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Abstract—Information hiding is a general concept which
refers to the goal of preventing an adversary to infer secret
information from the observables. Anonymity and Information
Flow are examples of this notion. We study the problem of
information hiding in systems characterized by the presence
of randomization and concurrency. It is well known that the
raising of nondeterminism, due to the possible interleavings and
interactions of the parallel components, can cause unintended
information leaks. One way to solve this problem is to fix the
strategy of the scheduler beforehand. In this work, we propose a
milder restriction on the schedulers, and we define the notion of
strong (probabilistic) information hiding under various n otions
of observables. Furthermore, we propose a method, based on
the notion of automorphism, to verify that a system satisfiesthe
property of strong information hiding, namely strong anonymity
or no-intereference, depending on the context.

I. I NTRODUCTION

The problem of information hiding consists in trying to
prevent the adversary to infer confidential information from
the observables. Instances of this issue are Anonymity and
Information Flow. In both fields there is a growing interest in
the quantitative aspects, see for instance [20], [2], [10],[12],
[8], [31]. This is justified by the fact that often we have some
a priori knowledge about the likelihood of the various secrets,
and by the fact that protocols often use randomized actions
to obfuscate the link between secret and observable, like in
anonymity protocols such as the DC Nets [9], Crowds [26],
Onion Routing [32], and Freenet [11].

In a concurrent setting, like in the case of multi-agent
systems, there is also another source of uncertainty, which
derives from the fact that the various entities may inter-
leave and interact in ways that are usually unpredictable,
either because they depend on factors that are too complex
to analyze, or because (in the case of specifications) they
are implementation-dependent. This uncertainty is commonly
modeled as nondeterminism.

The formal analysis of systems which exhibit probabilistic
and nondeterministic behavior usually involves the use of
schedulers, which are functions that select, for each path, only
one possible (probabilistic) transition, thus deliveringa purely
probabilistic execution tree.

In the area of security, there is the problem that among all
possible schedulers there are also those which take different
decisions depending on the secret values, and these decisions
may induce different observable behaviors, thus leaking the
secret. Hence the security properties are usually violatedif we

consider all possible schedulers: “obviously secure” protocols
are not secure anymore. This is a well known problem for
which various solutions have already been proposed. We will
come back to these in the “Related work” section.

A. Contribution

The main contribution of this work consists in the following:

• We define a class of partial-information schedulers, which
we call admissible. These are a restricted version of the
standard (full-information) schedulers. The restrictionis
rather flexible and has strong structural properties, which
facilitate the reasoning about security properties. In short,
our systems consist of parallel components with certain
restrictions on the secret and nondeterministic choices.
The scheduler selects the next component (or compo-
nents, in case of synchronization) for the subsequent step
independently of the secret choices. We then formalize
the notion of quantitative information leakage under this
restricted notion of scheduler.

• We propose alternative definitions to the property of
strong anonymity defined in [2]. The differences of
our proposal are: (1) the system should be strongly
anonymous for all admissible schedulers instead of all
schedulers, and (2) we consider several variants of ad-
versaries, namely (in increasing level of power): external
adversaries, internal adversaries, and adversaries in collu-
sion with the scheduler. Additionally, we use admissible
schedulers to extend the notions of multiplicative [31] and
additive leakage [3] to the case of concurrent system.

• We propose a sufficient technique to prove probabilis-
tic strong anonymity, and probabilistic noninterference,
based on automorphisms. The idea is the following: In the
purely nondeterministic setting, the strong anonymity of
a system is often defined and proved as follows: take two
usersA andB and a trace in which userA is ‘the culprit’.
Now find a trace that looks the same to the adversary, but
in which userB is ‘the culprit’ [20], [16], [23], [21]. This
new trace is often most easily obtained byswitching the
behavior ofA andB. Non-interference can be proved in
the same way (whereA andB are high information and
the trace is the low information).
In this work, we develop this technique for systems where
probability and nondeterminism coexist, and we need to
cope with the restrictions on the schedulers. We formalize
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the notion ofswitching the behaviorsof A andB in terms
of the existence of an automorphism betweenA andB,
and then we show that the existence of an automorphism
implies strong anonymity.

• We use the Dining Cryptographers [9] to illustrate the
problem caused by full-information schedulers, our so-
lution based on admissible schedulers, and our proving
technique.

B. Related Work

The problem of the full-information scheduler has already
been extensively investigated in literature. The works [4]
and [5] consider probabilistic automata and introduce a re-
striction on the scheduler to the purpose of making them
suitable to applications in security. Their approach is based
on dividing the actions of each component of the system in
equivalence classes (tasks). The order of execution of different
tasks is decided in advance by a so-calledtask scheduler.
The remaining nondeterminism within a task is resolved by
a second scheduler, which models the standardadversarial
schedulerof the cryptographic community. This second entity
has limited knowledge about the other components: it sees
only the information that they communicate during execution.
Their notion of task scheduler is similar to our notion of
admissible scheduler, but more restricted since the strategy
of the task scheduler is decided entirely before the execution.

The work in [7], [6] is similar to ours in spirit, but in a
sensedual from a technical point of view. Instead of defining
a restriction on the class of schedulers, they provide a way
to specify that a choice is transparent to the scheduler. They
achieve this by introducing labels in process terms, used to
represent both the states of the execution tree and the next
action or step to be scheduled. They make two states indistin-
guishable to schedulers, and hence the choice between them
private, by associating to them the same label. Furthermore,
their “equivalence classes” (schedulable actions with thesame
label) can change dynamically, because the same action can
be associated to different labels during the execution.

In [1] we extend the framework presented here by allowing
internal nondeterminism and adding a second type of scheduler
to resolve it, to the aim of investigating angelic vs demonic
nondeterminism in equivalence-based properties.

The fact that full-information schedulers are unrealistic
has also been observed in fields other than security. First
attempts used restricted schedulers in order to obtain rules
for compositional reasoning [14]. The justification for those
restricted schedulers is the same as for ours, namely, that
not all information is available to all entities in the system.
However that work considers a synchronous parallel com-
position, so the setting is rather different from ours. Later
on, it was shown that model checking is unfeasible in its
general form for the restricted schedulers in [14] (see [18]and,
more recently, [17]). Despite of undecidability, not all results
concerning such schedulers have been negative as, for instance,
the technique of partial-order reduction can be improved by
assuming that schedulers can only use partial information [19].

To the best of our knowledge, this is the first work using
automorphisms as a sound proof technique to prove strong

anonymity and non-interference. The closest line of work
we are aware of is in the field of model checking, where
isomorphisms have been used to identify symmetries in the
system and exploited to alleviate the state space explosion
(see for instance [22]).

C. Plan of the paper

Looking ahead, after reviewing some preliminaries (Sec-
tion II) we formalize the notions of systems and components
(Section III). In Section IV we present admissible schedulers.
We then formalize the notions of internal and external strong
anonymity in a probabilistic and nondeterministic settingfor
admissible schedulers (Section V). Finally, we turn our atten-
tion to the verification problem, in Section VI we present a
strong-anonymity proving technique based on automorphisms.
We conclude and outline some future work in Section VII.

II. PRELIMINARIES

In this section we gather preliminary notions and results
related to probabilistic automata [29], [28].

A. Probabilistic automata

A function µ : Q → [0, 1] is a discrete probability distri-
bution on a setQ if

∑

q∈Q µ(q) = 1. The set of all discrete
probability distributions onQ is denoted byD(Q).

A probabilistic automatonis a quadrupleM = (Q, Σ, q̂, θ)
whereQ is a countable set ofstates, Σ a finite set ofactions, q̂
the initial state, andθ a transition functionθ : Q → P(D(Σ×
Q)). HereP(X) is the set of all subsets ofX .

If θ(q) = ∅, then q is a terminal state. We writeq→µ
for µ ∈ θ(q), q ∈ Q. Moreover, we writeq

a
→r for q, r ∈ Q

wheneverq→µ andµ(a, r) > 0. A fully probabilistic automa-
ton is a probabilistic automaton satisfying|θ(q)| ≤ 1 for all
states. In caseθ(q) 6= ∅ in a fully probabilistic automaton, we
will overload notation and useθ(q) to denote the distribution
outgoing from q. A path in a probabilistic automaton is a
sequenceσ = q0

a1→ q1
a2→ · · · whereqi ∈ Q, ai ∈ Σ and

qi

ai+1

→ qi+1. A path can befinite in which case it ends with a
state. A path iscompleteif it is either infinite or finite ending in
a terminal state. Given a pathσ, first(σ) denotes its first state,
and if σ is finite thenlast(σ) denotes its last state. Acycle is
a pathσ such thatlast(σ) = first(σ). Let Pathsq(M) denote
the set of all paths,Paths⋆q(M) the set of all finite paths, and
CPathsq(M) the set of all complete paths of an automaton
M , starting from the stateq. We will omit q if q = q̂. Paths
are ordered by the prefix relation, which we denote by≤.
The trace of a path is the sequence of actions inΣ∗ ∪ Σ∞

obtained by removing the states, hence for the above pathσ
we havetrace(σ) = a1a2 . . .. If Σ′ ⊆ Σ, then traceΣ′(σ) is
the projection oftrace(σ) on the elements ofΣ′.

Let M = (Q, Σ, q̂, θ) be a (fully) probabilistic automaton,
q ∈ Q a state, and letσ ∈ Paths⋆

q(M) be a finite path
starting inq. The conegenerated byσ is the set of complete
paths〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully
probabilistic automatonM = (Q, Σ, q̂, θ) and a stateq, we
can calculate the probability value, denoted byPq(σ), of
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any finite pathσ starting in q as follows: Pq(q) = 1 and
Pq(σ

a
→ q′) = Pq(σ) µ(a, q′), wherelast(σ) → µ.

Let Ωq
def
= CPathsq(M) be the sample space, and letFq

be the smallestσ-algebra generated by the cones. ThenPq

induces a uniqueprobability measureon Fq (which we will
also denote byPq) such thatPq(〈σ〉) = Pq(σ) for every finite
pathσ starting inq. For q = q̂ we write P instead ofPq̂.

A (full-information) scheduler for a probabilistic automaton
M is a functionζ : Paths⋆(M) → (D(Σ×Q)∪{⊥}) such that
for all finite pathsσ, if θ(last(σ)) 6= ∅ thenζ(σ) ∈ θ(last(σ)),
andζ(σ) = ⊥ otherwise. Hence, a schedulerζ selects one of
the available transitions in each state, and determines therefore
a fully probabilistic automaton, obtained by pruning fromM
the alternatives that are not chosen byζ. Note that a scheduler
is history dependent since it can take different decisions for
the same states according to the past evolution of the system.

B. Noisy Channels

This section briefly recalls the notion of noisy channels from
Information Theory [13].

A noisy channelis a tuple C
def
= (X ,Y, P (·|·)) where

X = {x1, x2, . . . , xn} is a finite set ofinput values, modeling
the secretsof the channel, andY = {y1, y2, . . . , ym} is a
finite set of output values, the observablesof the channel.
For xi ∈ X and yj ∈ Y, P(yj |xi) is the conditional
probability of obtaining the outputyj given that the input isxi.
These conditional probabilities constitute the so calledchannel
matrix, whereP(yj |xi) is the element at the intersection of the
i-th row and thej-th column. For any input distributionPX

onX , PX and the channel matrix determine a joint probability
P∧ onX ×Y, and the corresponding marginal probabilityPY

on Y (and hence a random variableY ). PX is also calleda
priori distribution and it is often denoted byπ. The probability
of the input given the output is calleda posteriori distribution.

C. Information leakage

We recall here the definitions ofmultiplicative leakage
proposed in [31], and ofadditive leakageproposed in [3]1.
We assume given a noisy channelC = (X ,Y, P (·|·)) and
a random variableX on X . The a priori vulnerability of
the secrets inX is the probability of guessing the right
secret, defined asV(X)

def
= maxx∈X PX(x). The rationale

behind this definition is that the adversary’s best bet is on the
secret with highest probability. Thea posteriori vulnerability
of the secrets inX is the probability of guessing the right
secret, after the output has been observed, averaged over
the probabilities of the observables. The formal definition
is V(X |Y)

def
=

∑

y∈Y PY (y)maxx∈X P (x | y). Again, this
definition is based on the principle that the adversary will
choose the secret with the highest a posteriori probability.

Note that, using Bayes theorem, we can write the a pos-
teriori vulnerability in terms of the channel matrix and thea

1The notion proposed by Smith in [31] was given in a (equivalent)
logarithmic form, and called simplyleakage. For uniformity sake we use
here the terminology and formulation of [3].

priori distribution, or in terms of the joint probability:

V(X |Y)=
∑

y∈Y

max
x∈X

(P (y |x)PX(x))=
∑

y∈Y

max
x∈X

P∧(x, y)

Themultiplicative leakage isL×(C, PX)
def
= V(X|Y)

V(X) whereas

the additive leakage isL+(C, PX)
def
= V(X|Y) − V(X).

D. Dining Cryptographers

This problem, described by Chaum in [9], involves a sit-
uation in which three cryptographers are dining together. At
the end of the dinner, each of them is secretly informed by a
central agency (master) whether he should pay the bill, or not.
So, either the master will pay, or one of the cryptographers
will be asked to pay. The cryptographers (or some external
observer) would like to find out whether the payer is one of
them or the master. However, if the payer is one of them, they
also wish to maintain anonymity over the identity of the payer.

A possible solution to this problem, described in [9], is that
each cryptographer tosses a coin, which is visible to himself
and his neighbor to the left. Each cryptographer observes the
two coins that he can see and announcesagreeor disagree. If
a cryptographer is not paying, he will announceagree if the
two sides are the same anddisagreeif they are not. The paying
cryptographer will say the opposite. It can be proved that if
the number of disagrees is even, then the master is paying;
otherwise, one of the cryptographers is paying. Furthermore
-for the case of fair coins, if one of the cryptographers is
paying, then neither an external observer nor the other two
cryptographers can identify, from their individual information,
who exactly is paying. The Dining Cryptographers (DC) will
be a running example through the paper.

Fig. 1. Chaum’s system for the Dining Cryptographers ([9])

III. SYSTEMS

In this section we describe the kind of systems we are
dealing with. We start by introducing a variant of probabilistic
automata, that we calltagged probabilistic automata. These
systems are parallel compositions of purely probabilisticpro-
cesses, that we callcomponents. They are equipped with a
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unique identifier, that we calltag, or label, of the component.
Note that, because of the restriction that the components
are fully deterministic2, nondeterminism is generated only
from the interleaving of the parallel components. Furthermore,
because of the uniqueness of the tags, each transition from a
node is associated to a different tag / pair of two tags (one in
case only one component makes a step, and two in case of a
synchronization step among two components).

A. Tagged Probabilistic Automata

We now formalize the notion of TPA.

Definition 1. A tagged probabilistic automaton(TPA) is a
tuple (Q, L, Σ, q̂, θ), where

• Q is a set ofstates,
• L is a set of tags, or labels,
• Σ is a set ofactions,
• q̂ ∈ Q is the initial state,
• θ : Q → P(L × D(Σ × Q)) is a transition function.

with the additional requirement that for everyq ∈ Q and
every ℓ ∈ L there is at most oneµ ∈ D(Σ × Q) such that
(ℓ, µ) ∈ θ(q).

A path for a TPA is a sequenceσ = q0
l1,a1
−→ q1

l2,a2
−→ q2 · · · .

In this way, the process with identifierli induces the system
to move fromqi−1 to qi performing the actionai, and it does
so with probabilityµli(ai, qi), whereµli is the distribution
associated to the choice made by the componentli. Finite
paths and complete paths are defined in a similar manner.

In a TPA, the scheduler’s choice is determined by the choice
of the tag. We will useenab(q) to denote the tags of the
components that are enabled to make a transition. Namely,

enab(q)
def
= {ℓ ∈ L | ∃µ∈D(Σ × Q) : (ℓ, µ) ∈ θ(q)} (1)

We assume that the scheduler is forced to select a compo-
nent among those which are enabled, i.e., that the execution
does not stop unless all components are blocked (suspended or
terminated). This is in line with the spirit of process algebra,
and also with the tradition of Markov Decision Processes, but
contrasts with that of the Probabilistic Automata of Lynch
and Segala [30]. However, the results in this paper do not
depend on this assumption; we could as well allow schedulers
which decide to terminate the execution even though there are
transitions which are possible from the last state.

Definition 2. A schedulerfor a TPAM = (Q, L, Σ, q̂, θ) is a
functionζ : Paths⋆(M) → (L ∪ {⊥}) such that for all finite
paths σ, ζ(σ) ∈ enab(last(σ)) if enab(last(σ)) 6= ∅ and
ζ(σ) = ⊥ otherwise.

B. Components

To specify the components we use a sort of probabilistic
version of CCS [24], [25]. We assume a set ofsecret actions
ΣS with elementss, s1, s2, · · · , and a disjoint set ofobservable

2In [1] we extend our framework by allowing nondeterministicchoices in
the components, and we use an additional scheduler to handlesuch “internal”
nondeterminism.

actionsΣO with elementsa, a1, a2, · · · . Furthermore we have
communication actions, which are also observable, of the form
c(x) (receivex on channelc, wherex is a formal parameter),
or c̄〈v〉 (sendv on channelc, wherev is a value on some
domainV ). Sometimes we need only to synchronize without
transmitting any value, in which case we will use simplyc
and c̄. We denote the set of channel names byC.

A componentq is specified by the following grammar:

Components

q ::= 0 termination
| a.q observable prefix
|

∑

i pi : qi blind choice
|

∑

i pi : si.qi secret choice
| if x = v then q1 else q2 conditional
| A process call

Observables

a ::= c | c̄ simple synchronization
| c(x) | c̄〈v〉 synchronization and communication

The pi, in the blind and secret choices, represents the
probability of thei-th branch and must satisfy0 ≤ pi ≤ 1 and
∑

i pi = 1. When no confusion arises, we use simply+ for a
binary choice. The process callA is a simple process identifier.
For each of them, we assume a corresponding unique process
declaration of the formA

def
= q. The idea is that, whenever

A is executed, it triggers the execution ofq. Note thatq can
containA or another process identifier, which means that our
language allows (mutual) recursion.

We remark once again that each component contains only
probabilistic and sequential constructs. In particular, there is
no internal parallelism. Hence each component correspondsto
a purely probabilistic automaton (apart from the input nonde-
terminism, which disappears in the definition of a system), as
described by the operational semantics below.

Components’ semantics:The operational semantics consists of
probabilistic transitions of the formq→µ whereq ∈ Q is a
process, andµ ∈ D(Σ × Q) is a distribution on actions and
processes. They are specified by the following rules:

PRF1
v ∈ V

c(x).q → δ(c(v), q[v/x])

PRF2
a.q → δ(a, q)

if a 6= c(x)

INT
∑

i pi : qi → ◦
∑

i pi · δ(τ, qi)

SECR
∑

i pi : si.qi → ◦
∑

i pi · δ(si, qi)

CALL
q → µ

A → µ
if A

def
= q
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CND1
if v = v then q1 else q2 → δ(τ, q1)

CND2
v 6= v′

if v = v′ then q1 else q2 → δ(τ, q2)

◦
∑

i pi · µi is the distributionµ such thatµ(x) =
∑

i piµi(x).
We useδ(x) to represent the delta of Dirac, which assigns
probability 1 to x. The silent action,τ , is a special action
different from all the observable and the secret actions.q[v/x]
stands for the processq in which any occurrence ofx has
been replaced byv. To shorten the notation, in the examples
throughout the paper, we omit writing explicit termination, i.e.,
we omit the symbol 0 at the end of a term.

C. Systems

A system consists ofn processes (components) in parallel,
and restricted at the top-level on the set of channel namesC:

(C) q1 ‖ q2 ‖ · · · ‖ qn.

The restriction onC enforces synchronization (and possibly
communication) on the channel names belonging toC, in
accordance with the CCS spirit. SinceC is the set of all
channels, all of them are forced to synchronize. This is
to eliminate, at the level of systems, the nondeterminism
generated by the rule for the receive prefix, PRF1.

Systems’ semantics:The semantics of a system gives rise to a
TPA, where the states are terms representing systems during
their evolution. A transition now is of the formq

ℓ
→ µ where

µ ∈ (D(Σ × Q)) and ℓ ∈ L is either the identifier of the
component which makes the move, or a two-element set of
identifiers representing the two partners of a synchronization.
The following two rules (INT) and (SYNC/COMM) provide
the operational semantics rules in the case of interleavingand
synchronisation/communication, respectively.

(INT) If aj 6∈ C

qi → ◦
∑

j pj · δ(aj , qij)

(C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn
i
→

◦
∑

j pj · δ(aj , (C) q1 ‖ · · · ‖ qij ‖ · · · ‖ qn)

wherei indicates the tag of the component making the step.

(SYNC/COMM)

qi → δ(c̄〈v〉, q′i) qj → δ(c(v), q′j)

(C) q1 ‖ · · · ‖ qi ‖ · · · ‖ qn

{i,j}
−→

δ(τ, (C) q1 ‖ · · · ‖ q′i ‖ · · · ‖ q′j ‖ · · · ‖ qn)

here{i, j} is the tag indicating that the components making

the step arei and j. For simplicity we write
i,j
−→ instead of

{i,j}
−→. The rule for synchronization without communication is

similar, the only difference is that we do not have〈v〉 and(v)
in the actions. Note thatc can only be an observable action
(neither a secret norτ ), by the assumption that channel names
can only be observable actions.

We note that both interleaving and synchronization rules
generate nondeterminism. The only other source of nondeter-
minism is PRF1, the rule for a receive prefixc(x). However
the latter is not real nondeterminism: it is introduced in the
semantics of the components but it disappears in the semantics
of the systems, given that the channelc is restricted at the top-
level. In fact the restriction enforces communication, andwhen
communication takes place, only the branch corresponding to
the actual valuev transmitted by the corresponding send action
is maintained, all the others disappear.

Proposition 1. The operational semantics of a system is a
TPA with the following characteristics:

(a) Every stepq
ℓ
→ µ is either

a blind choice:µ = ◦
∑

i pi · δ(τ, qi), or

a secret choice:µ = ◦
∑

i pi · δ(si, qi), or

a delta of Dirac:µ = δ(α, q′) with α ∈ ΣO or α = τ .

(b) If q
ℓ
→ µ and q

ℓ
→ µ′ thenµ = µ′.

Example 1. We now present the components for the Dining
Cryptographers using the introduced syntax. They correspond
to Figure 1 and to the automata depicted in Figure 3.
As announced before, we omit the symbol0 for explicit
termination at the end of each term. The secret actions
si represent the choice of the payer. The operators⊕,⊖
represent the sum modulo2 and the difference modulo2,
respectively. The testi == n returns 1 (true) if i = n,
and 0 otherwise. The set of restricted channel names is
C ={c0,0, c0,1, c1,1, c1,2, c2,0, c2,2, m0, m1, m2}.

Master
def
= p : m0〈0〉 . m1〈0〉 . m2〈0〉 +

(1 − p) :
∑2

i=0 pi : si .

m0〈i == 0〉 . m1〈i == 1〉 . m2〈i == 2〉

Crypti
def
= mi(pay) . ci,i(coin1) . ci,i⊕1(coin2) .

outi〈pay ⊕ coin1 ⊕ coin2〉

Coini
def
= 0.5 : c̄i,i〈0〉 . c̄i⊖1,i〈0〉 + 0.5 : c̄i,i〈1〉 . c̄i⊖1,i〈1〉

System
def
= (C ) Master‖

∏2
i=0 Crypti ‖

∏2
i=0 Coini

Fig. 2. Dining Cryptographers CCS

The operationpay ⊕ coin1 ⊕ coin2 in Figure 2 is syntactic
sugar, it can be defined using theif-then-elseoperator. Note
that, in this way, if a cryptographer is not paying (pay = 0),
then he announces0 if the two coins are the same (agree) and
1 if they are not (disagree).

IV. A DMISSIBLE SCHEDULERS

We now introduce the class of admissible schedulers.
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Fig. 3. Dining Cryptographers Automata

Standard (full-information) schedulers have access to all
the information about the system and its components, and in
particular the secret choices. Hence, such schedulers can leak
secrets by making their decisions depend on the secret choice
of the system. This is the case with the Dining Cryptographers
protocol of Section II-D: among all possible schedulers forthe
protocol, there are several that leak the identity of the payer.
In fact the scheduler has the freedom to decide the order of
the announcements of the cryptographers (interleaving), so a
scheduler could choose to let the payer announce lastly. In
this way, the attacker learns the identity of the payer simply
by looking at the interleaving of the announcements.

A. The screens intuition

Let us first describe admissible schedulers informally. As
mentioned in the introduction, admissible schedulers can base
their decisions only on partial information about the evolution
of the system, in particular admissible schedulers cannot base
their decisions on information concerned with the internal
behavior of components (such as secret choices).

We follow the subsequent intuition: admissible schedulers
are entities that have access to a screen with buttons, where
each button represents one (current) available option. At each
point of the execution the scheduler decides the next step
among the available options (by pressing the corresponding
button). Then (if any) the output of the selected component
becomes available to the scheduler and the screen is refreshed
with the new available options (the ones corresponding to the
system after making the selected step). We impose that the
scheduler can base its decisions only on such information,
namely: the screens and outputs he has seen up to that point
of the execution (and, of course, the decisions he has made).
Example 2. ConsiderS

def
= ({c1, c2}) q1 ‖q2 ‖q3, where

q1
def
= 0.5 : s1.c1.c2 + 0.5 : s2.c1.c2,

q2
def
= c1.(0.5 : a1 + 0.5 : b1), q3

def
= c2.(0.5 : a2 + 0.5 : b2).

Figure 4 shows the sequence of screens corresponding to a
particular sequence of choices taken by the scheduler3. Inter-
leaving and communication options are represented by yellow
and red buttons, respectively. An arrow between two screens
represents the transition from one to the other (produced bythe
scheduler pressing a button), additionally, the decision taken
by the scheduler and corresponding outputs are depicted above
each arrow.

1

54

32

2:a1

1:τ {1,3}:τ{1,2}:τ

3:a2
3

1,2

2

1

3

2 1,3

Fig. 4. Screens intuition

Note that this system has exactly the same problem as the
DC protocol: a full-information scheduler could reveal the
secret by basing the interleaving order (q2 first or q3 first) on
the secret choice of the componentq1. However, the same does
not hold anymore for admissible schedulers (the scheduler
cannot deduce the secret choice by just looking at the screens
and outputs). This is also the case for the DC protocol, i.e.,
admissible schedulers cannot leak the secret of the protocol.

B. The formalization

Before formally defining admissible schedulers we need to
formalize the ingredients of the screens intuition. The buttons
on the screen (available options) are the enabled options
given by the functionenab (see (1)), the decision made

3The transitions from screens4 and5 represent2 steps each (for simplicity
we omit theτ -steps generated by blind choices)
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by the scheduler is the tag of the selected enabled option,
observable actions are obtained by sifting the secret actions to
the schedulers by means of the following function:

sift(α)
def
=

{

α if α ∈ ΣO ∪ {τ},

τ if α ∈ ΣS .

The partial information of a certain evolution of the systemis
given by the mapt defined as follows.

Definition 3. Let q̂
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1 be a finite path of the

system, then we definet as:

t
(

q̂
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1

)

def
= (enab(q̂), ℓ1, sift(α1))

...

(enab(qn), ℓn, sift(αn)).

Finally, we have all the ingredients needed to define admis-
sible schedulers.

Definition 4 (Admissible schedulers). A schedulerζ is
admissible if for allσ, σ′ ∈ Paths⋆

t(σ) = t(σ′) implies ζ(σ) = ζ(σ′).

In this way, admissible schedulers are forced to take the
same decisions on paths that they cannot tell apart. Note
that this is a restriction on the original definition of (full-
information) schedulers wheret is the identity map over
finite paths (and consequently the scheduler is free to choose
differently).

V. I NFORMATION-HIDING PROPERTIES IN PRESENCE OF

NONDETERMINISM

In this section we revise the standard definition of infor-
mation flow and anonymity in our framework of controlled
nondeterminism.

We first consider the notion of adversary. We consider three
possible notions of adversaries, increasingly more powerful.

A. Adversaries

External adversaries:Clearly, an adversary should be able,
by definition, to see at least the observable actions. For an
adversary external to the systemS, it is natural to assume
that these are also the only actions that he is supposed to see.
Therefore, we define the observation domain, for an external
adversary, as the set of the (finite) sequences of observable
actions, namely:

Oe
def
= Σ∗

O.

Correspondingly, we need a function that extracts the observ-
ables from the executions:

te : Paths⋆(S) → Oe

defined as

te

(

q0
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1

)

def
= sieve(α1) · · · sieve(αn)

where

sieve(α)
def
=

{

α if α ∈ ΣO,

ǫ if α ∈ ΣS ∪ {τ}.

Internal adversaries:An internal adversary may be able to see,
besides the observables, also the intearleaving and synchro-
nizations of the various components, i.e. which component(s)
are active, at each step of the execution. Hence it is natural
to define the observation domain, for an internal adversary,as
the sequence of pairs of observable action and tag (i.e. the
identifier(s) of the active component(s)), namely:

Oi
def
= (L × (ΣO ∪ {τ}))∗.

Correspondingly, we need a function that extracts the observ-
ables from the executions:

ti : Paths⋆(S) → Oi

defined as

ti

(

q0
ℓ1,α1
−→ · · ·

ℓn,αn
−→ qn+1

)

def
=(ℓ1, sieve(α1)) · · · (ℓn, sieve(αn)).

Note that in this definition we could have equivalently used
sift instead thansieve .

Adversaries in collusion with the scheduler:Finally, we con-
sider the case in which the adversary is in collusion with the
scheduler, or possibly the adversaryis the scheduler, like in
the Dolev-Yao model. Here the observation domain coincides
with the one of the scheduler:

Os
def
= (P(L) × L × (ΣO ∪ {τ}))∗.

The corresponding function

ts : Paths⋆(S) → Os

is defined as the one of the scheduler, i.e.ts = t.

B. Information leakage

In Information Flow and Anonymity there is a converging
consensus for formalizing the notion of leakage as the dif-
ference or the ratio between the a priori uncertainty that the
adversary has about the secret, and the a posteriori uncertainty,
that is, the residual uncertainty of the adversary once it has
seen the outcome of the computation. The uncertainty can
be measured in different ways. One popular approach is the
information-theoretic one, according to which the system is
seen as a noisy channel between the secret inputs and the
observable output, and uncertainty corresponds to the Shannon
entropy of the system (see preliminaries, section B). In this
approach, the leakage is represented by the so-called mutual
information, which expresses the correlation between the input
and the output.

The above approach, however, has been recently criticized
by Smith [31], who has argued that Shannon entropy is not
suitable to represent the security threats in the typical case in
which the adversary is interested in figuring out the the secret
in one-try attempt, and he has proposed to use Rényi’s min
entropy instead, or equivalently, the average probabilityof suc-
ceeding. This leads to interpret the uncertainty in terms ofthe



8

notion ofvulnerabilitydefined in the preliminaries, section C.
The corresponding notion of leakage, in the pure probabilistic
case, have been investigated in [31] (multiplicative case)and
in [3] (additive case).

Here we adopt the vulnerability-based approach to define
the notion of leakage in our probabilistic and nondetermin-
istic context. The Shannon-entropy-based approach could be
extended to our context as well, because in both cases we only
need to specify how to determine the conditional probabilities
which constitute the channel matrix, and the marginal proba-
bilities that constitute the input and the output distribution.

We will denote byS the random variable associated to
the set of secretsS = ΣS , and byOx the random variables
associated to the set of observablesOx, wherex ∈ {e, i, s}. So,
Ox represents the observation domains for the various kinds
of adversaries defined above.

Our results require some structural properties for the system:
we assume that there is a single component in the system
containing a secret choice and this component contains a single
secret choice. This hypothesis is general enough to allow
expressing protocols like the Dining Cryptographers, Crowds,
voting protocols, etc., where the secret is chosen only once.

Assumption 1. A system contains exactly one component with
a syntactic occurrence of a secret choice, and such a choice
does not occur in the scope of any recursive call.

Note that the assumption implies that the choice appears
exactly once in the operational semantics of the component.
It would be possible to relax the assumption and allow more
than one secret choice in a component, as long as there are
no observable actions between the secret choices. But for the
sake of simplicity in this paper we impose the more restrictive
requirement. As a consequence, we have that the operational
semantics of systems satisfies the following property:

Proposition 2. If q
ℓ
→ µ andq′

ℓ′

→ µ′ are both secret choices,
thenℓ = ℓ′ and there existpi’s, qi’s and q′i’s such that:

µ = ⊙
∑

i

pi · δ(si, qi) and µ′ = ⊙
∑

i

pi · δ(si, q
′
i)

i.e., µ and µ′ differ only for the continuation states.

Given a system, each schedulerζ determines a fully prob-
abilistic automaton, and, as a consequence, the probabilities

Pζ (s, o)
def
= Pζ





⋃







〈σ〉 | σ ∈ Paths⋆(S),
tx(σ) = o, secr (σ) = s











for each secrets ∈ S and observableo ∈ Ox, wherex ∈
{e, i, s}. Heresecr is the map from paths to their secret action.
From these we can derive, in standard ways, the marginal
probabilitiesPζ (s), Pζ (o), and the conditional probabilities
Pζ (o | s).

We have that the probabilities of the secrets are actually
independent from the scheduler:

Proposition 3. Given a system, for every pair of schedulers
ζ and ζ′ we have thatPζ (s) = Pζ′ (s), for every secrets.

Because of the previous proposition, we can omitζ in Pζ .

Every scheduler leads to a (generally different) noisy chan-
nel, whose matrix is determined by the conditional probabili-
ties as follows:

Definition 5. Letx ∈ {e, i, s}. Given a system and a scheduler
ζ, the corresponding channel matrixCx

ζ has rows indexed by
s ∈ S and columns indexed byo ∈ Ox. The value in(s, o) is

given byPζ (o | s)
def
=

Pζ(s,o)
Pζ(s) =

Pζ(s,o)
P(s) .

Given a schedulerζ, the multiplicative leakage can be
defined asL×(Cx

ζ , PS), while the additive leakage can be
defined asL+(Cx

ζ , PS) wherePS is the a priori distribution
on the set of secrets (see preliminaries, section C). However,
we want a notion of leakage independent from the scheduler,
and therefore it is natural to consider the worst case over all
possible admissible schedulers.

Definition 6 (x-leakage). Let x ∈ {e, i, s}. Given a system,
the multiplicative leakage is defined as

ML×(Cx
ζ , PS)

def
= max

ζ∈Adm

L×(Cx
ζ , PS),

while the additive leakage is defined as

ML+(Cx
ζ , PS)

def
= max

ζ∈Adm

L+(Cx
ζ , PS),

where Adm is the class of admissible schedulers defined in the
previous section.

We have that the classes of observables e, i, and s determine
an increasing degree of leakage:

Proposition 4. Given a system, for the multiplicative leakage
we have

ML×(Ce
ζ , PS) ≤ ML×(Ci

ζ , PS) ≤ ML×(Cs
ζ , PS).

Similarly for the additive leakage.

C. Strong anonymity (revised)

We consider now the situation in which the leakage is
the minimum for all possible admissible schedules. In the
purely probabilistic case, we know that the minimum possible
multiplicative leakage is1, and the minimum possible additive
one is0. We also know that this is the case for all possible
input distributions if and only if the capacity of the channel
matrix is0, which corresponds to the case in which the rows of
the matrix are all the same. This corresponds to the notion of
strong probabilistic anonymity defined in [2]. In the framework
of information flow, it would correspond to probabilistic non-
interference. Still in [2], the authors considered also the
extension of this notion in presence of nondeterminism, and
required the condition to hold under all possible schedulers.
This is too strong in practice, as we have argued in the
introduction: in most cases we can build a scheduler that leaks
the secret by changing the interleaving order. We therefore
tune this notion by requiring the condition to hold only under
the admissible schedulers.

Definition 7 (x-strongly anonymous). Let x ∈ {e, i, s}. We
say that a system isx-strongly-anonymousif for all admissible
schedulersζ we have

Pζ (o | s1) = Pζ (o | s2)
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for all s1, s2 ∈ ΣS , and o ∈ Ox.

The following corollary is an immediate consequence of
previous proposition.

Corollary 8.
1) If a system is s-strongly-anonymous, then it is also i-

strongly-anonymous.
2) If a system is i-strongly-anonymous, then it is also e-

strongly-anonymous.

The converse of point(2), in previous the corollary, does
not hold, as shown by the following example:

Example 3. Consider the systemS
def
= ({c1, c2}) P ||Q ||T

where

P
def
= (0.5 : s1 : c1)+(0.5 : s2 : c2) Q

def
= c1 : o T

def
= c2 : o.

It is easy to check thatS is e-strongly anonymous but
not i-strongly anonymous, showing that (as expected) internal
adversaries can “distinguish more” than external adversaries.

On the contrary, for point(1) of Corollary 8, also the other
direction holds:

Proposition 5. A system is s-strongly-anonymous if and only
if it is e-strongly-anonymous.

VI. ON THE VERIFICATION OF STRONG ANONYMITY: A

PROVING TECHNIQUE BASED ON AUTOMORPHISMS

As mentioned in the introduction, several problems in-
volving restricted schedulers have been shown undecidable
(including computing maximum/minimum probabilities for the
case of standard model checking [18], [17]). These results
are discouraging in the aim to find algorithms for verifying
strong anonymity/non-interference using our notion of ad-
missible schedulers (and most definitions based on restricted
schedulers). Despite the fact that the problem seems to be
undecidable in general, in this section we present a sufficient
(but not necessary) anonymity proving technique: we show
that the existence of automorphisms between pair of secrets
implies strong anonymity.

A. The proving technique

In practice proving anonymity often happens in the follow-
ing way. Given a trace in which userA is the ‘culprit’, we
construct an observationally equivalent trace in which user B
is the ‘culprit’ [20], [16], [23], [21]. This new trace is typically
obtained by ‘switching’ the behavior of usersA and B. We
formalize this idea by using the notion of automorphism, cf.
e.g. [27].

Definition 9 (Automorphism). Given a TPA(Q, L, Σ, q̂, θ)
we say that a bijectionf : Q → Q is an automorphismif it
satisfiesf(q̂) = q̂ and

q
ℓ
→ ⊙

∑

i

pi · δ(αi, qi) ⇐⇒ f(q)
ℓ
→ ⊙

∑

i

pi · δ(αi, f(qi)).

In order to prove anonymity it is enough (but not necessary)
to prove that the behaviors of any two ’culprits’ can be

exchanged without the adversary noticing. We will express this
in the Theorem 1 by means of the existence of automorphisms
that exchange a given pair of secretsi andsj .

Our proving technique requires Assumption 1. Before pre-
senting the main theorem of this section we need to introduce
one last definition. LetS = (C) q1|| · · · || qn be a system and
M its corresponding TPA. We defineMτ as the automaton
obtained after “hiding” all the secret actions ofM . The idea
is to replace every occurrence of a secrets in M by the
silent actionτ . Note that this can be formalized by replacing
the secret choice by a blind choice in the corresponding
componentqi of the systemS.

We can now state the relation between automorphisms and
strong anonymity.

Theorem 1. Let S be a system that satisfies Assumption 1
and M its tagged probabilistic automaton. If for every pair
of secretssi, sj ∈ ΣS there exists an automorphismf of Mτ

such that for any stateq we have

q
ℓ,si
−→M q′ =⇒ f(q)

ℓ,sj

−→M f(q′),

thenS is s-strongly-anonymous.

Note that, since s-strong anonymity impliesi-strong
anonymity ande-strong anonymity, the existence of such an
automorphism implies all the notions of strong anonymity
presented in this work.

Proposition 6. The converse does not hold, i.e. strong
anonymity does not imply the existence of automorphisms.

We now show that the definition ofx-strong-anonymity is
independent of the particular distribution over secrets, i.e., if
a system isx-strongly-anonymous for a particular distribution
over secrets, then it isx-strongly-anonymous for all distribu-
tions over secrets.

Theorem 2. Consider a systemS = (C) q1 ‖ · · · ‖ qi ‖ · · · ‖
qn. Let qi be the component which contains the secret choice,
and assume that it is of the form

∑

j pj : sj . qj . Consider
now the systemS′ = (C) q1 ‖ · · · ‖ q′i ‖ · · · ‖ qn, whereq′i is
identical toqi except for the secret choice, which is replaced
by

∑

j p′j : sj . qj . Then we have that:

1) For everysi, sj there is an automorphism onS satisfying
the assumption of Theorem 1 if and only if the same holds
for S′.

2) S is x-strongly-anonymous if and only ifS′ is x-strongly-
anonymous.

Note: 1) does not imply2), because in principle neitherS
not S′ may have the automorphism, and still one of the two
could be strongly anonymous.

B. An Application: Dining Cryptographers

Now we show how to apply the proving technique pre-
sented in this section to the Dining Cryptographers protocol.
Concretely, we show that there exists an automorphismf ex-
changing the behavior of the Crypt0 and Crypt1; by symmetry,
the same holds for the other two combinations.
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Fig. 5. Automorphism between Crypt0 and Crypt1

Consider the automorphisms of Master and Coin1 indicated
in Figure 5. The states that are not explicitly mapped (by a
dotted arrow) are mapped to themselves.

Also consider the identity automorphism on Crypti (for i =
0, 1, 2) and on Coini (for i = 0, 2). It is easy to check that the
product of these seven automorphisms is an automorphism for
Crypt0 and Crypt1.

VII. C ONCLUSION AND FUTURE WORK

We have defined a class of partial-information schedulers
which can only base their decisions on the information they
have available. In particular they cannot base their decisions
on the internal behavior of the components.

We have used admissible schedulers to resolve nondeter-
minism in a realistic way, and to tune the definition of strong
anonymity proposed in [2].

We have presented a technique to prove the various def-
initions of strong anonymity proposed in the paper. This is
particularly interesting considering that many problems related
to restricted schedulers have been shown to be undecidable.
In particular we have shown how to use the technique to
prove that the DC protocol is strongly anonymous when
considering admissible schedulers, in contrast to the situation
when considering full-information schedulers.

We plan to investigate the decidability problem for the
various definitions of strong anonymity we have proposed.
Another interesting direction for future work is to extend well
known isomorphism-checking algorithms and tools (see [15]
for a survey) to our setting in order to verify automatically
strong anonymity (in case an automorphism exists - recall that
this is not a necessary condition).
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