebra morphism from c⊗⊗⊗d to the final ζ. The following theorem summarizes the
observations so far.

Theorem 2.1 (Coalgebraic compositionality) Assume that a category C has
a tensor ⊗ : C × C → C and an endofunctor F : C → C has a natural trans-
formation syncX,Y : FX ⊗ FY → F (X ⊗ Y). If moreover there exists a final
F -coalgebra, then:

1. The tensor ⊗ on C lifts to an “outer” composition operator ⊗⊗⊗ : CoalgF ×
CoalgF → CoalgF .

2. We obtain an “inner” composition operator ‖: Z ⊗ Z → Z by coinduction.
3. Between the two composition operators the compositionality property (4)

holds. ⊓⊔

We can put the compositionality property (4) in more abstract terms as “the
functor beh : CoalgF → C/Z preserves a tensor,” meaning that the diagram
below left commutes. Here a tensor ⊗ on the slice category C/Z is given as on
the right, using the inner composition ‖.

CoalgF × CoalgF

beh× beh

⊗⊗⊗

C/Z × C/Z
⊗

CoalgF
beh

C/Z

(

X
f

Z
,

Y
g

Z

)

⊗
7−→

X ⊗ Y
f ⊗ g

Z ⊗ Z
‖

Z

(6)

5 Note that we use boldface ⊗⊗⊗ for a tensor on CoalgF to distinguish it from ⊗ on C.

6

The point of Theorem 2.1 is as follows. Those parallel composition operators
which are induced by sync are well-behaved ones: good properties like composi-
tionality come for free. We shall present some examples in Section 2.2.

Remark 2.2 The view of parallel composition of systems as a tensor structure
on CoalgF has been previously presented in [15]. The interest there is on cate-
gorical structures on CoalgF rather than on properties of parallel composition
such as compositionality. In [15] and other literature an endofunctor F with sync

(equipped with some additional compatibility) is called a monoidal endofunctor.6

2.2 Examples

In Sets: bisimilarity is a congruence We shall focus on LTSs and bisimilarity
as their process semantics. For this purpose it is appropriate to take Sets as our
base category C and Pω(Σ ×) as the functor F . We use Cartesian products
as a tensor on Sets. This means that a composition of two coalgebras has the
product of the two state spaces as its state space, which matches our intuition.
The functor Pω in F is the finite powerset functor; the finiteness assumption is
needed for existence of a final F -coalgebra. It is standard (see e.g. [28]) that a
final F -coalgebra captures bisimilarity via coinduction.

In considering parallel composition of LTSs, the following two examples are
well-known ones.7

– CSP-style [9]: a.P ‖ a.Q
a
→ P ‖ Q. For the whole system to make an a-

action, each component has to make an a-action.
– CCS-style [23]: a.P ‖ a.Q

τ
→ P ‖ Q, assuming Σ = {a, b, . . .} ∪ {a, b, . . . } ∪

{τ}. When one component outputs on a channel a and another inputs from
a, then the whole system makes an internal τ move.

In fact, each of these different ways of synchronization can be represented by a
suitable sync natural transformation.

Pω(Σ × X) × Pω(Σ × Y) −→ Pω

`

Σ × (X × Y)
´

(u, v)
syncCSP

X,Y
7−→

˘

(a, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v
¯

(u, v)
syncCCS

X,Y
7−→

˘

(τ, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v
¯

By Theorem 2.1, each of these gives (different) ⊗⊗⊗ on CoalgF , and ‖ on Z; more-
over the behavior functor beh satisfies compositionality. In other words: bisim-
ilarity is a congruence with respect to both CSP-style and CCS-style parallel
composition.

6 Later in Section 3 we will observe that a functor F with sync is a special case of a lax
L-functor, by choosing a suitable algebraic theory L. Such a functor F with sync is
usually called a monoidal functor (as opposed to a lax monoidal functor), probably
because it preserves (inner) monoid objects; see Proposition 3.8.1.

7 Here we focus on synchronous interaction. Both CSP and CCS have an additional
kind of interaction, namely an “interleaving” one; see Remark 2.3.

7

Remark 2.3 As mentioned in the introduction, in some ways this paper can
be seen as an extension of the bialgebraic studies started in [29]. However there
is also a drawback, namely the limited expressive power of sync : FX ⊗ FY →
F (X ⊗ Y).

Our sync specifies the way an algebraic structure interacts with a coalgebraic
one. In this sense it is a counterpart of a distributive law ΣF ⇒ FΣ in [29]
representing operational rules, where Σ is a functor induced by an algebraic
signature. However there are many common operational rules which do not allow
representation of the form ΣF ⇒ FΣ; therefore in [29] the type of such a
distributive law is eventually extended to Σ(F × id) ⇒ FΣ∗. The class of rules
representable in this form coincides with the class of so-called GSOS-rules.

At present it is not clear how we can make a similar extension for our sync;
consequently there are some operational rules which we cannot model by sync.
One important example is an interleaving kind of interaction—such as a.P ‖

Q
a
→ P ‖ Q which leaves the second component unchanged. This is taken care of

in [29] by the identity functor (id) appearing on the left-hand side of Σ(F×id) ⇒
FΣ∗. For our sync to be able to model such interleaving, we can replace F by
the cofree comonad on it, as is done in [15, Example 3.11]. This extension should
be straightforward but detailed treatment is left as future work.

In Kℓ(T): trace equivalence is a congruence In our recent work [8] we
extend earlier observations in [12,27] and show that trace semantics—including
trace set semantics for non-deterministic systems and trace distribution seman-
tics for probabilistic systems—is also captured by coinduction when it is em-
ployed in a Kleisli category Kℓ(T). Applying the present composition frame-
work, we can conclude that trace semantics is compositional with respect to
well-behaved parallel composition. The details are omitted here due to lack of
space.

2.3 Equational properties of parallel composition

Now we shall investigate equational properties—associativity, commutativity,
and so on—of parallel composition ⊗⊗⊗, which we have ignored deliberately for
simplicity of argument. We present our result in terms of associativity; it is
straightforward to transfer the result to other properties like commutativity. The
main point of the following theorem is as follows: if ⊗ is associative and sync is
“associative,” then the lifting ⊗⊗⊗ is associative. The proof is straightforward.

Theorem 2.4 Let C be a category with a strictly associative tensor ⊗,8 and
F : C → C be a functor with sync : FX ⊗ FY → F (X ⊗ Y). If the diagram

FX ⊗ (FY ⊗ FZ)
FX ⊗ sync

id
FX ⊗ F (Y ⊗ Z)

sync
F (X ⊗ (Y ⊗ Z))

id
(FX ⊗ FY) ⊗ FZ

sync⊗FZ
F (X ⊗ Y) ⊗ FZ

sync
F ((X ⊗ Y) ⊗ Z)

(7)

8 As mentioned already, in this paper we stick to strict algebraic structures.

8

commutes, then the lifted tensor ⊗⊗⊗ on CoalgF is strictly associative. ⊓⊔

The two identity arrows in (7) are available due to strict associativity of ⊗. In
the next section we shall reveal the generic principle behind the commutativity
condition of (7), namely a coherence condition on a lax natural transformation.

As an example, syncCSP and syncCCS in Section 2.2 are easily seen to be
“associative” in the sense of the diagram (7). Therefore the resulting tensors ⊗⊗⊗
are strictly associative.

3 Formalizing the microcosm principle

In this section we shall formalize the microcosm principle for an arbitrary alge-
braic theory presented as a Lawvere theory L. This and the subsequent results
generalize the results in the previous section. In particular, we will obtain a
general compositionality result which works for an arbitrary algebraic theory.

L

1

C

⇓X
CAT

As we sketched in the introduction, an outer model will be
a product-preserving functor C : L → CAT; an inner model
inside will be a lax natural transformation X : 1 ⇒ C. Here
1 : L → CAT is the constant functor which maps everything to
the category 1 with one object and one arrow (which is a special case of an outer
model). Mediating 2-cells for the lax natural transformation X play a crucial role
as inner interpretation of algebraic operations. In this section we heavily rely on
2-categorical notions, about which detailed accounts can be found in [5].

3.1 Lawvere theories

Lawvere theories are categorical presentations of algebraic theories. The notion is
introduced in [20] (not under this name, though) aiming at a categorical formula-
tion of “theories” and “semantics.” An accessible introduction to the notion can
be found in [19]. Lawvere theories are known to be equivalent to finitary monads.
These two ways of presenting algebraic theories have been widely used in theoret-
ical computer science, e.g. for modeling computation with effect [10,24]. Recent
developments (such as [26]) utilize the increased expressive power of enriched
Lawvere theories.

In the sequel, by an FP-category we refer to a category with (a choice of)
finite products. An FP-functor is a functor between FP-categories which pre-
serves finite products “on-the-nose,” that is, up-to-equality instead of up-to-
isomorphism.

Definition 3.1 (Lawvere theory) By Nat we denote the category of natural
numbers (as sets) and functions between them. Therefore every arrow in Nat is
a (cotuple of) coprojection; an arrow in Natop is a (tuple of) projection.9

9 An arrow f : n → k in Nat can be written as a cotuple [κf(1), . . . , κf(n)] where
κi : 1 → k is the coprojection into the i-th summand of 1 + · · · + 1 (k times).

9

A Lawvere theory is a small FP-category L equipped with an FP-functor
H : Natop→L which is bijective on objects. We shall denote an object of L by
a natural number k, identifying k ∈ Natop and Hk ∈ L.

The category Natop—which is a free FP-category on the trivial category 1—is
there in order to specify the choice of finite products in L. For illustration, we
make some remarks on L’s objects and arrows.

– An object k ∈ L is an k-fold product 1 × · · · × 1 of 1.
– An arrow in L is intuitively understood as an algebraic operation. That is,

k → 1 as an k-ary operation; and k → n as an n-tuple 〈f1, . . . , fn〉 of k-ary

operations. To be precise, arrows in L also include projections (such as 2
π1→ 1)

and terms made up of operations and projections (such as 3
m◦〈π1,π2〉
−→ 1).

Conventionally in universal algebra, an algebraic theory is presented by an al-
gebraic specification (Σ, E)—a pair of a set Σ of operations and a set E of
equations. A Lawvere theory L arises from such (Σ, E) as its so-called classify-
ing category (see e.g. [11, 20]). An arrow k → n in the resulting Lawvere theory
L is an n-tuple ([t1(

−→x)], . . . , [tn(−→x)]) of Σ-terms with k variables −→x , where []
denotes taking an equivalence class modulo equations in E. An equivalent way to
describe this construction is via sketches : (Σ, E) is identified with an FP-sketch,
which in turn induces L as a free FP-category. See [2] for details.

Our leading example is the Lawvere theory Mon for monoids.10 It arises as
a classifying category from the well-known algebraic specification of monoids.
This specification has a nullary operation e and a binary one m; subject to the
equations m(x, e) = x, m(e, x) = x, and m(x, m(y, z)) = m(m(x, y), z).

1
〈id,e〉

id

2
m

1
〈e,id〉

id

3
m×id

id×m

2
m

1 2
m

1

Equivalently, Mon is the freely generated FP-
category by arrows 0

e
→ 1 and 2

m
→ 1 subject to the

commutativity on the right. These data (arrows and
commutative diagrams) form an FP-sketch (see [2]).

3.2 Outer models: L-categories

L
X
−→ Sets

2
m

1
7−→

X2

JmK

X

We start by formalizing an outer model. It is a category with
an L-structure, hence called an L-category. It is standard that a
(set-theoretic) model of L—a set with an L-structure—is iden-

tified with an FP-functor L
X
→ Sets. Concretely, let X = X1 be

the image of 1 ∈ L. Then k ∈ L must be sent to Xk due to preservation of finite
products. Now the functor’s action on arrows is what interprets L’s operations
in X , as illustrated above right. Equations (expressed as commutative diagrams
in L) are satisfied because a functor preserves commutativity.

Turning back to L-categories, what we have to do here is to just replace Sets
by the category CAT of (possibly large and locally small) categories.

10 The Lawvere theory Mon for the theory of monoids should not be confused with
the category of (set-theoretic) monoids and monoid homomorphisms (which is often
denoted by Mon as well).

10

Definition 3.2 (L-categories, L-functors) A (strict) L-category is an FP-

functor L
C
→ CAT. In the sequel we denote the image C1 of 1 ∈ L by C; and

the image C(f) of an arrow f by JfK.

An L-functor F : C → D—a functor preserving an L-structure—is a natural

transformation L

C

D

⇓F CAT .

Another way to look at the previous definition is to view an L-structure as
“factorization through Natop → L.” We can identify a category C ∈ CAT
with a functor 1 → CAT, which is in turn identified with an FP-functor
Natop → CAT, because Natop is the free FP-category on 1. We say that C

has an L-structure, if this FP-functor factors through H : Natop → L (as below
left). Note that the factorization is not necessarily unique, because there can be
different ways of interpreting the algebraic theory L in C. Similarly, a functor

C
F
→ D is identified with a natural transformation 1 ⇓F CAT ; and then with

Natop
⇓F CAT due to the 2-universality of Natop as a free object. We say

that this F preserves an L-structure, if the last natural transformation factors
through H : Natop → L (as below right).

Natop H

C

L

CAT

Natop H

⇓
F

L

⇐

CAT

Example 3.3 The usual notion of strictly monoidal categories coincides with
L-categories for L = Mon. A tensor ⊗ and a unit I on a category arise as
interpretation of the operations 2

m
→ 1 and 0

e
→ 1; commuting diagrams in Mon

such as m ◦ 〈id, e〉 = id yield equational properties of ⊗ and I.

3.3 Remarks on “pseudo” algebraic structures

As we mentioned in the introduction, in this paper we focus on strict algebraic
structures. This means that monoidal categories (in which associativity holds
only up-to-isomorphism, for example) fall out of our consideration. Extending
our current framework to such “pseudo” algebraic structures is one important
direction of our future work. Such an extension is not entirely obvious; we shall
sketch some preliminary observations in this direction.

The starting point is to relax the definition of L-categories from (strict)
functors L → CAT to pseudo functors, meaning that composition and identities
are preserved only up-to-isomorphism. Then it is not hard to see that a pseudo

functor Mon
C
→ CAT (which preserves finite products in a suitable sense) gives

rise to a monoidal category. Indeed, let us denote a mediating iso-2-cell for
composition by Cg,f : JgK ◦ JfK

∼=⇒ Jg ◦ fK. A commuting diagram in Mon (below

11

left) gives rise to the two iso-2-cells on the right.

3in Mon
m×id

id×m

2
m

2
m

1

C
3in CAT

Jm×idK
⇒
∼=Cm,m×id

Jid×mK Jm◦(m×id)K=Jm◦(id×m)K

C
2

JmK

C
2

JmK

⇐
∼= Cm,id×m

C

(8)

The composition C
−1
m,id×m • Cm,m×id is what gives us a natural isomorphism

α : X ⊗ (Y ⊗ Z)
∼=→ (X ⊗ Y) ⊗ Z. Moreover, the coherence condition on such

isomorphisms in a monoidal category (like the famous pentagon diagram; see [4,
22]) follows from the coherence condition on mediating 2-cells of a pseudo functor
(see [5]).

So far so good. However, at this moment it is not clear what is a canonical
construction the other way round, i.e. from a monoidal category to a pseudo
functor.11 In the present paper we side-step these 2-categorical subtleties by
restricting ourselves to strict, non-pseudo functors.

3.4 Inner models: L-objects

We proceed to formalize an inner model. It is an object in an L-category which
itself carries an (inner) L-structure, hence is called an L-object. A monoid object
in a monoidal category is a prototypical example. We first present an abstract
definition; some illustration follows afterwards.

Definition 3.4 (L-objects) An L-object X in an L-category C is a lax natural
transformation X : 1 ⇒ C (below left) which is “product-preserving”: this means
that the composition X ◦ H (below right) is strictly, non-lax natural. Here
1 : L → CAT denotes the constant functor to the trivial one-object category 1.

L

1

C

⇓X
CAT Natop H

L

1

C

⇓X
CAT

Such a nested algebraic structure—formalized as an L-object in an L-category—
shall be called a microcosm model for L.

k

in Natop

πi

1

1

in CAT
Xk=(X,...,X)

= C
k

JHπiK
=πi

1
X1=X

C

Let us now illustrate the definition. First,

X ’s component at 1 ∈ L is a functor 1
X1→ C

which is identified with an object X ∈ C. This
is the “carrier” object of this inner algebra.

Moreover, any other component 1
Xk→ Ck must be the k-tuple (X, . . . , X) ∈ Ck

of X ’s. This is because of (strict) naturality of X ◦ H (see above right): for any
i ∈ [1, k] the composite πi ◦ Xk is required to be X1.

11 For example, given a monoidal category C, we need to define a functor Jm ◦ (m ×
id)K = Jm ◦ (id × m)K in (8). It’s not clear whether it should carry (X, Y, Z) to
X ⊗ (Y ⊗ Z), or to (X ⊗ Y) ⊗ Z.

12

2

in L

m

1

1

in CAT
X2=(X,X)

⇓
Xm

C
2

JmK=⊗

1
X

C

The (inner) algebraic structure on X arises in
the form of mediating 2-cells of the lax natural

transformation. For each arrow k
f
→ n in L, lax

naturality of X requires existence of a mediating
2-cell Xf : JfK ◦ Xk ⇒ Xn. The diagram (above right) shows the situation
when we set f = m, a binary operation. The natural transformation Xm can be

identified with an arrow X⊗X
µ
→ X in C, which gives an inner binary operation

on X .

Xg◦f =

1
⇓

Xf

C
l

JfK

1
⇓

Xg

C
k

JgK

1 C
n

How do such inner operations on X satisfy equations
as specified in L? The key is the coherence condition12

on mediating 2-cells: it requires Xid = id concerning
identities; and Xg◦f = Xg • (JgK ◦ Xf) concerning com-
position (as on the right). The following example illus-
trates how such coherence induces equational properties.

Example 3.5 A monoid object in a strictly monoidal category is an example
of an L-object in an L-category. Here we take L = Mon, the theory of monoids.

For illustration, let us here derive associativity of multiplication X⊗X
µ
→ X .

In the current setting the multiplication µ is identified with a mediating 2-cell
Xm as above. The coherence condition yields the two equalities (∗) below.

3

in L

id×m m×id

2
m

2
m

1

1

in CAT

⇓
Xid×m

C
3

Jid×mK

1
⇓
Xm

C
2

JmK

1 C

(∗)
=

1
⇓

Xm◦(id×m)
=Xm◦(m×id)

C
3

1 C
1

(∗)
=

1 ⇓
Xm×id

C
3

Jm×idK

1
⇓
Xm

C
2

JmK

1 C

Now it is not hard to see that: the composed 2-cell on the left corresponds to

X3 X×µ
→ X2 µ

→ X ; and the one on the right corresponds to X3 µ×X
→ X2 µ

→ X .
The equalities (∗) above prove that these two arrows X3

⇉ X are identical.

3.5 Microcosm structures in coalgebras

In this section we return to our original question and apply the framework we
just introduced to coalgebraic settings. First we present some basic results, which
are used later in our main result of general compositionality. The constructs in
Section 2 (such as sync) will appear again, now in their generalized form.

Some details and proofs are omitted here due to lack of space. They will
appear in the forthcoming extended version of this paper, although the diligent
reader will readily work them out.

Let C be an L-category, and F : C → C be a functor. We can imagine
that, for the category CoalgF to carry an L-structure, F needs to be somehow
compatible with L; it turns out that the following condition is sufficient. It is
weaker than F ’s being an L-functor (see Definition 3.2).

12 This is part of the notion of lax natural transformations; see [5].

13

Definition 3.6 (Lax L-functor) A functor F : C → D between L-categories is
said to be a lax L-functor if it is identified with13 some lax natural transformation

L

C

D

⇓F CAT which is product-preserving (i.e. F ◦ H is strictly natural; see

Definition 3.4).

2

in L

m

1

C
2

in CAT
(F,F)

⊗ ⇓
Fm

C
2

⊗

C
F

C

Lax L-endofunctors are natural generalization of
functors with sync as in Section 2. To illustrate this,
look at the lax naturality diagram on the right for
a binary operation m. Here we denote the outer in-
terpretation JmK by ⊗. The 2-component is F2 = (F, F) because the lax natural
transformation F is product-preserving. The mediating 2-cell Fm can be iden-
tified with a natural transformation FX ⊗ FY → F (X ⊗ Y); this is what we
previously called sync. Moreover, Fm (as generalized sync) is automatically com-
patible with equational properties (as in Theorem 2.4); this is because of the
coherence condition on mediating 2-cells like “Fg◦f is a suitable composition of
Fg after Ff .”

The following results follow from a more general result concerning the notion
of inserters, namely: when G is an oplax L-functor and F is a lax L-functor,
then the inserter Ins(G, F) is an L-category.

Proposition 3.7 1. Let C be an L-category and F : C → C be a lax L-functor.

Then CoalgF is an L-category; moreover the forgetful functor CoalgF

U
→ C

is a (strict, non-lax) L-functor.
2. Given a microcosm model X ∈ C for L, the slice category C/X is an L-

category; moreover the functor C/X
dom
−→ C is an L-functor. ⊓⊔

Note that CoalgF being an L-category means not only that operations are
interpreted in CoalgF but also that all the equational properties specified in L

are satisfied in CoalgF . Therefore this result generalizes Theorem 2.4.
Concretely, an operation f : k → 1 in L is interpreted in CoalgF and C/X

as follows, respectively.

„ FX1

X1

c1 , . . . ,
FXk

Xk

ck

«

7→

F JfK(
−→
X)

JfK(
−−→
FX)

(Ff)−→X

JfK(
−→
X)

JfK(−→c)

„ Y1
y1

X
, . . . ,

Yk
yk

X

«

7→

JfK(
−→
Y)

JfK(−→y)

JfK(
−→
X)
Xf

X

Compare these with (5) and (6); these make an essential use of Ff and Xf which
generalize sync and ‖ in Section 2, respectively.

Proposition 3.8 1. A lax L-functor preserves L-objects. Hence so does an L-
functor.

13 Meaning: F : C → D is the 1-component of such a lax natural transformation C ⇒ D.

14

2. A final object of an L-category C, if it exists, is an L-object. The inner L-
structure is induced by finality. ⊓⊔

We can now present our main result. It generalizes Theorem 2.1, hence is a
generalized version of the “coalgebraic compositionality” equation (4).

Theorem 3.9 (General compositionality) Let C be an L-category and F :

C → C be a lax L-functor. Assume further that ζ : Z
∼=→ FZ is the final coalgebra.

Then the functor beh : CoalgF → C/Z is a (non-lax) L-functor. It makes the
following diagram of L-functors commute.

CoalgF

beh

U

C/Z

domC ⊓⊔

The proof is straightforward by finality. Here CoalgF is an L-category (Propo-
sition 3.7.1). So is C/Z because: ζ ∈ CoalgF is an L-object (Proposition 3.8.2);
Z = Uζ is an L-object (Propositions 3.8.1 and 3.7.1); hence C/Z is an L-category
(Proposition 3.7.2).

We have also observed some facts which look interesting but are not directly
needed for our main result (Theorem 3.9). They include: the category L-objC of
L-objects in C and morphisms between them forms the lax limit of a diagram
C : L → CAT; the simplicial category ∆ is the “universal” microcosm model for
Mon (cf. [22, Proposition VII.5.1]). The details will appear in the forthcoming
extended version.

4 Conclusions and future work

In this paper we have observed that the microcosm principle (as called by Baez
and Dolan) brings new mathematical insights into computer science. Specifically,
we have looked into parallel composition of coalgebras, which would serve as
a mathematical basis for the study of concurrency. As a purely mathematical
expedition, we have presented a 2-categorical formalization of the microcosm
principle, where an algebraic theory is presented by a Lawvere theory. Turning
back to our original motivation, the formalization was applied to coalgebras
and yielded some general results which ensure compositionality and equational
properties such as associativity.

There are many questions yet to be answered. Some of them have been al-
ready mentioned, namely: extending the expressive power of sync (Remark 2.3),
and a proper treatment of “pseudo” algebraic structures (Section 3.3).

On the application side, one direction of future work is to establish a re-
lationship between sync and (syntactic) formats for process algebras. Our sync

represents a certain class of operational rules; formats are a more syntactic way to
do the same. Formats which guarantee certain good properties (such as commu-
tativity, see [25]) have been actively studied. Such a format should be obtained
by translating e.g. a “commutative” sync into a format.

15

Another applicational direction is an abstract, categorical account of testing
equivalences as introduced in [6]. In the testing framework parallel composition
plays a crucial role: a system C to be tested is composed with another system
T which represents a test; the behavior of C ‖ T (typically outputting “OK” or
“NG”) tells us if the system C passes the test T or not. Therefore the current work
(studying parallel composition of coalgebras) is a first step towards “coalgebraic
testing.”

On the mathematical side, one direction is to identify more instances of
the microcosm principle. Mathematics abounds with the (often implicit) idea of
nested algebraic structures. To name a few: a topological space in a topos which
is itself a “generalized topological space”; a category of domains which itself
carries a “structure as a domain.” We wish to turn such an informal statement
into a mathematically rigorous one, by generalizing the current formalization of
the microcosm principle. As a possible first step towards this direction, we are
working on formalizing the microcosm principle for finitary monads which are
known to be roughly the same thing as Lawvere theories.

Another direction is a search for n-folded nested algebraic structures. In the
current paper we have concentrated on two levels of interpretation. We are not
(yet) aware of examples with three or more levels; an example might be an
internal category in an internal category.

Acknowledgments Thanks are due to Kazuyuki Asada, John Baez, Masahito
Hasegawa, Bill Lawvere, Duško Pavlović, John Power and the participants of
CALCO-jnr workshop 2007 including Alexander Kurz for helpful discussions
and comments.

References

1. J.C. Baez and J. Dolan. Higher dimensional algebra III: n-categories and the
algebra of opetopes. Adv. Math, 135:145–206, 1998.

2. M. Barr and C. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985.
Available online.

3. F. Bartels. On generalised coinduction and probabilistic specification formats. Dis-
tributive laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam, 2004.

4. I. Beylin and P. Dybjer. Extracting a proof of coherence for monoidal categories
from a proof of normalization for monoids. In S. Berardi and M. Coppo, editors,
TYPES, volume 1158 of Lect. Notes Comp. Sci., pages 47–61. Springer, 1995.

5. F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclopedia
of Mathematics. Cambridge Univ. Press, 1994.

6. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theor. Comp.
Sci., 34:83–133, 1984.

7. I. Hasuo. Generic forward and backward simulations. In C. Baier and H. Hermanns,
editors, International Conference on Concurrency Theory (CONCUR 2006), vol-
ume 4137 of Lect. Notes Comp. Sci., pages 406–420. Springer, Berlin, 2006.

8. I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction.
Logical Methods in Comp. Sci., 2007. To appear.

16

9. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10. M. Hyland and A.J. Power. Discrete Lawvere theories and computational effects.

Theor. Comp. Sci., 366(1–2):144–162, 2006.
11. B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.
12. B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors,

Coalgebraic Methods in Computer Science, volume 106 of Elect. Notes in Theor.
Comp. Sci. Elsevier, Amsterdam, 2004.

13. B. Jacobs. Introduction to coalgebra. Towards mathematics of states and obser-
vations. Draft of a book,
www.cs.ru.nl/B.Jacobs/PAPERS/index.html, 2005.

14. B. Jacobs. A bialgebraic review of deterministic automata, regular expressions
and languages. In K. Futatsugi, J.P. Jouannaud, and J. Meseguer, editors, Essays
Dedicated to Joseph A. Goguen, volume 4060 of Lect. Notes Comp. Sci., pages
375–404. Springer, 2006.

15. P.T. Johnstone, A.J. Power, T. Tsujishita, H. Watanabe, and J. Worrell. An
axiomatics for categories of transition systems as coalgebras. In Logic in Computer
Science. IEEE, Computer Science Press, 1998.

16. M. Kick, A.J. Power, and A. Simpson. Coalgebraic semantics for timed processes.
Inf. & Comp., 204(4):588–609, 2006.

17. B. Klin. From bialgebraic semantics to congruence formats. In Workshop on
Structural Operational Semantics (SOS 2004), volume 128 of Elect. Notes in Theor.
Comp. Sci., pages 3–37, 2005.

18. B. Klin. Bialgebraic operational semantics and modal logic. In Logic in Computer
Science, pages 336–345. IEEE Computer Society, 2007.

19. A. Kock and G.E. Reyes. Doctrines in categorical logic. In J. Barwise, editor,
Handbook of Mathematical Logic, pages 283–313. North-Holland, Amsterdam, 1977.

20. F.W. Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic
Problems in the Context of Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963. Reprints in Theory and Applications of Categories, 5
(2004) 1–121.

21. E.A. Lee. Making concurrency mainstream. Invited talk at CONCUR 2006, 2006.
22. S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 2nd

edition, 1998.
23. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
24. E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92, 1991.
25. M.R. Mousavi, M.A. Reniers, and J.F. Groote. A syntactic commutativity format

for SOS. Inform. Process. Lett., 93(5):217–223, 2005.
26. K. Nishizawa and A.J. Power. Lawvere theories enriched over a general base.

Journ. of Pure & Appl. Algebra, 2006. To appear.
27. J. Power and D. Turi. A coalgebraic foundation for linear time semantics. In

Category Theory and Computer Science, volume 29 of Elect. Notes in Theor. Comp.
Sci. Elsevier, Amsterdam, 1999.

28. J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci.,
249:3–80, 2000.

29. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Logic
in Computer Science, pages 280–291. IEEE, Computer Science Press, 1997.

