
Trace Semantics via DeterminizationI

Bart Jacobsa, Alexandra Silvaa,1,∗, Ana Sokolovab

aInstitute for Computing and Information Sciences, Radboud University Nijmegen
bDepartment of Computer Sciences, University of Salzburg

Abstract

This paper takes a fresh look at the topic of trace semantics in the theory of coalgebras. In the last few years, two
approaches, somewhat incomparable at first sight, captured successfully in a coalgebraic setting trace semantics for
various types of transition systems. The first development of coalgebraic trace semantics used final coalgebras in
Kleisli categories and required some non-trivial assumptions, which do not always hold, even in cases where one can
reasonably speak of traces (like for weighted automata). The second development stemmed from the observation that
trace semantics can also arise by performing a determinization construction and used final coalgebras in Eilenberg-
Moore categories. In this paper, we develop a systematic study in which the two approaches can be studied and
compared. Notably, we show that the two different views on trace semantics are equivalent, in the examples where
both approaches are applicable.

Keywords: coalgebra, Kleisli category, Eilenberg-Moore category, trace semantics

1. Introduction

Studying the semantics of state-based systems has been a long quest in Theoretical Computer Science. Central
to this study is the search for the correct notion of equivalence and proof methods thereof. Coalgebras provide an
abstract framework for state-based computation, where a canonical notion of equivalence can be uniformly derived
from the type (formally, a functor) of the system under study. The canonical notion of equivalence is adequate in
many situations, but turns out to be too fine when the type of the system includes certain computational effects that
are intended to be hidden from the observer. To overcome this shortcoming of the general theory of coalgebras, notions
of equivalence in which the type of the system can be split into relevant type information and computational effects
to be hidden were devised. The coarser equivalences were coined under the generic name of coalgebraic (decorated)
trace semantics [18, 36, 37, 6].

In this paper, we take a fresh look at the topic of coalgebraic trace semantics and provide a framework where the
existing two main approaches, which we explain next, can be studied and compared. Throughout the rest of the paper
we assume a certain familiarity with basic notions of category theory, such as functors, natural transformations and
distributive laws, as well as with the definitions of Kleisli and Eilenberg-Moore categories. Readers unfamiliar with
these notions can find basic material on these in standard category theory books, see e.g. [2].

A coalgebra is a map of the form X → H(X), where X is a state space and H is a functor that captures the kind
of computation involved. Often, this H is, or contains, a monad T , providing certain computational effects, such as
when T is lift 1 + (−), powerset P or distribution D, giving partial, non-deterministic or probabilistic computation.

IExtended version of [23].
∗Corresponding author

Email addresses: bart@cs.ru.nl (Bart Jacobs), alexandra@cs.ru.nl (Alexandra Silva), anas@cs.uni-salzburg.at (Ana
Sokolova)

1Also affiliated to Centrum Wiskunde & Informatica (Amsterdam, The Netherlands) and HASLab / INESC TEC, Universidade do Minho
(Braga, Portugal).

Preprint submitted to Elsevier May 15, 2014

In the case such an H contains a monad T , it turns out that there are two archetypical forms in which the monad T
plays a role, namely in:

X // G(TX) or X // T (FX) (1)

In the first case, the monad T occurs inside a functor G that typically handles input and output. In the second case
the monad T is on the outside, encapsulating a form of computation over a functor F , that typically describes the
transitions involved. In some cases these two forms are equivalent, for instance for non-deterministic automata with
labels—given by a set A—and termination. They involve the powerset monad P and can be described equivalently as:

X // 2× (PX)A or X // P(1 +A×X)

where on the left-hand-side we have the functor G = 2× (−)A and on the right-hand-side F = 1 +A× (−). These
descriptions are equivalent because the powerset monad P is special (it is “additive”, see [12], mapping coproducts to
products). In fact, there are isomorphisms:

P(1 +A×X) ∼= P(1)× P(A×X) ∼= 2× (P(X))A. (2)

Classically, to study language or trace equivalence for non-deterministic automata there is a standard construction
called determinization [20]. It involves changing the state space X into a state space P(X). In doing so, the transition
structure becomes much simpler (in particular, deterministic).

In this paper, we are interested in a similar determinization construction, but on a more abstract level. It involves
changing the state space from X into T (X), for a monad T . It turns out that this can be done relatively easily for
coalgebras of the form X → G(TX), on the left in (1), as illustrated in [36]: it involves a distributive law between G
and T , and such law corresponds to a lifting Ĝ of the functor G to the category EM(T) of Eilenberg-Moore algebras
of T . Moreover, the final G-coalgebra lifts to a final Ĝ-coalgebra in EM(T). In this way, one obtains final coalgebra
semantics in a category of algebras. It yields a first form of “EM” extension semantics, see Definition 1. Categorically,
this extension X 7→ T (X) is given by the free algebra functor C→ EM(T).

Extension for coalgebras of the form X → T (FX) on the right in (1) is more complicated; it involves the
comparison functor K`(T) → EM(T). We proceed by first translating these coalgebras to coalgebras of the lifted
functor Ĝ via a suitable law e : TF ⇒ GT , see Section 6 (and [3]). It will be shown that the resulting trace semantics,
in categories of algebras, as sketched above,

• not only includes the trace semantics in Kleisli categories developed in [18];

• but also covers more examples; in particular, it covers trace semantics for weighted automata X →M(1 +A×
X), involving the multiset monad M. This monad does not fit in the trace framework of [18] because its Kleisli
category is not dcpo-enriched.

The technical (categorical) core of the paper concentrates on lifting the comparison functor K`(T) → EM(T) to
categories of coalgebras CoAlg(F̂)→ CoAlg(Ĝ), of lifted functors F̂ , Ĝ. We specialize this framework by taking
G to be the functor B × (−)A for deterministic automata. Its final coalgebra BA

?

gives trace semantics. Our
framework is general enough to allow a different semantics, like “tree” semantics, by using a different functor G, as
we illustrate in other examples.

The paper is organized as follows. The first section below recalls the basics about monads and the associated
Kleisli category and category of (Eilenberg-Moore) algebras. Section 3 gives a systematic account of liftings of func-
tors to such (Kleisli and algebra) categories, and of distributive laws; it includes a lifting result for final coalgebras to
categories of Eilenberg-Moore algebras. Subsequently, Section 4 briefly recalls the coalgebraic description of deter-
ministic automata, their final coalgebras, and the lifting of these final coalgebras to categories of Eilenberg-Moore al-
gebras; it also includes a description of such final coalgebras obtained via a lifting of an adjunction Setsop � EM(T),
in the style of [34]. Section 5 contains examples of the application of EM-extension semantics: for classical non-
deterministic automata and a new example mixing probability and non-determinism, for simple Segala systems, ap-
plicable also to alternating automata and non-deterministic weighted automata, as well as to pushdown automata. In
Section 6, we develop an extension semantics for coalgebras of type TF (Definition 2, via Theorem 2) and show

2

that the Kleisli trace semantics from [18] fits in the current setting (Proposition 5). We also summarize and relate
all relevant categories and functors (Theorem 3). Section 7 presents examples of the K`-extension semantics, includ-
ing examples already treated in [18] and, more notably, examples that cannot be studied in the framework of [18].
Section 8 contains concluding remarks and pointers for future work.

This paper is an extended version of [23]. We include a new section on duality and extra examples: alternating,
non-deterministic weighted, and pushdown automata.

2. Monads and their Kleisli and Eilenberg-Moore categories

This section recalls the basics of the theory of monads, as needed here. For more information, see e.g. [29, 4, 28, 7].
A monad is a functor T : C → C together with two natural transformations: a unit η : idC ⇒ T and multiplication
µ : T 2 ⇒ T . These are required to make the following diagrams commute, for X ∈ C.

T (X)
ηT (X)

// T 2(X)

µX

��

T (X)
T (ηX)
oo T 3(X)

µT (X)
//

T (µX)
��

T 2(X)

µX

��

T (X) T 2(X)
µX

// T (X)

We briefly describe the examples of monads on Sets that we use in this paper.

• The powerset monad P maps a setX to the set PX of subsets ofX , and a function f : X → Y to P(f) : PX →
PY given by direct image. Its unit is given by singleton η(x) = {x} and multiplication by union µ({Xi ∈
PX | i ∈ I}) =

⋃
i∈I Xi.

• The subprobability distribution monad D is defined, for a set X and a function f : X → Y , as

DX = {ϕ : X → [0, 1] |
∑
x∈X ϕ(x) ≤ 1} Df(ϕ)(y) =

∑
x∈f−1(y)

ϕ(x).

The support set of a distribution ϕ ∈ DX is defined as

supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}.

Note that we do not restrict distributions to finitely supported ones in the definition of D. The unit of D

is given by a Dirac distribution η(x) = δx = (x 7→ 1) for x ∈ X and the multiplication by µ(Φ)(x) =∑
ϕ∈supp(Φ)

Φ(ϕ) · ϕ(x) for Φ ∈ DDX .

• For a semiring S, the multiset monad MS is defined on a set X as:

MSX = {ϕ : X → S | supp(ϕ) is finite }.

This monad captures multisets ϕ ∈ MSX , where the value ϕ(x) ∈ S gives the multiplicity of the element
x ∈ X . When S = N, this is sometimes called the bag monad.

On functions, MS is defined like the subdistribution monad D. Again, the support set of a multiset ϕ ∈ MSX
is defined as supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}. The finite support requirement is needed for M to be a monad.
The unit η and multiplication µ of MS are defined in the same way as for D.

We also use the non-deterministic side-effect monad whose definition we postpone to Section 5.5.

3

K`(T)

E // EM(T)

}}

C

With a monad T on a category C one associates two categories and a comparison
functor E between them, as on the right. The “Kleisli” category K`(T) is used to
capture computations of type T , in the paradigm that uses monads for effects in a
functional world [31]. The objects of the “Eilenberg-Moore” category EM(T) are
algebraic structures, in abstract form. Objects of EM(T) are called ‘algebras’, or
sometimes ‘Eilenberg-Moore algebras’ to avoid possible confusion with algebras of a functor F . The latter also
form a category written as Alg(F). The comparison functor E : K`(T) → EM(T) plays here the role of pure
determinization operation. The categories K`(T) and EM(T) are initial and final in a suitable sense, see [29] for
details. This comparison functor E will be used as the determinization functor. We now describe the above points in
more detail.

The Kleisli category K`(T) has the same objects as the underlying category C, but morphisms X → Y in K`(T)
are maps X → T (Y) in C. The identity map X → X in K`(T) is T ’s unit ηX : X → T (X); and composition g � f
in K`(T) uses T ’s multiplication in: g � f = µ ◦ T (g) ◦ f . There is a forgetful functor U : K`(T)→ C, sending X
to T (X) and f to µ ◦ T (f). This functor has a left adjoint F, given by F(X) = X and F(f) = η ◦ f . Such a Kleisli
category K`(T) inherits colimits from the underlying category C.

The category EM(T) of Eilenberg-Moore algebras has as objects maps of the form a : T (X) → X , making the
first two diagrams below commute.

X
η
// TX

a
��

T 2X

µ
��

T (a)
// TX

a
��

TX

a
��

T (f)
// TY

b
��

X TX
a
// X X

f
// Y

A homomorphism of algebras
(
TX

a→ X
)
→
(
TY

b→ Y
)

is a map f : X → Y in C between the underlying objects
making the diagram above on the right commute. The diagram in the middle thus says that the map a is a homomor-
phism µ → a. The forgetful functor U : EM(T) → C has a left adjoint F, mapping an object X ∈ X to the (free)
algebra µX : T 2(X)→ T (X) with carrier T (X).

Each category EM(T) inherits limits from the category C. In the special case where C = Sets, the category
of sets and functions (our standard universe), the category EM(T) is not only complete but also cocomplete (see [4,
§ 9.3, Prop. 4]).

The extension functorE : K`(T)→ EM(T) sends an objectX ∈ K`(T) to the free algebraE(X) = (µ : T 2(X)→
T (X)). For a morphism f : X → Y in K`(T), that is, f : X → T (Y) in C, we have E(f) = µ ◦ T (f) : T (X) →
T (Y). It forms a map of algebras. Sometimes this E(f) is called the “Kleisli extension” of f .

3. Liftings to Kleisli and Eilenberg-Moore categories

In this section we consider the situation where we have a monad T : C → C, with unit η and multiplication µ,
and two endofunctors F,G : C → C on the same category C. We will be interested in distributive laws between T ,
and F or G. These can be of two forms, namely:

FT =⇒ TF “F distributes over T ” “K`-law”

TG =⇒ GT “T distributes over G” “EM-law”

It is rather difficult to remember whether the monad distributes over a functor or vice versa and so we prefer to use
the terminology “K`-law” and “EM-law”. This is justified by Proposition 1 below.

But first we have to be more precise about what a distributive law is. A K`-law λ : FT ⇒ TF is a natural
transformation that commutes appropriately with the unit and multiplication of the monad, i.e., for all X in C the
following diagrams commute:

FX

F (ηX)
��

FX

ηFX

��

FT 2X

F (µX)
��

λTX // TFTX
T (λX)

// T 2FX

µFX

��

FTX
λX

// TFX FTX
λX

// TFX

(3)

4

An EM-law ρ : TG⇒ GT is a natural transformation for which the following diagrams commute for all X in C.

GX

ηGX

��

GX

G(ηX)
��

T 2GX

µGX

��

T (ρX)
// TGTX

ρTX // GT 2X

G(µX)
��

TGX
ρX
// GTX TGX

ρX
// GTX

(4)

The following “folklore” result gives an alternative description of distributive laws in terms of liftings to Kleisli
and Eilenberg-Moore categories, see also [25], [32] or [3].

Proposition 1 (“laws and liftings”). Assume a monad T and endofunctors F,G on the same category C, as above.
There are bijective correspondences between K` (EM)-laws and liftings of F (G) to K` (EM)-categories, in:

K`-law λ : FT ⇒ TF
=================

K`(T)
��

L // K`(T)
��

C
F // C

EM-law ρ : TG⇒ GT
==================

EM(T)
��

R // EM(T)
��

C
G // C

PROOF. Assuming a K`-law λ : FT ⇒ TF we can define L : K`(T)→ K`(T) as:

L(X) = F (X) L
(
X

f−→ Y
)

=
(
F (X)

F (f)−−−→ F (TY)
λX−−→ T (FY)

)
.

The above two requirements (3) for λ precisely say that L is a functor.
Conversely, assume there is a functor L : K`(T)→ K`(T) in a commuting square as described in the proposition.

Then, on objects, L(X) = F (X). Further, for a map f : X → TY in C we get L(f) : FX → TFY in C. This
suggests how to define a distributive law: the identity map idTX : TX → TX in C forms a map TX → X in K`(T),
so that we can define λX = L(idTX) : FTX → TFX in C. It satisfies (3).

For the second correspondence assume we have an EM-law ρ : TG⇒ GT . It gives rise to a functorR : EM(T)→
EM(T) by: (

TX

X

a
��

)
7−→

(
TGX

GX

G(a)◦ρ
��

)
and f 7−→ G(f).

The equations (4) guarantee that this yields a new T -algebra.
In the reverse direction, assume a lifting R : EM(T) → EM(T). Applying it to the multiplication µX yields an

algebra R(µX) : T (GTX)→ GTX . We then define ρX = R(µX) ◦ TG(ηX) : TGX → GTX . Remaining details
are left to the reader. �

In what follows we shall simply write F̂ , Ĝ for the lifting of F , G, both when it comes from a K`-law λ or from
an EM-law ρ. Usually these laws are fixed, so confusion is unlikely, and a light, overloaded notation is preferred.

The next result (see also [3]) is not really used in this paper, but it is a natural sequel to the previous proposi-
tion since it relates the liftings F̂ , Ĝ to the standard adjunctions. Recall that we write Alg(−) and CoAlg(−) for
categories of algebras and coalgebras of a functor, not of a (co)monad.

Proposition 2. In presence of a K`-law and an EM-law, the adjunctions C � K`(T) and C � EM(T) lift to
adjunctions between categories of, respectively, algebras and coalgebras, as described below.

Alg(F)

��

F̂
,,

⊥ Alg(F̂)

��

Û

ll CoAlg(G)

��

F̂
--

⊥ CoAlg(Ĝ)

��

Û

mm

C
F

;;

F
,,

⊥ K`(T)
F̂ee

U

jj C
G

;;

F
,,⊥ EM(T)

Ĝee
U

kk

There is another lifting result, for free functors only, that is relevant in this setting.

5

Lemma 1. In presence of a K`-law the free functor F : C → K`(T) can be lifted, and similarly, given an EM-law
the free algebra functor F : C→ EM(T) can be lifted:

CoAlg(TF)

��

FK` // CoAlg(F̂)

��

CoAlg(GT)

��

FEM // CoAlg(Ĝ)

��

CF
&&

T

ZZ

F // K`(T)
F̂ee

CG
&&

T

ZZ

F // EM(T)
Ĝee

(5)

The functor CoAlg(GT) → CoAlg(Ĝ) on the right gives an abstract description of what is called the general-
ized powerset construction in [36].

PROOF. The first part is easy, since the functor FK` : CoAlg(TF)→ CoAlg(F̂) is the identity on objects; it sends
a map f of TF -coalgebras to F(f) = η ◦ f .

Next, assuming an EM-law ρ : TG⇒ GT one defines FEM : CoAlg(GT)→ CoAlg(Ĝ) by

FEM

(
X

c // GTX
)

=
(
TX

T (c)
// TGTX

ρTX // GT 2X
G(µX)

// GTX
)
. (6)

It is not hard to see that FEM(c) is a coalgebra µX → Ĝ(µX) on the free algebra µX . On morphisms one simply has
FEM(f) = T (f). �

K`-laws are used to obtain final coalgebras in Kleisli categories ([18]) but this requires non-trivial side-conditions,
like enrichement in dcpo’s. For EM-laws the situation is much easier, see below; instances of this result have been
studied in [36], see also [3].

Proposition 3. Assume a monad T and endofunctor G on a category C, with an EM-law ρ : TG ⇒ GT between
them. If G has a final coalgebra ζ : Z

∼=−→ GZ in C, then Z carries a T -algebra structure obtained by finality, as
on the left below. The map ζ then forms a map of algebras as on the right, which is the final coalgebra for the lifted
functor Ĝ : EM(T)→ EM(T).

GTZ
G(α)

// GZ

TZ

ρ◦T (ζ)

OO

α
// Z

∼= ζ

OO
(
TZ

Z

α
��

)
ζ

∼=
// Ĝ

(
TZ

Z

α
��

)
=

(
T (GZ)

GZ

G(α)◦ρ
��

)

PROOF. We leave it to the reader to verify that α is a T -algebra. By construction of α, the map ζ is an algebra
homomorphism α → Ĝ(α). Suppose for an arbitrary algebra b : TY → Y we have a Ĝ-coalgebra c : b → Ĝ(b).
Then c : Y → GY satisfies G(b) ◦ ρ ◦ T (c) = c ◦ b. By finality in C there is a unique map f : Y → Z with
ζ ◦ f = G(f) ◦ c. This f is then the unique map b→ α in EM(T). �

At this stage we can describe the first form of extension semantics, which we will call EM-extension semantics,
since it depends on an EM-law.

Definition 1 (EM-extension). Let ρ : TG ⇒ GT be an EM-law, for G,T : C → C, such that the final G-coalgebra
Z
∼=−→ GZ exists. “Extension” semanticsX → Z in C, for a coalgebra c : X → GTX , is obtained via the following

three steps:

1. Transform c into a Ĝ-coalgebra FEM(c).
2. Get the resulting Ĝ-coalgebra map TX → Z in EM(T) by finality.
3. Precompose this map with the unit, yielding X → TX → Z in C.

6

Note that Lemma 1 enables Step 1. Also, recall that the finalG-coalgebraZ ∼=−→ GZ lifts to a final Ĝ-coalgebra by
Proposition 3, which enables Step 2. Intuitively, Step 1 in Definition 1 corresponds to constructing the determinization
of the original coalgebra; Step 2 provides semantics (for the determinization) via finality; Step 3 extracts the semantics
for individual states. The reader will find elaborated examples of extension semantics in Section 5.

The next two sections will introduce examples of EM-laws. Here, we briefly look at K`-laws. The following
result, from [30], shows that these K`-laws are quite common, namely for commutative monads and analytic functors.

Lemma 2. Let T : Sets→ Sets be a commutative monad, and F : Sets→ Sets an analytic functor. Then there is
a (canonical) K`-law λ : FT ⇒ TF . �

4. Deterministic automata

This section briefly describes deterministic automata as coalgebras, recalls the final coalgebra, and introduces an
associated EM-law.

For arbitrary sets A,B there is an endofunctor B × (−)A : Sets → Sets. Its coalgebras φ = 〈φo, φi〉 : X →
B × XA are deterministic (Moore) automata. The map φo : X → B describes the immediate output. The map
φi : X → XA is the transition function, mapping a state x ∈ X and an input a ∈ A to a successor state φi(x)(a) ∈ X .
For the special case B = 2 = {0, 1}, the map φo tells of a state whether it is final or not. The following result is
standard, so we omit the proof.

Lemma 3. The final coalgebra of the functor B× (−)A on Sets is given by the set of functions BA
?

, with structure:

BA
? ζ=〈ζo,ζi〉

// B ×
(
BA

?)A
defined via the empty sequence 〈〉 ∈ A? and via prefixing a · σ of a ∈ A to σ ∈ A?: For t ∈ BA?

ζo(t) = t(〈〉) and ζi(t)(a) = λσ ∈ A?. t(a · σ). �

This result captures the paradigm of trace semantics: a state x ∈ X of an arbitrary coalgebra X → B ×XA has a
“behaviour” in the carrier of the final coalgebra BA

?

that maps a trace-as-word of inputs in A? to an output in B. In
the sequel we consider the special case where the output set is the free algebra T (B), for a monad T . In the next result
we show that we then get a distributive law. We apply this result only for the category Sets. But it will be formulated
more generally, using a strong monad [27] on a Cartesian closed category. This strength is automatic for any monad
on Sets [27].

The following property follows directly from the properties of an alternative formulation of strength st : T (UV)→
T (U)V , given by st(h)(x) = T

(
λp. p(x)

)
(h) for h ∈ T (UV) and x ∈ V . Such a formulation of strength [22,

Exercise 4.8.13] arises from the monad strength stT by st = T (ev)A ◦ Λ(stT) where ev : A × BA → B is the
evaluation map and Λ(f) : A→ BC , for an arrow f : A× C → B, is the abstraction map.

Lemma 4. Let T be a strong monad on a Cartesian closed category C and let A,B ∈ C be arbitrary objects.
Consider the associated “machine” endofunctorM = T (B)× (−)A on C. Then there is an EM-law ρ : TM ⇒MT
given by:

ρX =
(
T
(
T (B)×XA

) 〈T (π1),T (π2)〉
// T 2(B)× T (XA)

µ×st
// T (B)× T (X)A

)
.

�

This EM-law can be defined slightly more generally, not with a free algebra T (B) as output, but with an arbitrary
algebra. But in fact, most of our examples involve free algebras.

The resulting lifting M̂ : EM(T) → EM(T) sends an algebra a : TX → X to the algebra TMX → MX given
by:

T
(
T (B)×XA

) 〈T (π1),T (π2)〉
// T 2(B)× T (XA)

µ×(aA◦st)
// T (B)×XA

7

Proposition 3, in combination with Lemma 3, says that the final M -coalgebra T (B)A
?

carries a T -algebra structure
that forms the final M̂ -coalgebra in EM(T). With a bit of effort one shows that this algebra on T (B)A

?

is given by:

α =
(
T
(
T (B)A

?) st //
(
T 2(B)

)A? µA?

// T (B)A
?
)

Then, by Proposition 3, the map ζ : α
∼=−→ M̂(α) from Lemma 3 forms the final M̂ -coalgebra.

4.1. Finality via duality
We have just seen how to obtain a final coalgebra in categories of Eilenberg-Moore algebras, for the lifted au-

tomaton functor B × (−)A. It turns out that in the particular cases that we are interested in there is an alternative way
to obtain such finality, namely via duality. This will be described in the current subsection; it involves a very limited
class of functors, namely of the form F = B + A × (−) where B,A are sets. The results below are not needed for
what follows. This duality-based approach makes a connection to the work of [34, 26].

We start from a basic result, given as exercise in [22].

Lemma 5. Let T : Sets→ Sets be a monad, and d : T (D)→ D an arbitrary (but fixed) Eilenberg-Moore algebra.
Then there is an adjunction:

Setsop
D(−)

,,> EM(T)
Hom(−,d)

ll (7)

PROOF. Since algebras are closed under products, for each set X there is an algebra structure on DX given by:

T
(
DX

) st // T (D)X
dX // DX ,

where st is the strength map (as in Lemma 4). It is easy to see that for functions f : X → Y and ϕ : Y → D the map
Df (ϕ) = ϕ ◦ f : DY → DX is a homomorphism of algebras. Thus we have a functor Setsop → EM(T).

In the other direction we map an algebra β : T (B)→ B to the set

Hom(β, d) = {g : B → D | g ◦ d = β ◦ T (g)}.

This obviously yields a functor EM(T)→ Setsop. Moreover, there is a bijective correspondence:(
T (B)

B

β
��

)
f

//

T (DX)

DX
dX◦st��


=============================

X
g

// Hom(β, d)

It is obtained by swapping arguments.

• Given an algebra map f : B → DX define f : X → DB by f(x)(b) = f(b)(x). We have to show that
f(x) : B → D is an algebra map. Well, for u ∈ T (B):(

f(x) ◦ β
)
(u) = f(x)(β(u)) = f(β(u))(x) =

(
dX ◦ st ◦ T (f)

)
(u)(x)

= d
(

st
(
T (f)(u)

)
(x)
)

= d
(
T
(
(λp. p(x)) ◦ f

)
(u)
)

= d
(
T
(
λb. f(b)(x)

)
(u)
)

= d
(
T
(
λb. f(x)(b)

)
(u)
)

=
(
d ◦ T (f(x))

)
(u).

8

• Similarly, for a function g : X → Hom(β, α), the map g : B → DX defined by g(b)(x) = g(x)(b) forms a
map of algebras.

It is easy to see that these constructions are inverse to each other. �

We need another basic result about lifting adjunctions in situations with a “dual” adjunction Aop � B, like in [24]
and many other places.

Lemma 6. Consider the situation:

H << Cop
P

** A
F

kk Kbb with F a P , unit η, and counit ε (8)

We assume a natural transformation σ : PH ⇒ KP .

1. This σ gives rise to a functor P : Alg(H)op → CoAlg(K), given by:

P
(
H(B)

β
// B
)

=
(
P (B)

P (β)
// PH(B)

σB // KP (B)
)
.

2. If this σ : PH ⇒ KP is an isomorphism, then there is a similar lifting of the functor F : A → Cop to
F : CoAlg(K)→ Alg(H)op, by:

F
(
X

c // K(X)
)

=
(
HF (X)

σX

∼=
// FK(X)

F (c)
// F (X)

)
.

where σ : HF ⇒ FK is obtained as:

σ =
(
HF

εHF +3 FPHF
Fσ−1F +3 FKPF

FKη +3 FK
)
.

3. This yields an adjunction F a P over F a P in:

Alg(H)op
P

--

��

> CoAlg(K)

F

mm

��

Cop

H

;;

P
,,> A

F

ll

K
cc

PROOF. By naturality of σ and σ these F and P are functors. We need to show that there is a bijective correspondence
between homomorphisms of (co)algebras f and g in:

F
(
X

c→ K(X)
)

f
//

(
H(B)

β→ B
)

in Alg(H)op

==============================(
X

c→ K(X)
)

g
// P
(
H(B)

β→ B
)

in CoAlg(K)

This correspondence is essentially the one of the underlying adjunction F a P . �

Lemma 7. Let T be a monad with algebra d : T (D) → D giving rise to an adjunction (7). For arbitrary sets A,B
consider the two functors F,G : Sets→ Sets given by:

F (X) = B + (A×X) and G(X) = DB ×XA.

9

1. There is an EM-law ρ : TG⇒ GT , with components:

ρX =
(
T (DB ×XA)

〈T (π1),T (π2)〉
// T (DB)× T (XA)

st×st
��

T (D)B × T (X)A
dB×id

// DB × T (X)A
)
.

2. This ρ induces a lifting Ĝ : EM(T)→ EM(T) for which there is an isomorphism σ : D(−)F ⇒ ĜD(−).
3. Lemma 6 now makes it possible to lift the adjunction (7) in:

Alg(F)op --

��

> CoAlg(Ĝ)mm

��

Setsop

F

;;

D(−)

,,> EM(T)
Hom(−,d)

ll
Ĝee

(9)

PROOF. We leave it to the reader to verify that ρ as defined above is indeed a distributive law. The isomorphism
σX : DF (X) ∼=→ G(DX) in the second point is simply:

DF (X) = DB+(A×X) ∼= DB ×DA×X ∼= DB ×
(
DX

)A
= G(DX).

Some elementary calculations show that it is a map of algebras. The lifting of adjunctions follows directly from
Lemma 6. �

Many of the trace semantics examples are instances of the following result.

Theorem 1. Let T : Sets → Sets be a monad with dual adjunction Setsop � EM(T) as in (7), resulting from an
algebra d : T (D)→ D. For each functor F = B + (A× (−)) we consider the associated functor G = DB × (−)A

with its lifting Ĝ : EM(T) → EM(T) as in Lemma 6. The initial F -algebra B × A? in Sets then yields the final
Ĝ-coalgebra DB×A?

in EM(T).

PROOF. The initial object in Alg(F) is final in the dual category Alg(F)op. Hence it is preserved by the right adjoint
Alg(F)op → CoAlg(Ĝ) in (9). This right adjoint sends the carrier B × A? of the initial F -algebra to the carrier
DB×A?

of the final Ĝ-coalgebra. �

5. Examples of EM-extension semantics

This section describes three examples of EM-laws, one familiar one in the context of non-deterministic automata,
a new one for simple Segala systems. The latter involves a more general law (Lemma 8) that can also be used for
alternating automata and non-deterministic multiset automata. Finally, we also include pushdown automata.

5.1. Non-deterministic automata, in EM-style

We briefly restate the non-deterministic automaton example from [36], but this time using the general constructions
developed so far. A non-deterministic automaton is understood here as a coalgebra c : X → 2× (PX)A, which is of
the form X → G(TX), where G is the functor 2× (−)A and T is the powerset monad P on Sets.

Since 2 = {0, 1} is the (carrier of the) free algebra P(1) on the singleton set 1 = {∗}, Lemma 4 applies. It yields
an EM-law with components ρ = 〈ρ1, ρ2〉 : P(2×XA)→ 2× (PX)A, given by:{

ρ1(U) = 1 ⇐⇒ ∃〈b, h〉 ∈ U. b = 1

x ∈ ρ2(U)(a) ⇐⇒ ∃〈b, h〉 ∈ U. h(a) = x.

10

Lemma 1 yields a coalgebra FEM(c) = 〈φo, φi〉 : P(X)→ 2× (PX)A in the category EM(P), where:{
φo(U) = 1 ⇐⇒ ∃x ∈ U. π1c(x) = 1

y ∈ φi(U)(a) ⇐⇒ ∃x ∈ U. y ∈ π2c(x)(a).

By Proposition 3 the final G-coalgebra 2A
?

= P(A?) of languages is also final for the functor Ĝ on EM(P). Hence,
we get a map [[−]] : P(X) → P(A?) by finality. Applying this map to the singleton set {x} ∈ P(X) yields the set of
words that are accepted in the state x ∈ X . Thus, the EM-semantics from Definition 1 yields the trace semantics for
a non-deterministic automaton c : X → 2× (PX)A, via the language accepted in a state.

To illustrate that different EM-laws generate different semantics, consider the following alternative law ρ′ =
〈ρ′1, ρ2〉, which is a slight adaptation of the law ρ above, namely by changing the existential quantification in ρ1 to a
universal one.

ρ1
′(U) = 1 ⇐⇒ ∀〈b, h〉 ∈ U. b = 1

The determinization of c : X → 2× (PX)A is now given by FEM(c) = 〈φ′o, φi〉, where

φ′o(U) = 1 ⇐⇒ ∀x ∈ U. π1c(x) = 1.

and φi is defined as above. The map [[−]] : P(X) → P(A?) into the final coalgebra yields, when applied to the
singleton set {x} ∈ P(X), the set of words which, starting from x in the automaton c : X → 2× (PX)A, always lead
to a final state. That is,

w ∈ [[{x}]] ⇐⇒ all paths starting from x and labelled by w are accepting in the automaton c

Consider the following non-deterministic automaton c : X → 2 × (PX)A, with X = {x1, x2, x3, x4, x5} and
only one final state x4, which we underline. Starting from state {x1}, the reachable parts of the two determinizations,
arising from ρ and ρ′ are given as follows.

x1
a

||

a

""
x2

b

""

x3
b

""

c

||
x4 x5

{x1}
a
��

{x2, x3}
b

xx
c
��

{x4, x5} {x4}

{x1}
a
��

{x2, x3}
b

xx
c
��

{x4, x5} {x4}

Non-deterministic automaton c Part of the determinization of c with Part of the determinization of c with

respect to ρ: FEM(c) = ρ ◦ P(c) respect to ρ′: FEM(c) = ρ′ ◦ P(c)

Note the subtle difference: in the automaton displayed in the middle the state {x1} accepts the language {ab, ac},
whereas in the automaton depicted on the right the word ab is not accepted, since it also labels a non-accepting path

in the automaton c: x1
a // x3

b // x5 .

5.2. Simple Segala systems, in EM-style
Next, we consider simple Segala systems as a non-trivial example of EM-extension semantics, which was not

considered in [36]. These systems are also called simple probabilistic automata [35], Markov decision processes,
or probabilistic labelled transition systems (LTSs). They are coalgebras of the form c : X → P(A × DX), mixing
probability and non-determinism. In a recent paper [13], with ideas appearing already in [33, 15, 10, 19], it has been
recognized that it might be useful for verification purposes to transform them into so-called distribution LTSs, i.e. into
LTSs with state space DX of so-called uncertain or belief states.

Given a simple Segala system c : X → P(A×DX), we denote by c] : DX → P(A×DX) its distribution LTS
from [13]. It is defined by

c](ϕ) = {〈a, ψ〉 | ∃x ∈ supp(ϕ). 〈a, ψ〉 ∈ c(x)}
=
(
µP ◦ P(c) ◦ supp

)
(ϕ).

(10)

11

where supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}. In the usual notation for transitions, this means that for ϕ,ψ ∈ DX ,

ϕ
a−→c] ψ if and only if ∃x ∈ supp(ϕ). x

a−→c ψ.

Here, we capture this situation via a distributive law ρ : DP(A× (−)) =⇒ P(A×D). It is an EM-law ρ : TG⇒
GT for T = D and G = P(A × −) with the property that the EM-extension from Lemma 1 turns a simple Segala
system into its distribution LTS, see Proposition 4 below. Explicitly, for a distribution Φ ∈ DP(A×X), we define

ρ(Φ) = {〈a, δx〉 | ∃U ∈ supp(Φ). 〈a, x〉 ∈ U}
=
⋃
U∈supp(Φ){〈a, δx〉 | 〈a, x〉 ∈ U}

=
(
µP ◦ P2(id× ηD) ◦ supp

)
(Φ).

(11)

where δx is the Dirac distribution assigning probability 1 to x, i.e. δx = η(x). The fact that ρ is an EM-law is an
instance of the following result—using that the support forms a map of monads supp: D⇒ P.

Lemma 8. Each map of monads σ : T ⇒ S induces an EM-law

TS(A×−)
ρ +3 S(A× T (−))

of the monad T over the functor S(A×−). The components of ρ are given by:

ρX =
(
TS(A×X)

σS(A×−)X // S2(A×X)
S2(id×ηTX)

// S2(A× TX)
µS
(A×TX)

// S(A× TX)
)
. �

Remark 1. As emphasized, ρ in (11) is a distributive law between the monad D and the functor P(A × −). In
particular for A = 1 it is a distributive law between the monad D and the functor P. An important but subtle point
is that ρ is not a distributive law between the monad D and the monad P. There is no such distributive law as shown
in [39]. The unit law for the powerset monad, required for a monad distributive law, does not hold for ρ with A = 1:
ρ ◦ D(ηP) 6= ηPD. Nevertheless, one can distribute probability over non-determinism, via ρ. The construction
provides a non-standard LTS semantics to simple Segala systems, by first lifting these systems to distributions.

The distribution LTS in (10) from [13] is an instance of our general framework.

Proposition 4. Given a simple Segala system c : X → P(A × DX), its EM-extension FEM(c) from Lemma 1, ob-
tained via the EM-law ρ from (11), is the same as the coalgebra c# : DX → P(A×DX) described in Equation (10).

PROOF. By a straightforward calculation:

FEM(c)
(6)
= P(id× µD) ◦ ρ ◦ D(c)

(11)
= P(id× µD) ◦ µP ◦ P2(id× ηD) ◦ supp ◦ D(c)

= P(id× µD) ◦ P(id× ηD) ◦ µP ◦ supp ◦ D(c)

= µP ◦ P(c) ◦ supp
(10)
= c]. �

The following is a simple example of a non-determinization.

x1a

||

a

""

b

1
2

||

1
3

""

1
2

""

1
2

||
x2

a

33 x3 x4

b

kk

x1

b

a
ww

a
''

1
2x2 + 1

3x3

a
��

1
2x3 + 1

2x4

b
��

x2

a

33 x4

b

kk

simple Segala system c part of its non-determinization c#

12

In the representation of the non-determinization, on the right, state x1 is formally 1x1 = η(x1), an element of D(X).

Moreover, on the left, an arrow x
a // y means x

a // 1 // y .

Remark 2. Definition 1 describes how EM-extension semantics arises in presence of a final coalgebra. This does not
directly apply in this situation because the (ordinary) powerset functor does not have a final coalgebra, for cardinality
reasons. But if we restrict ourselves to finite subsets and distributions with finite support, there is still a map of monads
Dfin ⇒ Pfin, so that we get an EM-law DfinPfin(A × −) ⇒ Pfin(A × Dfin) by Lemma 8. For a “finitely branching”
Segala system c : X → Pfin(A × DfinX) one obtains semantics X → Z, where Z ∼=−→ Pfin(A × Z) is the final
coalgebra.

5.3. Alternating automata, in EM-style

Alternating automata with only existential states and transitions [9, 11] are coalgebras of the form c : X → P(A×
PX) hence of type GT for G = P(A × (−)) and T = P. As there is a trivial map of monads id : P ⇒ P, Lemma 8
provides us with a distributive law

ρ : PP(A× (−))⇒ P(A× P(−))

with components, given concretely, by

ρX =
(
PP(A×X)

PP(A×ηX)
// PP(A× PX)

µ(A×P)X // P(A× PX)
)

(12)

Given an alternating automaton c : X → P(A×PX), the resulting EM-extension FEM(c) : PX → P(A×PX) from
Lemma 1, obtained via the EM-law ρ from (12), amounts to

FEM(c) = Gµ ◦ ρ ◦ P(c) = µ ◦ P(c)

which in concrete terms gives
FEM(c)(U) =

⋃
x∈U

c(x), for U ⊆ X.

Clearly, the EM-extension (the non-determinization) of an alternating automaton is once again an LTS, this time
over subsets of the original state space. This non-determinization looks pretty much the same as the one for simple
Segala systems if one disregards the probabilities. Here is an example. In an alternating automaton, we use unlabelled
arrows to denote non-deterministic branching (from the powerset monad) after an a-labelled transition.

x1a

||

a

""

b

|| "" ""||
x2

a

33 x3 x4

b

kk

{x1}

b
��

a
ww

a
''

{x2, x3}
a
��

{x3, x4}
b��

{x2}
a

:: {x4}

b

dd

alternating automaton part of its non-determinization

Remark 2 applies here as well, id : Pfin ⇒ Pfin is of course also a map of monads, leading to semantics X → Z,
where Z ∼=−→ Pfin(A × Z) is the final coalgebra, for a “finitely branching” alternating automaton c : X → Pfin(A ×
PfinX).

13

5.4. Non-deterministic weighted automata, in EM-style

Coalgebras of the form c : X → P(A × MSX) are known as non-deterministic weighted automata or non-
deterministic multiset automata [14, 17]. They allow non-deterministic choice over labelled transitions into a multiset
with weights from a semiring S, commonly the semiring of natural numbers. These coalgebras are again of type GT
for the functor G = P(A× (−)) and the monad T = MS .

Similar to the case of simple Segala systems, the support forms a map of monads supp: MS ⇒ P and Lemma 8
provides us with a distributive law

MSP(A× (−))
ρ +3 P(A×MS(−))

with components:
ρX = µP ◦ PP(id× ηMS) ◦ suppX .

Just like for simple Segala systems, this amounts to an EM-extension FEM(c) : MSX → P(A ×MSX) (a non-
determinization) of a non-deterministic weighted automaton c : X → P(A×MSX), given by

FEM(c) = µP ◦ P(c) ◦ suppX .

The only difference with the non-determinization of simple Segala systems is that probabilities are replaced by weights
in a semiring. For completeness, we give an example with S = N.

x1a

||

a

""

b

3
||

2
""

2
""

1
||

x2

a

33 x3 x4

b

kk

x1

b

a
vv

a
((

3x2 + 2x3

a
��

1x3 + 2x4

b
��

x2

a

33 x4

b

kk

non-deterministic weighted automaton part of its non-determinization

Again, similar to the example of Segala systems, we denote, on the right, by x the formal sum 1x = η(x) ∈MS(X).
Also here Remark 2 applies as supp: MS ⇒ Pfin is a map of monads, leading to LTS semantics for “finitely
branching” non-deterministic weighted automata. Note that the multiset monad always has finite branching (finite
support), so the finite branching requirement applies to the non-deterministic branching only: a finitely branching
non-deterministic weighted automaton is one of the form c : X → Pfin(A×MSX).

5.5. Pushdown automata, in EM-style

In this section we give another example of the framework by modeling pushdown automata coalgebraically, fol-
lowing [37], using the general constructions developed so far.

For this purpose, we will make use of T (X) = P(S×X)S , the non-deterministic side-effect monad [5] with side-
effects in a set S. The unit ηX : X → T (X) is given by η(x)(s) = {〈s, x〉}, and the multiplication µX : TT (X)) →
T (X) is given, for f ∈ P(S × (P(S ×X)S))S , by

µX(f)(s) =
⋃

〈s′,g〉∈f(s)

g(s′)

A (realtime) pushdown automaton (PDA) [1] is a tuple (Q,Σ,Γ, δ, 〈q0, α0〉, CF), where Q is the set of states,
Σ is the set of input symbols, Γ is the set of stack symbols, δ : Q → P(Q × Γ?)Σ×Γ is the transition function,
〈q0, α0〉 ∈ Q×Γ? is the initial configuration and CF ⊆ Q×Γ? is the set of final configurations. Here, Q×Γ? is the
set of all configurations.

14

This definition is slightly non-standard in the sense that no transition with empty word as input or empty stack is
allowed, which is what “realtime” refers to. However, the definition is equivalent to the standard one, i.e., realtime
PDA with the usual sets of accepting configurations accept the class of context-free languages, and it allows for a
smooth coalgebraic treatment.

For convenience, we introduce the notion of transition relation for configurations. A configuration 〈q, bβ〉 evolves
to a configuration 〈q′, αβ〉 by reading input a ∈ Σ, written 〈q, bβ〉 a // 〈q′, αβ〉 , if and only if 〈q′, α〉 ∈ δ(q)(a, b).
The transition relation extends to words w ∈ Σ? in the usual way.

A word w ∈ Σ? is accepted by a PDA if 〈q0, α0〉
w // 〈q, α〉 and 〈q, α〉 ∈ CF .

This definition captures several (equivalent) versions of acceptance for PDA. For instance, by taking CF = F ×
{〈〉}, for F ⊆ Q, we obtain the so-called acceptance by final states and empty stack.

Every pushdown automaton induces a function 〈o, t〉 : Q → GTQ where G is the functor 2Γ? × (−)Σ and T is
the non-deterministic side-effect monad defined above specialized for S = Γ? (intuitively, side effects in a pushdown
machine are changes in the stack). The functions o : Q→ 2Γ?

and t : Q→ (P(Q× Γ∗)Γ?

)Σ are defined as

o(q)(β) = 1 if and only if 〈q, β〉 ∈ CF
t(q)(a)(〈〉) = ∅
t(q)(a)(bβ) = {〈q′, αβ〉 | 〈q′, α〉 ∈ δ(q)(a, b)}

Hence, the output function o keeps track of final configuration and the transition function t describes the steps between
PDA configurations as specified by the transition function δ. In particular t(q)(a)(b) = δ(q)(a, b).

Note that every pushdown automaton gives rise to a GT -coalgebra, but not every function 〈o, t〉 : Q → GTQ
defines a (realtime) pushdown automaton, since, for instance, t(q) may depend on the content of the whole stack and
not just on the top element.

We write q
a,b|α−−−→ q′ for 〈q′, α〉 ∈ t(q)(a)(b) indicating that the automaton is in the state q, reads an input symbol

a, pops b from the stack, moves to state q′ and pushes the string α ∈ Γ? on top of the stack.
There is an EM-law ρ : TG⇒ GT with components:

P(Γ? × (2Γ? ×QΣ))Γ? ρQ=〈ρ1,ρ2〉
// 2Γ? × (P(Γ? ×Q)Γ?

)Σ

given by: {
ρ1(f)(α) = 1 ⇐⇒ ∃〈β, 〈g, t〉〉 ∈ f(α). g(β) = 1

〈β, q〉 ∈ ρ2(f)(a)(α) ⇐⇒ ∃〈γ, 〈g, t〉〉 ∈ f(α). γ = β and q = t(a).

This law is an instance of the general law defined in Lemma 7, for B = 1 and D = 2Γ?

. Given a coalgebra
c : Q→ GTQ, its EM-extension FEM(c) : TQ→ GTQ is

FEM(c) = (id× µΣ) ◦ ρ ◦ P(id× c)Γ?

.

More concretely, given such a coalgebra c = 〈o, t〉, we get FEM(c) = 〈o], t]〉 : P(Γ? ×Q)Γ? → 2Γ? × (P(Γ? ×
Q)Γ?

)Σ as follows. For f ∈ P(Γ? ×Q)Γ?

,{
o](f)(α) = 1 ⇐⇒ ∃〈β, q〉 ∈ f(α). o(q)(β) = 1

〈β, q〉 ∈ t](f)(a)(α) ⇐⇒ ∃〈γ, r〉 ∈ f(α). 〈β, q〉 ∈ t(r)(a)(γ).

The extension (determinization) can be thought of, in this case, as the infinite deterministic automaton that recog-
nizes the same language. As an example consider the PDA below, on the left, with starting configuration 〈q0, s〉 and
set of final configurations {〈q1, 〈〉〉}. The language accepted by this PDA is {aibi | i ≥ 1}.

15

q0
b,A|〈〉

//a,A|AA
77

a,s|A

RR
q1 b,A|〈〉
gg

q0, s
a
��

q0, A

a
��

b // q1, 〈〉

q0, AA

a
��

b // q1, A
b // q1, 〈〉

. . .

pushdown automaton c part of its determinization FEM(c)

In the representation of the determinization above, on the right, we represent the state (function) f ∈ TQ = P(Γ? ×
Q)Γ?

by its value when applied to the current stack, starting from η(q0). Hence, the initial state is represented by
η(q0)(s) = {〈s, q0〉}. We refrain from writing unnecessary brackets and swap the order of the PDA state and the
stack content for better readability. This representation allows us to put in evidence that the determinization indeed is
a representation of the infinite deterministic automaton that would recognize the language. Final states are, as before,
underlined. Note that to enable this representation we actually use the bijective correspondence:

P(Γ? ×Q)Γ?
// 2Γ? × (P(Γ? ×Q)Γ?

)Σ

===================================

P(Γ? ×Q)Γ?
// 2Γ? × (P(Γ? ×Q)Σ)Γ?

==================================

P(Γ? ×Q)Γ? × Γ? // 2× P(Γ? ×Q)Σ

Clearly, G = 2Γ? × (−)Σ is a particular deterministic automata functor and its final coalgebra (see Lemma 3) is

carried by
(
2Γ∗
)Σ∗

. It lifts to a final Ĝ-coalgebra in EM(T) by Proposition 3 and we get extension semantics by

Q
η
// TQ

[[−]]
//
(
2Γ∗
)Σ∗

where [[−]] is the unique map into the final.
The extension semantics allows us to recover the definition of acceptance for PDA. A word w ∈ A? is accepted by

a PDA-coalgebra with initial configuration 〈q0, α0〉 if and only if [[η(q0)]](w)(α0) = 1. If one takes CF = F × {〈〉}
and α0 = 〈〉, this definition coincides with the usual acceptance definition (via final states and empty stack): a word
w ∈ Σ? is accepted by a PDA-coalgebra if, starting from the initial state and empty stack, by reading w the PDA can
reach a final state and an empty stack.

6. K`-Extension semantics

In a next step we wish to develop extension semantics not only for coalgebras of the form X → G(TX), on the
left in (1), but also for coalgebras X → T (FX), on the right in (1). This turns out to be more complicated. First of
all, the lifting FK` : CoAlg(TF)→ CoAlg(F̂) in Lemma 1 is not interesting in the current setting because it does
not involve a state space extension X 7→ T (X).

The next thought might be to translate coalgebras X → T (FX) into coalgebras X → G(TX), via a distributive
law TF ⇒ GT . This results in functors

CoAlg(TF) // CoAlg(GT)
Lemma 1 // CoAlg(Ĝ)

where the first functor is obtained by post-composing with the distributive law. We will get back to this point later.
However, coalgebras X → T (FX) are usually considered as coalgebras X → F̂X of the lifted functor F̂ on the
Kleisli category K`(T). Therefore, our aim is to obtain a functor CoAlg(F̂)→ CoAlg(Ĝ). This will be described
below.

Recall from Section 2 that there is a comparison functor E : K`(T) → EM(T). In this section we show how it
can be lifted to coalgebras. We consider the following situation.

16

1. A monad T : C→ C on a category C.
2. An endofunctor F : C → C with a K`-law λ : FT ⇒ TF , leading to a lifting F̂ : K`(T) → K`(T) to T ’s

Kleisli category, via Proposition 1.
3. Another endofunctorG : C→ C, but this time with an EM-law ρ : TG⇒ GT , yielding a lifting Ĝ : EM(T)→

EM(T) to the category of T -algebras.
4. An “extension” natural transformation e : TF ⇒ GT that connects the K`- and EM-laws via the following two

commuting diagrams.

TFT

eT
��

T (λ)
// T 2F

µF
// TF

e
��

T 2F

T e
��

µF
// TF

e
��

GT 2 Gµ
// GT TGT

ρT
// GT 2 Gµ

// GT

(13)

When such e is an isomorphism, it forms a “commuting pair of endofunctors” from [3].

Theorem 2. Assuming the above points 1–4, there is a lifting Ê of the extension functor E in:

CoAlg(F̂)

��

Ê // CoAlg(Ĝ)

��

K`(T)
F̂ 99

E // EM(T)
Ĝee

This functor Ê is automatically faithful; and it is also full if the extension natural transformation e : TF ⇒ GT
consists of monomorphisms.

PROOF. We define the functor Ê : CoAlg(F̂)→ CoAlg(Ĝ) by:(
X

c−→ F̂X
)
7−→

(
TX

T (c)−−−→ T 2FX
µ−→ TFX

e−→ GTX
)

f 7−→ E(f) = µ ◦ T (f).

We need to show that Ê(c) is a map of algebras E(X) = µX → Ĝ(µX) = Ĝ(EX) in:(
T 2X

TX

µX
��

)
Ê(c)

//

(
TGTX

GTX

G(µX)◦ρ
��

)
= Ĝ

(
T 2X

TX

µX
��

)

But this is simply the above requirement 4.
Assume f is a map of F̂ -coalgebras, from c : X → F̂X to d : Y → F̂ Y . That is, f : X → TY , c : X → TFX

and d : Y → TFY satisfy:
µ ◦ T (d) ◦ f = µ ◦ T (λ ◦ F (f)) ◦ c. (14)

Then E(f) = µ ◦ T (f) is a map of coalgebras Ê(c)→ Ê(d), again by requirement 4:

Ê(d) ◦ E(f) = eY ◦ µ ◦ T (d) ◦ µ ◦ T (f)

= eY ◦ µ ◦ µ ◦ T (T (d) ◦ f)

= eY ◦ µ ◦ T (µ ◦ T (d) ◦ f)
(14)
= eY ◦ µ ◦ T (µ ◦ T (λ ◦ F (f)) ◦ c)
= eY ◦ µ ◦ µ ◦ T 2(λ ◦ F (f)) ◦ T (c)

= eY ◦ µ ◦ T (λ ◦ F (f)) ◦ µ ◦ T (c)
(13)
= G(µ) ◦ eTY ◦ TF (f) ◦ µ ◦ T (c)

= G(µ ◦ T (f)) ◦ eX ◦ µ ◦ T (c)

= Ĝ(Ef) ◦ Ê(c).

17

Clearly, the functor Ê is faithful: if f, g : X → TY satisfy Ê(f) = E(f) = E(g) = Ê(g), then f = E(f) ◦ η =
E(g) ◦ η = g.

Now assume the components eX : TFX → GTX are monomorphisms in C. Towards fulness of Ê, let
h : Ê(c) → Ê(d) be a morphism in CoAlg(Ĝ). It is a map h : TX → TY that is both a map of algebras and
of coalgebras, so:

T 2X

µ
��

T (h)
// T 2Y

µ
��

GTX
G(h)

// GTY

TX
h

// TY TX
h

//

eX◦µ◦T (c)

OO

TY

eY ◦µ◦T (d)

OO

(15)

We now take f = h ◦ η : X → T (Y) and need to show that Ê(f) = E(f) = h and that it is a map of F̂ -coalgebras
c→ d. The first is easy since:

E(f) = µ ◦ T (h ◦ η) = h ◦ µ ◦ T (η) = h.

In order to show that f is a map of coalgebras we use that e consists of monos, in:

e ◦
(
d � f

)
= e ◦ µ ◦ T (d) ◦ f
= e ◦ µ ◦ T (d) ◦ h ◦ η

(15)
= G(h) ◦ e ◦ µ ◦ T (c) ◦ η
= G(h) ◦ e ◦ µ ◦ η ◦ c
= G(h) ◦ e ◦ c
= G(h) ◦ G(µ ◦ T (η)) ◦ e ◦ c

(15)
= G(µ) ◦ GT (h ◦ η) ◦ e ◦ c
= G(µ) ◦ e ◦ TF (f) ◦ c

(13)
= e ◦ µ ◦ T (λ ◦ F (f)) ◦ c
= e ◦

(
F̂ (f) � c

)
. �

On a more abstract level, what the previous result does is lift e : TF ⇒ GT to a natural transformation ê : EF̂ ⇒
ĜE. In this way we can also define the functor Ê : CoAlg(F̂)→ CoAlg(Ĝ) by:(

X
c−→ F̂X

)
7−→

(
EX

ê◦E(c)−−−−→ Ĝ(EX)
)

and f 7−→ E(f) = µ ◦ T (f).

Getting back to the original intention, let E : CoAlg(TF) → CoAlg(GT) be the functor obtained by post-
composing with the extension natural transformation e, that is, given c : X → TF (X) we have

E(c) = eX ◦ c and E(f) = f

for a coalgebra homomorphism f . We can now summarize all results in one cube-shaped diagram.

Theorem 3. Under the assumptions 1. - 4. from the beginning of this section, we have the following commuting cube
of (lifted) functors:

18

CoAlg(F̂)

yy

Ê // CoAlg(Ĝ)

yy

K`(T)

a

��

E // EM(T)

a

��
¬

­

®

¯

°

±

CoAlg(TF)

yy

FK`

OO

E // CoAlg(GT)

xx

FEM

OO

C

F

LL

Id
C

F

LL

PROOF. The bottom and frontal faces – ¬ and ­ – commute trivially as E and E are functors. Lemma 1 provides the
commutativity of the left and right faces – ® and ° – under the existence of a K`-law and EM-law, respectively. The
back face ¯ commutes by the definitions: we have, on objects,

(FEM ◦ E)(c) = FEM(e ◦ c)
= Gµ ◦ ρ ◦ T e ◦ Tc

(13)
= e ◦ µ ◦ Tc
= Ê(c)

= (Ê ◦ FK`)(c)

and on morphisms,

FEM ◦ E(f) = FEM(f) = Tf = µ ◦ Tη ◦ Tf = µ ◦ T (η ◦ f) = Ê ◦ FK`(f).

Commutativity of the top face ± is given by Theorem 2. The extension law e is needed for ¯ and ±. �

We can now define extension semantics for coalgebras X → T (FX), analogously to Definition 1. The reader can
find examples of K`-extension semantics in Section 7.

Definition 2 (K`-extension). In addition to the points 1–4 from the beginning of this section, let the functorG in point
3. have a final coalgebra Z ∼=−→ G(Z). For a coalgebra c : X → T (FX) one obtains its K`-extension semantics in
three steps, like in Definition 1:

1. Transform c into a Ĝ-coalgebra Ê(c).
2. Obtain a map TX → Z in EM(T) by finality.
3. Get X → Z by precomposition with the unit X → TX .

Step 1 is justified by Theorem 2. Note that Theorem 3 states that the same transformation is obtained via FEM ◦
E(c) since Ê(c) = Ê ◦ FK`(c) = FEM ◦ E(c). Step 2 is justified by Proposition 3, as the final G-coalgebra
Z

∼=−→ G(Z) lifts to a final Ĝ-coalgebra. The intuition behind each of the steps is as follows: Step 1 produces a
“determinization” after transforming the original TF -coalgebra to a GT -coalgebra; Step 2 provides semantics via
finality, for the determinization; finally Step 3 gives the semantics of individual states.

We conclude this section by showing how the “Kleisli” trace semantics from [18] fits in the current setting. Thus,
we assume in the situation of Definition 2 that the functor F has an initial algebra ι : F (W)

∼=−→W .

Proposition 5. Assume the map F(ι−1) : W → F̂ (W) is final F̂ -coalgebra. Each coalgebra c : X → TF (X) then
gives rise to a “Kleisli” trace map in the Kleisli category (as in [18]), namely:

F̂X // F̂ (W)

X

c

OO

trK`(c)
// W

∼= F(ι−1)

OO

19

When we apply the functor Ê from Theorem 2 to this diagram we get the rectangle on the left in:
Ĝ(TX) // Ĝ(TW) // Ĝ(Z)

X
η

//

trK`(c)

22TX

Ê(c)

OO

Ê(trK`(c))
// TW

∼= Ê(F(ι−1))

OO

// Z

∼= ζ

OO

(16)

The resulting K`-extension semantics map X → Z is then the K`-extension semantics of the final F̂ -coalgebra
F(ι−1) : W → F̂ (W), precomposed with the Kleisli trace semantics trK`(c). �

7. Determinization and trace semantics

In this section we specialize the K`-extension framework developed so far to deterministic automata, leading to a
novel definition of trace semantics, namely via K`-extension semantics. Several illustrations will be given, including
the standards ones from the trace semantics of [18].

Definition 3. Let T be a monad and F an endofunctor on the category Sets, with a K`-law λ : FT ⇒ TF between
them. Let A,B be sets, leading to endofunctor M = T (B) × (−)A, which comes with an EM-law ρ : TM ⇒ MT
like in Lemma 4. Finally, we assume an extension law e : TF ⇒MT = T (B)× T (−)A like in the previous section.
In this situation,

• the determinization of a coalgebra c : X → TFX is the M̂ -coalgebra Ê(c) in the category of algebras EM(T)
given by:

T (X)
T (c)
// T 2FX

µ
// TFX

e // T (B)× T (X)A

Thus, determinization turns the coalgebra c on X into a deterministic automaton on TX .

• the trace map tr(c) : X → T (B)A
?

of such a coalgebra c is obtained via the unique coalgebra map T (X) →
T (B)A

?

that arises by finality in EM(T) in:

T (B)× T (X)A = M̂(TX) // M̂
(
T (B)A

?)
= T (B)×

(
T (B)A

?)A
X

η
//

tr(c)

22TX

Ê(c)

OO

// T (B)A
?

∼= ζ

OO

7.1. Non-deterministic automata, in K`-style
In Subsection 5.1 we have seen how to obtain traces for non-deterministic automata via determinization (like

in [36]). Now we re-describe the same example in K`-style, via the isomorphisms (2). In essence we translate the
“Kleisli” trace semantics approach of [18] into the current setting, like in Proposition 5. Thus we start with a non-
deterministic automaton as a coalgebra of the form c : X → P(1 + A ×X), for a fixed set of labels A and 1 = {∗}
modeling termination. A state x ∈ X of such a coalgebra is final if and only if ∗ ∈ c(x). In this case the monad is the
powerset monad P and the functor is F = 1 +A× (−) with finite lists A? as initial algebra. We recall that the Kleisli
category K`(P) is the category Rel of sets and relations between them, and the category EM(P) is the category CL
of complete lattices with join-preserving maps.

The functor F lifts to F̂ : Rel→ Rel by Lemma 2. We instantiate M for the set B = 1 and the powerset monad,
and get M = 2× (−)A since P(1) ∼= 2. Then there is an extension law e : P(1 +A× (−))⇒ 2× PA with

e(U) = 〈o(U), λa. {x | 〈a, x〉 ∈ U}〉 where o(U) =

{
1 if ∗ ∈ U
0 if ∗ 6∈ U.

One can easily check that e is injective (it is actually an isomorphism) and that it satisfies the requirements (13) for an
extension law.

20

Given a coalgebra c : X → P(1 + A × X) its determinization is the deterministic automaton Ê(c) : P(X) →
2× P(X)A with subsets V ⊆ X as states, given by Ê(c) = e ◦ µ ◦ P(c) or, more concretely,

Ê(c)(V) =

〈
o

(⋃
x∈V

c(x)

)
, λa.

⋃
x∈V
{y | 〈a, y〉 ∈ c(x)}

〉
.

This determinization coincides with the well-known subset construction [20]. The trace map tr(c) associates with
each state of the original non-deterministic automaton the language it recognizes.

The dashed map TW 99K Z in (16) in Proposition 5 is the obvious isomorphism P(A?)
∼=−→ 2A

?

for non-
deterministic automata. Therefore, Proposition 5 yields that “Kleisli” trace and trace via K`-extension semantics
coincide, i.e. tr(c) = trK`(c) for any non-deterministic automaton c : X → P(1 +A×X).

7.2. Generative probabilistic systems

Next, we consider generative probabilistic systems with explicit termination. They also fit in the “Kleisli” trace
approach of [18]. Their determinization was introduced by the last two authors of the present paper in [38] and
motivated us to look at the framework of the present paper.

Generative systems are coalgebras for the functor D(1 + A × (−)) where D is the subprobability distribution
monad. The functor F = 1 + A × (−) lifts to F̂ : K`(D) → K`(D) by Lemma 2. The category EM(D) is the
category PCA of positive convex algebras and convex maps [16]. We instantiate the functor M to B = 1 and the
subprobability distribution monad D, and get M = [0, 1]× (−)A since D(1) ∼= [0, 1]. Define e : D(1 +A× (−))⇒
[0, 1]×DA by

e(ξ) = 〈 ξ(∗), λa. λy. ξ(a, y) 〉.

It is not difficult to check that e is an extension law and that it is injective.
Given a coalgebra c : X → D(1 + A × X) its determinization is the deterministic automaton Ê(c) : D(X) →

[0, 1]×D(X)A with states D(X), given by Ê(c) = e ◦ µ ◦ D(c) or, more concretely,

Ê(c)(ξ) =
〈∑

x∈X ξ(x) · c(x)(∗), λa. λy.
∑
x∈X ξ(x) · c(x)(a, y)

〉
.

We show an example of such determinization: the automaton on the right is part of the determinization of the one
on the left. The full determinization is an infinite automaton. We show the accessible part when starting from the state
η(x1), the Dirac distribution of x1, and we denote the distributions by formal sums. We omit zero output probabilities.

x1
a, 12

||

a, 13

""
x2

b, 14
��

x3

d, 12
��

x4

��

x5

��
1 1

x1

a��
1
2x2 + 1

3x3
b

ww

d

''
1
8x4

��

1
6x5

��
1
8

1
6

generative system c part of its determinization Ê(c)

The trace map tr(c) associates with each state of the original generative system a subprobability distribution on
words, giving the probability to terminate with a given word starting from the given state. For instance, for state x1

above, we have tr(c)(x1) = 1
8ab+ 1

6ad.
The dashed map in (16) in Proposition 5 is in this case the inclusion map D(A?) → [0, 1]A

?

. Therefore,
again, Proposition 5 yields that “Kleisli” trace and trace via extension semantics “coincide”, i.e. tr(c)(x)(w) =
trK`(c)(x)(w) for any generative system c : X → D(1 + A × X), any of its states x ∈ X , and any word w ∈ A?.
Moreover, it shows that the trace map tr(c) is not just any map from A? to [0, 1], but a subprobability distribution on
words. This coincidence was shown in [38] in concrete terms.

21

7.3. Weighted automata

The restrictions imposed on the monad in order for the trace semantics of [18] to work rule out several interesting
monads, such as the multiset monads MS (including the free vector space monad when S is a field), used for coalge-
braic modeling of weighted systems. In this example, we show how the new framework allows us to deal with trace
semantics for weighted systems using extension semantics. We consider the same functor F = 1+A× (−) as before,
with the multiset monad MS over a semiring S. Recall that it maps a set X to the set of all finitely supported maps
from X to S. Having finite support is crucial for MS to be a monad, and one of the reasons why this monad does
not fit in the “Kleisli” traces framework of [18]. Similar to probability distributions, we denote multisets by formal
sums, now with coefficients in the semiring S. The Kleisli category K`(MS) is, for instance, the category of free
commutative monoids when S = N, and the category EM(MS) is the category of modules over S.

Coalgebras of the functor MS(1+A× (−)) are precisely weighted automata with weights over the set S. Given a
coalgebra c : X →MS(1 +A×X), each state x ∈ X has an output weight c(x)(∗) ∈ S and an a-labelled transition
into state y with weight c(x)(〈a, y〉) ∈ S.

We instantiate the deterministic automaton functor M with B = 1 and the multiset monad MS , and get M =
S × (−)A since MS(1) ∼= S. Then there is an extension natural transformation e : MS(1 + A × (−)) ⇒ S ×MA

S

given, as for the subdistribution monad, by

e(ξ) = 〈 ξ(∗), λa. λx. ξ(〈a, x〉) 〉.

Again, e satisfies all the conditions and it is injective.
For weighted automata, just like for generative systems, the determinization construction gives rise to a deter-

ministic automaton with an infinite state-space even if the original automaton is finite. For a weighted automaton
c : X →MS(1 +A×X), the determinization Ê(c) : MS(X)→ S ×MS(X)A is given by

Ê(c)(ξ) = 〈
∑
x∈X ξ(x) · c(x)(∗), λa. λy.

∑
x∈X ξ(x) · c(x)(a, y) 〉

for a multiset ξ : X → S with finite support {x ∈ X | ξ(x) 6= 0}. We thus get a trace map X → MS(X) →
SA

?

. Notice that the final coalgebra SA
?

in the category of MS-algebras can be obtained via the adjoint functors
S(−) : Setsop → EM(MS) and Lin(−, S) : EM(MS)→ Setsop from Subsection 4.1, where EM(MS) is the category
of modules over S. Here, S plays the role of D of Subsection 4.1 and the hom-functor is now the linear mappings
functor Lin(−, S). The endofunctors on Sets used for this lifting via duality are 1 +A× (−) and S × (−)A.

The following is a very simple example of determinization, for S = N.

x1
a,1

{{

a,2

##

//
1

x2

a,1

XX
//
1 x3

a,1

XX
//
1

x1

a
��

//
1

x2 + 2x3

a

XX
//
3

weighted automaton c part of its determinization Ê(c)

In general, the transitions of the determinization of the example weighted automaton c are given by k1x1 +k2x2 +
k3x3

a−→ (k1 +k2)x2 + (2k1 +k3)x3 and the termination weight of a state k1x1 +k2x2 +k3x3 equals k1 +k2 +k3.
The trace map tr(c) : X → NA?

associates with each state x of the original weighted automaton the weighted
language that it accepts. For instance, in the example above, we have tr(c)(x1)(〈〉) = 1 and tr(c)(x1)(an) = 3 for
n ≥ 1.

Remark 3. More specifically, we can consider weighted automata with weights over a field F, which are coalgebras
for the functor MF(1+A×(−)), where MF is the free vector space monad. This monad is special: the Kleisli category
K`(MF) and the category EM(MF) are equivalent, since each vector space has a basis. They are the category Vec
of vector spaces and linear maps over F. The determinization Ê(c) of a weighted automaton c coincides then with
the linear weighted automaton of [8].

22

In the remainder of this section we consider the quantum walks example from [21], which can be described as a
coalgebra c : Z + Z → MC(Z + Z), where the state space Z + Z represents positions on a line Z, with a direction
(namely ↑ for the left component in Z + Z and ↓ for the other, downwards direction). This description only involves
the (unitary) transition function given by a superposition of left and right steps. Here we adapt this example a little
bit so that we can compute the resulting probabilities via traces. We take the functor F (X) = (Z + Z) + X , and
coalgebra c : Z + Z→MC((Z + Z) + (Z + Z)) = MC(F (Z + Z)) given by:

c(↑ k) = 1`(k) + 1√
2
↑ (k − 1) + 1√

2
↓ (k + 1)

c(↓ k) = 1r(k) + 1√
2
↑ (k − 1)− 1√

2
↓ (k + 1).

The right-hand-side of these equations is a formal sum over elements of the set F (Z+Z) = (Z+Z)+(Z+Z). What
is possibly confusing is that in this quadruple coproduct of integers the left part Z+Z is used for output, and the right
part Z + Z as state, for further computation. In these definitions the first parts `(k) and r(k) are the left and right part
of this output. The second part involves multiplication with scalars ± 1√

2
∈ C and elements ↑ (k ± 1), ↓ (k ± 1) in

the right (state) component of (Z + Z) + (Z + Z).
As machine functor we take M(X) = MC(Z + Z) × X , with label set A = 1, and with final coalgebra Z =

MC(Z+Z)N of streams. The extension natural tranformation follows from additivity of the multiset monad MC (like
in (2), see [12]) with κ1 and κ2 denoting the coproduct injections:

MC((Z + Z) +X)
e=λϕ. 〈ϕ◦κ1,ϕ◦κ2〉

∼=
// MC(Z + Z)×MC(X)

MC(F (X)) M(MC(X))

The coalgebra Ê(c) : MC(Z+Z)→MC(Z+Z)×MC(Z+Z) in the category of vector spaces over C, resulting from
Theorem 2, gives rise to a trace map tr(c) : Z + Z→MC(Z + Z)N. Thus, for the initial (upwards) state ↑ 0 ∈ Z + Z
we get the probability P (n, k) of ending up after n steps at position k ∈ Z on the line via the Born rule:

P (n, k) =
∣∣∣ tr(c)(↑ 0)(n)(`k)

∣∣∣2 +
∣∣∣ tr(c)(↑ 0)(n)(rk)

∣∣∣2.
These probabilities are computed in an ad hoc manner in [21].

8. Discussion

In this paper, we have systematically studied trace semantics, bringing together two perspectives: the coalgebraic
trace semantics of [18] and the coalgebraic language equivalence via a determinization construction of [36]. Hav-
ing the two perspectives together enables us to extend the class of systems that fits the framework of [18], while
guaranteeing that the coalgebraic trace semantics from [18] fits in the current setting (Proposition 5). We illustrated
the whole approach with several non-trivial examples, including weighted automata, quantum walks, simple Segala
systems, and pushdown automata.

Our set-up has a certain overlap with [3], but the focus there is on getting coincidence of initial algebras and
final coalgebras in categories EM(T), using stronger assumptions than here, namely commutativity of endofunctors
TF ∼= GT , see Section 6, where we only have a law TF ⇒ GT .

Acknowledgments. We are grateful to the anonymous referees for valuable comments. The work of Alexandra Silva
is partially funded by the ERDF through the Programme COMPETE and by the Portuguese Foundation for Science
and Technology, project ref. FCOMP-01-0124-FEDER-020537 and SFRH/BPD/71956/2010.

References

[1] J.M. Autebert, J. Berstel, L. Boasson, et al. Context-free languages and pushdown automata. Handbook of formal languages, 1:111–174,
1997.

23

[2] S. Awodey. Category Theory. Oxford Logic Guides. OUP Oxford, 2010.
[3] A. Balan and A. Kurz. On coalgebras over algebras. Theoretical Computer Science, 412(38):4989–5005, 2011.
[4] M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revized and corrected version available from URL: www.

cwru.edu/artsci/math/wells/pub/ttt.html.
[5] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, APPSEM, volume 2395

of Lecture Notes in Computer Science, pages 42–122. Springer, 2000.
[6] Filippo Bonchi, Marcello M. Bonsangue, Georgiana Caltais, Jan J. M. M. Rutten, and Alexandra Silva. Final semantics for decorated traces.

Electr. Notes Theor. Comput. Sci., 286:73–86, 2012.
[7] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclopedia of Mathematics. Cambridge Univ. Press, 1994.
[8] M. Boreale. Weighted bisimulation in linear algebraic form. In Proc. of CONCUR ’09, pages 163–177. Springer, 2009. LNCS 5710.
[9] J.A. Brzozowski and E. Leiss. Finite automata, and sequential networks. Theoretical Computer Science, 10:19–35, 1980.

[10] P. Castro, P. Panangaden, and D. Precup. Equivalence relations in fully and partially observable Markov decision processes. In Proc. IJCAI
2009, pages 1653–1658, 2009.

[11] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for Computing Machinery, 28:114–133, 1981.
[12] D. Coumans and B. Jacobs. Scalars, monads and categories. In C. Heunen and M. Sadrzadeh, editors, Compositional methods in Physics and

Linguistics. Oxford Univ. Press, 2012.
[13] S. Crafa and F. Ranzato. A spectrum of behavioral relations over LTSs on probability distributions. In Proc. CONCUR 2011, pages 124–139.

LNCS 6901, 2011.
[14] K. Culik, II and J. Karhumaki. Finite automata computing real functions. SIAM Journal of Computing, 23(4):789–814, 1994.
[15] Y. Deng, R. van Glabbeek, M. Hennessy, and C. Morgan. Characterising testing preorders for finite probabilistic processes. Logical Methods

in Computer Science, 4(4), 2008.
[16] E. Doberkat. Eilenberg-moore algebras for stochastic relations. Information and Computation, 204(12):1756–1781, 2006.
[17] Z. Ésik and W. Kuich. An algebraic generalization of omega-regular languages. In MFCS, pages 648–659. LNCS 3153, 2004.
[18] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace theory via coinduction. Logical Methods in Computer Science, 3(4:11), 2007.
[19] H. Hermanns, A. Parma, R. Segala, B. Wachter, and L. Zhang. Probabilistic logical characterization. Information and Computation,

209(2):154–172, 2011.
[20] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation (3rd Edition). Wesley, 2006.
[21] B. Jacobs. Coalgebraic walks, in quantum and Turing computation. In M. Hofmann, editor, FoSSaCS, LNCS 6604, pages 12–26. Springer,

2011.
[22] B. Jacobs. Introduction to Coalgebra. Towards Mathematics of States and Observations. 2012. Book, in preparation; version 2 available

from www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf.
[23] B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. In L. Schröder and D. Pattinson, editors, Coalgebraic Methods in

Computer Science (CMCS 2012), LNCS 7399, pages 109–129. Springer, 2012.
[24] B. Jacobs and A. Sokolova. Exemplaric expressivity of modal logics. Journ. of Logic and Computation, 20(5):1041–1068, 2010.
[25] P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc., 7:294–297, 1975.
[26] Ch. Kissig and A. Kurz. Generic trace logics, 2011. arxiv.org/abs/1103.3239.
[27] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik, 23, 1972.
[28] E.G. Manes. Algebraic Theories. Springer, Berlin, 1974.
[29] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.
[30] Stefan Milius, Thorsten Palm, and Daniel Schwencke. Complete iterativity for algebras with effects. In Alexander Kurz, Marina Lenisa, and

Andrzej Tarlecki, editors, CALCO, volume 5728 of Lecture Notes in Computer Science, pages 34–48. Springer, 2009.
[31] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, 1991.
[32] Philip S. Mulry. Lifting theorems for kleisli categories. In Stephen D. Brookes, Michael G. Main, Austin Melton, Michael W. Mislove, and

David A. Schmidt, editors, MFPS, volume 802 of Lecture Notes in Computer Science, pages 304–319. Springer, 1993.
[33] A. Parma and R. Segala. Logical characterizations of bisimulations for discrete probabilistic systems. In Proc. FoSSaCS 2007, pages 287–301.

LNCS 4423, 2007.
[34] D. Pavlović, M. Mislove, and J. Worrell. Testing semantics: Connecting processes and process logics. In M. Johnson and V. Vene, editors,

Algebraic Methods and Software Technology, LNCS 4019, pages 308–322. Springer, 2006.
[35] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In Proc. Concur’94, pages 481–496. LNCS 836, 1994.
[36] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing the powerset construction, coalgebraically. In Proc. FSTTCS 2010, volume 8

of LIPIcs, pages 272–283, 2010.
[37] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Generalizing determinization from automata to coalgebras. Logical Methods in Computer

Science, 9(1), 2013.
[38] A. Silva and A. Sokolova. Sound and complete axiomatization of trace semantics for probabilistic systems. In Proc. MFPS 2011, pages

291–311. ENTCS 276, 2011.
[39] D. Varacca and G. Winskel. Distributing probability over non-determinism. Mathematical Structures in Computer Science, 16(1):87–113,

2006.

24

