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Abstract

We survey the work on both discrete and continuous space probabilistic sys-
tems as coalgebras, starting with how probabilistic systems are modeled as
coalgebras and followed by a discussion of their bisimilarity and behavioral
equivalence, mentioning results that follow from the coalgebraic treatment of
probabilistic systems. It is interesting to note that, for different reasons, for
both discrete and continuous probabilistic systems it may be more convenient
to work with behavioral equivalence than with bisimilarity.

Keywords: Probabilistic systems, Coalgebra, Markov chains, Markov
processes

1. Introduction

Probabilistic systems are models of systems that involve quantitative in-
formation about uncertainty. They have been extensively studied in the last
two decades in the area of probabilistic verification and concurrency theory.
The models originate in the rich theory of Markov chains and Markov pro-
cesses (see e.g. [49]) and in the early work on probabilistic automata [63, 61].

Discrete probabilistic systems, see e.g. [49, 77, 30, 55, 62, 67, 33, 22]
and [70] for an overview, are transition systems on discrete state spaces and
come in different flavors: fully probabilistic (Markov chains), labeled (with
reactive or generative labels), or combining non-determinism and probability.
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Probabilities in discrete probabilistic systems appear as labels on transitions
between states. For example, in a Markov chain a transition from one state
to another is taken with a given probability.

Continuous probabilistic systems, see e.g. [7, 23, 26, 11, 21, 45] as well as
the recent books [59, 27, 28] that contain most of the research on continuous
probabilistic systems, are transition systems modeling probabilistic behavior
on continuous state spaces. The basic model is that of a Markov process.
Central to continuous probabilistic systems is the notion of a probability
measure on a measurable space. Therefore, the state space of a continuous
probabilistic system is equipped with a σ-algebra and forms a measurable
space. It is no longer the case that the probability of moving from one state
to another determines the behavior of the system. Actually, the probability of
reaching any single state from a given state may be zero while the probability
of reaching a subset of states is nonzero. A Markov process is specified by
the probability of moving from any source state to any measurable subset in
the σ-algebra, which is intuitively interpreted as the probability of moving
from the source state to some state in the subset.

Both discrete and continuous probabilistic systems can be modeled as
coalgebras and coalgebra theory has proved a useful and fruitful means to
deal with probabilistic systems. In this paper, we give an overview of how
to model probabilistic systems as coalgebras and survey coalgebraic results
on discrete and continuous probabilistic systems. Having modeled proba-
bilistic systems as coalgebras, there are two types of results where coalgebra
meets probabilistic systems: (1) particular problems for probabilistic sys-
tems have been solved using coalgebraic techniques, and (2) probabilistic
systems appear as popular examples on which generic coalgebraic results are
instantiated. The results of the second kind are not to be considered of less
importance: sometimes they lead to completely new results not known in the
community of probabilistic systems, e.g. [2, 5, 17, 52, 65, 60]. Moreover, the
variety of probabilistic systems provides a nice set of (motivating) examples
for generic coalgebra results or observations, e.g. [20, 60]. Also, looking at
probabilistic systems from different perspectives provides evidence in favor
of behavioral equivalence rather than bisimilarity.

In the paper, we take the following route. We start with an introduction
to basic coalgebra notions, and some particular results concerning bisimilar-
ity and behavioral equivalence that are needed for what follows (Section 2).
Then we discuss discrete probabilistic systems (Section 3), and the induc-
tive class of functors that turns each of them into a coalgebra on Sets, the
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category of sets and functions. We proceed with an expressiveness com-
parison of discrete probabilistic systems which benefits from the coalgebraic
modeling, and discuss existing results of both types mentioned above on dis-
crete probabilistic systems. We note that from this general (coalgebraic)
perspective probabilistic transitions can be viewed as transitions labeled by
elements of some commutative monoid, and therefore are comparable to non-
deterministic transitions. We also show an alternative way of modeling (reac-
tive) discrete probabilistic systems as coalgebras on the category of pseudo-
metric spaces and nonexpansive functions taken by van Breugel and Worrell
that allows for a definition of behavioral distances between states [15, 16].
Next we move to continuous probabilistic systems (Section 4) where we show
how they are modeled as coalgebras on Meas, the category of measurable
spaces and measurable maps. Actually, in the literature, most of the time
continuous probabilistic systems live on some special categories of measur-
able spaces (analytic, Polish, metric/pseudometric/ultrametric spaces). We
discuss the reasons for this and present some observations (related to the
dilemma of bisimilarity versus behavioral equivalence) that allow us to stay
in Meas. We end our trip with a short discussion on how discrete systems
are embedded into continuous systems, i.e., as expected, Markov chains are
Markov processes. Please fasten your seat belt and enjoy the flight over the
landscape of probabilistic systems and coalgebras.

2. Coalgebras, Bisimilarity, and Behavioral Equivalence

Let C be a category and F an endofunctor on C. An F -coalgebra is a pair
�X, c : X → FX� whereX in C is the carrier, and c is the coalgebra structure.
For brevity, we often identify a coalgebra with its coalgebra structure. Given
two F -coalgebras c : X → FX and d : Y → FY , a coalgebra homomorphism
from c to d is a map h : X → Y such that d ◦ h = Fh ◦ c. F -coalgebras
together with their coalgebra homomorphisms form a category, denoted by
CoalgF .

In this paper we only consider coalgebras on concrete categories, i.e., cat-
egories with a faithful forgetful functor to Sets, the category of sets and
functions. Then the carrier X of a coalgebra provides the set of states (af-
ter the application of the forgetful functor) and the coalgebra map c gives
the transitions to the next state(s). The functor F determines the type of
transitions. For example, coalgebras of the powerset functor P on Sets are
nondeterministic transition systems in which from any state there is a set
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of (non-labeled) transitions to possible next states. An example of a non-
deterministic transition system as coalgebra is presented below.

•x0

�� ���
��

��
�

•x1

��

•x2
��

X = {x0, x1, x2}, X
c→ PX

c(x0) = {x1, x2}
c(x1) = {x0}
c(x2) = {x1}

Coalgebras of the functor P(A× ) on Sets, for a set of labels A, are labeled
transition systems (LTS). An example is:

•x0

a

����
��

�� a

���
��

��
�

•x1 •x2
b

��

X = {x0, x1, x2}, X
c→ P(A×X)

c(x0) = {�a, x1�, �a, x2�}
c(x1) = ∅
c(x2) = {�b, x1�}

Homomorphisms of (labeled) transition systems are transition preserving
and reflecting maps. We refer the reader to [64, 44] for a gentle introduction
to coalgebra and many interesting examples.

A final F -coalgebra is a final object in the category CoalgF : from any F -
coalgebra c there is a unique homomorphism behc to the final one. If a final
coalgebra exists, it induces a final coalgebra semantics which identifies two
states if and only if they are mapped to the same element of the final coal-
gebra via the unique homomorphism. For weak pullback preserving functors
on Sets the final coalgebra semantics coincides with coalgebraic bisimilarity
defined in the following way via the notion of a bisimulation.

Let c : X → FX and d : Y → FY be two coalgebras on Sets. A relation
R ⊆ X × Y is a bisimulation between c and d if there exists a mediat-
ing coalgebra structure r : R → FR making the two projections coalgebra
homomorphisms, i.e., making the following diagram commute

X
c

��

R
π1�� π2 ��

∃r
��
�

� Y
d

��
FX FR

Fπ1

��
Fπ2

�� FY .

Two states x and y are bisimilar, notation x ∼ y, if they are related by
some bisimulation relation. Weak pullback preservation of the type functor
F suffices for bisimilarity to be an equivalence. Therefore, it also suffices for
bisimilarity on a given coalgebra to be the union of all equivalence bisim-
ulation relations (bisimulations that are equivalences). In order to relate
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coalgebraic bisimilarity to concrete notions of bisimilarity in the literature,
the notion of relation lifting is helpful.

Let R ⊆ X × Y be a relation, and F a functor on Sets. The relation R
can be lifted to a relation Rel(F )(R) ⊆ FX × FY defined by

�x, y� ∈ Rel(F )(R) ⇔ ∃z ∈ FR : Fπ1(z) = x, Fπ2(z) = y.

It is easy to see that relation liftings provide transfer conditions for bisimu-
lation, as stated in the next property.

Lemma 2.1. A relation R ⊆ X × Y is a bisimulation between the F -
coalgebras c : X → FX and d : Y → FY if and only if

�x, y� ∈ R =⇒ �c(x), d(y)� ∈ Rel(F )(R).

Moreover, one can show [69] the following characterization of equivalence
liftings for weak pullback preserving functors.

Lemma 2.2. If F preserves weak pullbacks and R is an equivalence on X,

then Rel(F )(R) is the pullback of the cospan FX
Fe �� F (X/R) FX

Fe��

where e : X → X/R is the canonical map mapping each element to its
equivalence class.

As a consequence we get the following characterization of equivalence
bisimulations in terms of transfer conditions.

Corollary 2.3. A relation R ⊆ X×X is an equivalence bisimulation on the
F -coalgebra c : X → FX, where F preserves weak pullbacks, if and only if

�x, y� ∈ R =⇒ (Fe ◦ c)(x) = (Fe ◦ c)(y).

where e is the canonical map mapping each element to its equivalence class.

We will see later how Lemma 2.1, Lemma 2.2, Corollary 2.3, and some
properties of relation liftings of inductively defined functors provide a mod-
ular way to show that coalgebraic and concrete bisimilarity coincide for all
discrete probabilistic systems.

A way to define bisimulations on general categories is using a span of
morphisms. A span �R, r1 : R → X, r2 : R → Y � is a bisimulation between
two F -coalgebras c : X → FX and d : Y → FY on a category C if R, r1, and
r2 satisfy some additional conditions that ensure non-triviality (e.g. r1, r2
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being epi) and there exists a coalgebra map r : R → FR making both r1 and
r2 coalgebra homomorphisms. One can then define that the coalgebras c and
d are bisimilar if there is a bisimulation between them. For coalgebras on a
concrete category, two states x ∈ X and y ∈ Y are bisimilar if there exists
z ∈ R such that x = r1(z) and y = r2(z), excluding the need of additional
conditions on r1 and r2. On Sets the two definitions, general span versus
relation with projections, are equivalent.

Another behavior semantics, closely related to bisimilarity, called behav-
ioral equivalence always coincides with the final coalgebra semantics. It has
proven very useful in reasoning about probabilistic systems. It is based on
the notion of a cocongruence [54, 81] which is a cospan rather than a span.

A cocongruence between two F -coalgebras c : X → FX and d : Y → FY
is a cospan �U, u1 : X → U, u2 : Y → U�, with u1 and u2 jointly epi, such that
there exists an F -coalgebra map u : U → FU making u1 and u2 coalgebra
homomorphisms, i.e., making the following diagram commute

X
c

��

u1 �� U
∃u

��
�

� Y
u2��

d
��

FX
Fu1

�� FU FY .
Fu2

��

We say that the coalgebras c and d are behaviorally equivalent if they are
connected by a cocongruence. For coalgebras on a concrete category, we say
that x ∈ X and y ∈ Y are behaviorally equivalent, and write x ≈ y, if
they are identified by some cocongruence between them, i.e., if there exists
a cocongruence �U, u1, u2� with u1(x) = u2(y).

In particular in the study of probabilistic systems coalgebraically, but also
in coalgebraic modal logics in general, behavioral equivalence has advantages
over bisimilarity, as we will see below. However, the good side of bisimilarity
is that it is computable by efficient algorithms2. Another reason for work-
ing with bisimilarity is traditional, many concrete types of systems come
equipped with a concrete notion of bisimilarity. Bisimilarity always implies
behavioral equivalence in categories with pushouts, cf. e.g. [5, 69]. If addi-
tionally the type functor F preserves weak pullbacks, then the two notions

2
Bisimilarity can be computed by iterative algorithms, see e.g. [39], thus making it

possible to automatize coinduction proofs. The plain definition of behavioral equivalence,

without knowing that it coincides with bisimilarity, does not provide such methods.
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coincide (cf. e.g. [5, 69]). This property is useful in comparing expressivity
of different types of coalgebras.

3. Discrete Probabilistic Systems

Discrete probabilistic systems are state-based systems in which a change
of state is governed by a discrete probability distribution over possible next
states. In addition, one may have labels, non-determinism, and/or termi-
nation. The basic model involving discrete probabilities is a Markov chain,
given by a set of states and from each state a probability distribution over the
set of states, determining the probability of transiting to any other state. We
start by recalling the definition of a discrete (sub)probability distribution.

Definition 3.1. Let X be a set. A function µ : X → R≥0 is a discrete
probability distribution, or distribution for short, on X if

�
x∈X µ(x) = 1. It

is a discrete subprobability distribution if
�

x∈X µ(x) ≤ 1. The set {x ∈ X |
µ(x)> 0} is the support of µ and is denoted by supp(µ).

Note that the general X-indexed sum is defined as

µ[X] =
�

x∈X

µ(x) = sup
X�⊆X
X� finite

�
�

x∈X�

µ(x)

�
∈ R ∪ {∞}

and it is well-defined since µ(x) ≥ 0. One can show that for any discrete
probability distribution (see e.g. [69]) the support set is at most countable,
which justifies the use of the term “discrete”.

A distribution that assigns probability 1 to a single element x ∈ X is
called a Dirac distribution, denoted by δx. Hence, δx(y) = 1 if y = x and
δx(y) = 0 otherwise.

In the remainder of this section we will discuss how to model various
discrete probabilistic systems as coalgebras, starting from Markov chains as
the basic discrete probabilistic system type and their bisimilarity, to more-
complex inductively defined models and the relationship of their coalgebraic
and concrete notions of bisimilarity. Moreover, we will briefly discuss an ex-
pressiveness comparison of the different discrete probabilistic systems which
is made possible using the generality of coalgebra, as well as other specific and
general results involving discrete probabilistic systems as coalgebras. Finally,
we point out that although the research on discrete probabilistic systems is
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very elaborate and advanced, probabilities may not be that special: the
finitary functors used for modeling discrete probabilistic systems have a gen-
eralization that allows studying and modeling more general monoid-valued
valuations and not only discrete probability distributions.

3.1. Coalgebraic Modeling

Almost all3 types of known discrete probabilistic systems used as models
for different verification and analysis techniques can be modeled as coalgebras
on Sets. The main step towards coalgebraic modeling of discrete probabilis-
tic systems is in the choice of a functor to represent discrete probability
distributions over a set of states.

Definition 3.2. The probability distribution functor

D : Sets → Sets

maps a set X to
DX = {µ : X → R≥0 | µ[X] = 1}

and a function f : X → Y to Df : DX → DY given by

(Df)(µ) = λy.µ[f−1({y})].

Variants of the probability distribution functor are also used, and may
be convenient depending on the application. Such are the subprobabil-
ity distribution (subdistribution) functor D≤1 and the finitely supported
(sub)distribution functors Df and D≤1,f , whose definitions vary from the
definition of D only on objects. We have

D≤1X = {µ : X → R≥0 | µ[X] ≤ 1}
DfX = {µ : X → R≥0 | µ[X] = 1, supp(µ) is finite}

D≤1,fX = {µ : X → R≥0 | µ[X] ≤ 1, supp(µ) is finite}

All these functors are well-behaved in the following sense.

3
All with exception of the strictly alternating systems [33], which can be modeled as

multi-sorted coalgebras [60].
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Proposition 3.3. The (sub)probability distribution functor and its finitary
variant preserve weak pullbacks. Moreover, each of them has a final coalgebra.

The proof of the weak pullback preservation of Df goes back to the first
coalgebraic treatment of discrete probabilistic systems by de Vink and Rut-
ten [80], exploiting the graph-theoretical max-flow min-cut theorem as in
[46], and was also shown by Moss [57], using an elementary matrix fill-in
property. Similar arguments apply to D≤1,f . The same result is an instance
of a more general result on (finitely supported) monoid valuations (also called
copower) functors, by Gumm and Schroeder [32, 31]. Finite support is not
necessary for the weak pullback preservation of the probability distribution
functor, also D preserves weak pullbacks [69] which is established by show-
ing that the needed matrix fill-in property [57] can be used and holds for
countably infinite matrices as well. Similarly D≤1 preserves weak pullbacks.
The existence of a final coalgebra for Df is trivial (the final coalgebra itself
is trivial as well). In [80] it was proven that final coalgebra exists also for
Df + 1 (allowing termination), using that the functor is bounded. Similar
arguments apply to all variants. Also the finitely supported monoid valua-
tion functor is bounded [68], generalizing the result on Df and D≤1,f . We
will discuss monoid valuation functors in Section 3.4 below.

Finally, we note that the (sub)distribution functors and their finitary
versions are not only functors but also monads.

3.1.1. Markov chains
Discrete-time Markov chains (DTMCs) [49, 40], or Markov chains for

short, form the basic type of discrete probabilistic systems. They are coal-
gebras of the discrete probability distribution functor D. That is, a Markov
chain with a state set X is a coalgebra c : X → D(X). An example is shown
below where x

p
❀ y for states x, y ∈ X, denotes that the probability of mov-

ing from x to y is p, i.e., c(x)(y) = p.

•x0

1
3��

��
��

��
2
3

��
��

��
��

•x1

1
��

��
��

��

•x21
�� �� �� �� �� �� ��

X = {x0, x1, x2}, X
c→ DX

c(x0) = {x0 �→ 0, x1 �→ 1
3 , x2 �→ 2

3}
c(x1) = δx0

c(x2) = δx1

3.1.2. Probabilistic System Types
We can now model most of the discrete probabilistic systems from the

literature, in a modular way, using an inductively defined class of functors
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on Sets. The functors are built using the following syntax

F ::= | A | A | P | D | F ◦ F | F × F | F + F

where the basic functors used are the identity functor ; the constant functor
A mapping each set to the constant set A and each map to the identity on
A; the constant exponent functor A mapping a set X to the set of all
functions from A to X and a map f : X → Y to the map fA : XA → Y A

given by fA(g) = f ◦ g; the powerset functor P mapping a set to the
collection of its subsets and a function f : X → Y to P(f) : P(X) → P(Y )
with P(f)(X �) = f(X �) = {f(x) | x ∈ X �}, the direct image; and the
probability distribution functor D.

An important property for some of the results presented later is weak
pullback preservation. We note here that any functor in this inductively
defined class preserves weak pullbacks [64, 69].

This class of functors suffices to model various discrete probabilistic sys-
tems used as mathematical models of real systems for formal verification.
Most of the existing probabilistic systems arose independently in the liter-
ature to improve modeling of one or another property of a system. One
motivating issue was the need to model both non-deterministic and proba-
bilistic choice, another is compositional modeling. In Figure 3.1.2 (previously
introduced in [5, 69]) we present functors that allow for coalgebraic modeling
of known discrete probabilistic systems (and some standard transition sys-
tems for comparison), together with the abbreviations that we use to denote
the corresponding category of coalgebras, and references to papers introduc-
ing them. For some of the systems, names used here follow [70, 5, 69] and
deviate from the original names. Such are (simple) Segala systems, also
known as (simple) probabilistic automata and closely related to Markov de-
cision processes (MDPs) [6], Vardi systems which were originally introduced
as concurrent Markov chains, and Pnueli-Zuck systems that were originally
named probabilistic finite state programs.

The alternating systems considered here do not involve strict alternation
as in the original definition of Hansson [33]. Strictly alternating systems can
be modeled as multi-sorted coalgebras [60]. For more details on each of the
discrete probabilistic systems, the reader is referred to [70, 5, 69]. Here we
only briefly mention that both reactive and generative systems arise from LTS
when replacing the non-deterministic choice modeled by P (in the isomorphic
input view and output view on LTS) with probabilistic choice modeled by D
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CoalgF F name for X → FX/reference

MC D Markov chains

DLTS ( + 1)A deterministic automata

LTS P(A× ) ∼= PA non-deterministic automata, LTSs

React (D + 1)A reactive systems [55, 30]

Gen D(A× ) + 1 generative systems [30]

Str D + (A× ) + 1 stratified systems [30]

Alt D + P(A× ) alternating systems [33]

Var D(A× ) + P(A× ) Vardi systems [77]

SSeg P(A×D) simple Segala systems [67, 66]

Seg PD(A× ) Segala systems [67, 66]

Bun DP(A× ) bundle systems [22]

PZ PDP(A× ) Pnueli-Zuck systems [62]

MG PDP(A× + ) most general systems

Figure 1: Discrete probabilistic system types
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and termination possibility. Some models make a distinction on the type of
states, (non-)deterministic versus probabilistic, as in the case of alternating,
stratified, or Vardi systems; some models involve both non-deterministic and
probabilistic choices, like Segala systems or bundle systems. The last type
of systems is added here in order to have a top element in the expressiveness
hierarchy that we will discuss in Section 3.3.

3.2. Bisimulation Correspondence

All of the concrete discrete probabilistic systems come with a concrete
notion of bisimilarity defined via bisimulation equivalence in terms of transfer
conditions, based on the original definition of Larsen and Skou for reactive
systems [55]. The main argument that justifies generic coalgebraic results
for these systems is the coincidence of the concrete notions of bisimilarity
with coalgebraic bisimilarity in every single case, which can be shown in a
modular way using relation liftings and their properties. For the concrete
bisimilarity definitions the reader is referred to [70, 69] and the complete
proof of bisimilarity correspondence can be found in [69]. Here we illustrate
the bisimilarity correspondence proof method for the case of Markov chains
and simple Segala systems.

Definition 3.4. An equivalence relation R on the set of states X of a Markov
chain c : X → DX is a (concrete) bisimulation if and only if �x, y� ∈ R im-
plies

if x ❀ µ, then there is a distribution µ� with y ❀ µ�

and µ ≡R µ�

where x ❀ µ denotes that c(x) = µ ∈ DX, and µ ≡R µ� if and only if for
any R-equivalence class C, µ[C] = µ�[C].

The condition on the equivalence classes is closely related to the notion of
distribution lifting [47], which is exactly the relation lifting for the probability
distribution functor D.

Definition 3.5. Let R ⊆ X×Y be a relation. Let µ ∈ D(X) and µ� ∈ D(Y )
be distributions. Define µRµ� if and only if there exists a joint distribution
ν ∈ D(X × Y ) such that

(i) ν has µ and µ� as marginals, i.e.,
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1. ν[x, Y ] = µ(x) for any x ∈ X
2. ν[X, y] = µ�(y) for any y ∈ Y

(ii) ν satisfies ν(x, y) �= 0 =⇒ �x, y� ∈ R.

It is easy to see [69] that Rel(D)(R) = R. In the special case when R is an
equivalence relation on X, from Lemma 2.2, one gets that Rel(D)(R) =≡R,
also shown directly in [48, 72, 1].

Hence, by Lemma 2.1, we get that an equivalence R on the set of states X
of a Markov chain c : X → DX is a bisimulation according to Definition 3.4
if and only if it is a coalgebraic equivalence bisimulation, showing that the
concrete and the coalgebraic bisimilarity notions for Markov chains coincide.
This fact was first shown by de Vink and Rutten [80]. The same technique
was used by Bartels et al. [4] to sketch the correspondence of concrete bisim-
ulation and coalgebraic bisimulation for general Segala-type systems. In [5]
another, more modular proof is presented of the correspondence of concrete
probabilistic bisimulation with the coalgebraic bisimulation in the case of
simple Segala systems based on Corollary 2.3. At the same time, it was a
proof of the correspondence for reactive systems. That technique can also be
used in all the other cases. However, having Lemma 2.1 and the properties of
relation liftings, it is a matter of simple, structured, and modular derivation
to show the correspondence of coalgebraic and concrete bisimilarity for all of
the probabilistic systems that come with a notion of bisimulation [69]. We
briefly present the general method here and instantiate it to the example of
simple Segala systems.

Note that bisimilarity for Markov chains is trivial, i.e., any two states in
a Markov chain c : X → DX are bisimilar since X × X is a bisimulation
relation. This quickly changes in the presence of termination, action labels,
and/or non-determinism.

The next lemma [41, 69] shows that for our class of inductively defined
functors, Rel(F ) can be defined by structural induction. Item (v) repeats
what we already discussed above.

Lemma 3.6. Let R ⊆ X × Y be a relation. Then:

(i) Rel( )(R) = R,

(ii) Rel(A)(R) = ∆A, the diagonal relation on A,
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(iii) Rel(P)(R) =
�
�X, Y � | (∀x ∈ X)(∃y ∈ Y )�x, y� ∈ R∧

(∀y ∈ Y )(∃x ∈ X)�x, y� ∈ R
�
,

(iv) Rel( A)(R) = {�f, g� | (∀a ∈ A)�f(a), g(a)� ∈ R},

(v) Rel(D)(R) = R (see Definition 3.5),

(vi) Rel(F ◦ G)(R) = Rel(F )(Rel(G)(R)),

(vii) Rel(F ×G)(R) =
� �

�x1, x2�, �y1, y2�
�
| �x1, y1� ∈ Rel(F )(R)∧
�x2, y2� ∈ Rel(G)(R)

�
,

(viii) Rel(F +G)(R) =
�
�κ1(x1),κ1(y1)� | �x1, y1� ∈ Rel(F )(R)

�
∪

�
�κ2(x2),κ2(y2)� | �x2, y2� ∈ Rel(G)(R)

�

where κ1,κ2 denote the injections into the coproduct, κi : Xi → X1 +X2.

Now we can apply Lemma 3.6 to show the correspondence of concrete
and coalgebraic bisimilarity for simple Segala systems. Similar modular ar-
guments apply to all other discrete probabilistic systems, see [69] for the
complete proof. The concrete definition of bisimulation and bisimilarity for
simple Segala systems [67] is the same as the original definition of bisimula-
tion for reactive systems introduced by Larson and Skou [55], which we recall
next.

Definition 3.7. An equivalence relation R on X is a (concrete) bisimulation
on the simple Segala system c : X → P(A × DX) if and only if �x, y� ∈ R
implies

if x
a→ µ, then there exists a distribution µ� with y

a→ µ� and µ ≡R µ�,
i.e., for any R-equivalence class C, µ[C] = µ�[C]

where x
a→ µ denotes that �a, µ� ∈ c(x).

Using Lemma 2.1 we are going to provide a transfer condition for coal-
gebraic bisimulation between two simple Segala systems and see that in case
of equivalences one gets the same transfer condition as in Definition 3.7. We
have that a relation R ⊆ X × Y is a bisimulation between two simple Segala
systems c : X → P(A×DX) and d : Y → P(A×DY ) if and only if

�x, y� ∈ R =⇒ �c(x), d(y)� ∈ Rel(P(A×D))(R).
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Using the modular properties of relation liftings, by Lemma 3.6(vi),

�c(x), d(y)� ∈ Rel(P(A×D))(R)

if and only if

(∀�a, µ� ∈ c(x), ∃�a�, µ�� ∈ d(y) : ��a, µ�, �a�, µ��� ∈ Rel(A×D)(R)) ∧
(∀�a�, µ�� ∈ d(y), ∃�a, µ� ∈ c(x) : ��a, µ�, �a�, µ��� ∈ Rel(A×D)(R))

which by Lemma 3.6(vii) is equivalent to

�
∀�a, µ� ∈ c(x), ∃�a�, µ�� ∈ d(y) : �a, a�� ∈ Rel(A)(R) ∧ �µ, µ�� ∈ Rel(D)(R)

�
∧

�
∀�a�, µ�� ∈ d(y), ∃�a, µ� ∈ c(x) : �a, a�� ∈ Rel(A)(R) ∧ �µ, µ�� ∈ Rel(D)(R)

�
.

Applying Lemma 3.6(ii),(v), we get the following equivalent condition

�
∀�a, µ� ∈ c(x), ∃�a�, µ�� ∈ d(y) : a = a� ∧ µRµ�� ∧
�
∀�a�, µ�� ∈ d(y), ∃�a, µ� ∈ c(x) : a = a� ∧ µRµ��.

Finally, we rewrite the last condition using transition notation and obtain
the transfer condition for bisimulation between simple Segala systems:

if x
a−→µ, then there exists µ� with y

a−→µ� and µRµ�, and

if y
a−→µ�, then there exists µ with x

a−→µ and µRµ�.
(1)

If we restrict to coalgebraic bisimulations R on a simple Segala system
which are equivalence relations, then as mentioned above R =≡R. In ad-
dition, when R is an equivalence the symmetric part of the transfer condi-
tion (1) becomes unnecessary. Hence, the transfer condition (1) is equivalent
to the transfer condition of Larsen and Skou [55] (Definition 3.7) for an equiv-
alence relation R on a simple Segala system, showing that coalgebraic and
concrete bisimilarity coincide.

3.3. Expressiveness Hierarchy

Having modeled all discrete probabilistic systems as coalgebras, we can
now compare their expressiveness using a single coalgebraic result [5, 69]. The
question is: when can we consider one type of systems at least as expressive as
another? We will soon define expressiveness precisely, its intuitive meaning
being that a more expressive type can model all systems of a less expressive
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type. According to this intuition, it is clear that stratified systems are at least
as expressive as Markov chains and Vardi systems are at least as expressive
as LTS since in both cases the latter class is somehow contained in the former
one. It is also clear that general Segala systems are at least as expressive as
simple Segala systems since each simple Segala system can be considered a
general Segala system after pushing each label into the target distribution,
as in the example below.

•
a

��
1
3

��
��

��
��

2
3

��
��

��
��

• •

⇒

•

��
a[ 13 ]

��
��

��
�� a[ 23 ]

��
��

��
��

• •
a simple Segala transition as a Segala transition

X → P(A×DX) X → PD(A×X)

The expressiveness criterion chosen in [5, 70, 69], considers a class of
systems embedded in another class of systems, in which case the latter is
considered at least as expressive as the former, if there exists a translation
T that maps any system of the former class into a system of the latter
class keeping the same states such that bisimilarity is both preserved and
reflected, i.e., two states are bisimilar in the original system if and only if they
are bisimilar in the translated one. Since bisimilarity in all cases coincides
with coalgebraic bisimilarity and the systems are modeled as coalgebras, we
present a coalgebraic way of creating such translations.

We use translations of F -coalgebras into G-coalgebras in order to com-
pare the expressiveness of coalgebras for different functors F and G. Such
a translation can easily be obtained from a natural transformation between
the two functors under consideration. A natural transformation τ : F ⇒ G
is a set-indexed family of maps τX : FX → GX that satisfies the natural-
ity condition: for any map f : X → Y , τY ◦ Ff = Gf ◦ τX . A natural
transformation τ : F ⇒ G induces a functor Tτ : CoalgF → CoalgG defined
as [64]

Tτ

�
X

c �� FX
�
=

�
X

c �� FX
τX �� GX

�
and Tτh = h.

The induced functor is a translation map that preserves homomorphisms and
thus preserves bisimilarity. For reflection of bisimilarity, we impose injectivity
condition on the natural transformation [5, 69].
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Proposition 3.8. Let F and G be two functors on Sets. If τ : F ⇒ G
is a natural transformation with injective components τX and the functor
F preserves weak pullbacks, then the induced functor Tτ : CoalgF → CoalgG
preserves and reflects bisimilarity.

Interestingly, the proof of this result uses cocongruences, i.e., behavioral
equivalence. One shows that if τ : F ⇒ G is a natural transformation with
injective components, then Tτ preserves and reflects behavioral equivalence
(without imposing any conditions on the functors). In the proof of preser-
vation of behavioral equivalence [5], one uses the diagonal fill-in property to
show that the mediating coalgebra structure factors as τ after an F -coalgebra
structure, for which the change of directions (cospan vs. span) is handy.
Since behavioral equivalence and bisimilarity coincide for weak pullback pre-
serving functors, one gets reflection of bisimilarity in case F preserves weak
pullbacks. As noted above, all our functors preserve weak pullbacks, so in or-
der to embed a class of F -coalgebras into a class of G-coalgebras all we need
is a natural transformation with injective components from F to G. We write
CoalgF → CoalgG if there is an embedding of F -coalgebras into G-coalgebras
that preserves and reflects bisimilarity. Providing suitable natural transfor-
mations with injective components we can build the hierarchy of discrete
probabilistic systems [5, 69] presented in Figure 2. Each concrete translation
is strict in the sense that the translation map is not surjective. However, in
general it is very difficult to argue that any arrow in the hierarchy is strict
due to the nature of the embedding definition.

All used natural transformations are well-known ones, for example the
natural transformation for the translation of simple Segala to general Segala
systems is obtained from the strength of the distribution functor stD. It is

P stD : P(A×D) ⇒ PD(A× )

where the strength of the distribution functor at X maps a ∈ A and µ ∈ DX
to stDX(a, µ) = µa ∈ D(A ×X) such that µa(b, x) = µ(x) for a = b ∈ A and
x ∈ X, and µa(b, x) = 0 for a �= b.

3.4. Are probabilities just a special case?

Although they might seem different at first sight, the finitary powerset
functor Pf (mapping a set to its finite subsets) and the finitely supported
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Figure 2: Hierarchy of discrete probabilistic systems

(sub)probability distribution functor Df can be seen as instances of the same
thing. There exists a more general functor, a (subfunctor of a) functor of
finitary monoid valuations, that subsumes both. We start with the definition
of the finitary monoid valuations functor [31, 32] which has attracted quite
some attention lately.

Let M = �M,+, 0� be a commutative monoid. An M-valuation on a set
X is a function v : X → M and its support is supp(v) = {x ∈ X | v(x) �= 0}.

The finitary functor of monoid valuations M−
f : Sets → Sets for the

monoid M maps a set X to the set of all finitely supported valuations on X,

MX
f = {v : X → M | supp(v) is finite }

and a function g : X → Y to Mg
f : M

X
f → MY

f given by

(Mg
f )(v) = λy.v[f−1({y})]

where for a valuation v : X → M and a subset X � ⊆ X we write

v[X] =
�

x∈X�

v(x)

and the sum is defined due to the finite support property.
The finitely supported monoid valuation functor M−

f and its properties
have been studied by Gumm and Schröder [31, 32], showing that the functor
preserves nonempty weak pullbacks along injective maps if the monoid is pos-
itive (the only invertible element is 0), and it preserves nonempty pullbacks
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if additionally the monoid is refinable (if m1+m2 = n1+n2, then there exist
l1,1, l1,2, l2,1, and l2,2 such that l1,1 + l1,2 = m1, l2,1 + l2,2 = m2, l1,1 + l2,1 =
n1, and l1,2 + l2,2 = n2). The same functor was also used recently by Bonchi
et al. [8, 68], for deriving syntax and axioms for quantitative behaviors, where
the authors show that the functor is bounded and hence has a final coalgebra.

Consider the two-valued commutative monoid 2 = �{0, 1},∨, 0�. The
functor 2−

f coincides with the finitary powerset functor. Note that 2 is pos-
itive and refinable, so one could also derive the weak pullback preservation
of the finitary powerset functor from the results of [31, 32] as well as the
existence of a final coalgebra from [68]. Another instance of the monoid
valuation functor M−

f is the finitely supported multiset functor M which
maps a set X to the set of all finitely supported multisets on X. Namely,
MX = {m : X → N | supp(m) is finite } = NX

f for the monoid of natural
numbers N = �N,+, 0�. This monoid is positive and refinable as well.

The finitely supported (sub)probability distributions functor is not ex-
actly an instance of the finitely supported monoid valuations functor.
Rather it is an instance of its subfunctor, due to the condition that each
(sub)distribution assigns probability (less than or equal to) 1 to the set on
which it is defined.

Let M = �M,+, 0� be a commutative monoid, and S a subset of M . The
functor of finitely supported monoid valuations in S, M−

S,f : Sets → Sets
maps a set X to the set

MX
S,f = {v : X → M | supp(v) is finite and v[X] ∈ S}

and a function in the same way asM−
f does. Clearly, M−

f = M−
M,f . The func-

tor M−
S,f was used by Klin [50] for deriving structural operational semantics

for weighted transition systems.
Consider the commutative additive monoid of non-negative real numbers

R = �R≥0,+, 0� and its subsets the interval [0, 1] and the singleton {1}. The
functor R−

[0,1],f coincides with the finitely supported subprobability distribu-

tion functor, whereas R−
{1},f coincides with the finitely supported probability

distribution functor. The monoid R is also positive and refinable, so R−
f

preserves nonempty weak pullbacks and has a final coalgebra.
Note that (sub)probability distributions have also other properties that

are not explicitly captured by a functor M−
S,f . For example, for any subdis-

tribution µ on a set X, not only µ[X] ∈ [0, 1] but also µ[X �] ∈ [0, 1] for any
subset X � ⊆ X. In other words, any subdistribution is a discrete subproba-
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bility measure, which is not obvious from the definition of M−
S,f . In order to

make this property of subdistributions explicit, one needs to highlight some
additional properties of the involved monoid: the functor M−

S,f can be spe-
cialized further as in [45] requiring that M be a partially ordered monoid
with the property that x ≤ x+ y for all x, y ∈ M and S a downward-closed
set.

It is interesting to note that algebraic properties of the involved monoid
may have far-reaching consequences on the behavior of the coalgebras of
a monoid valuations functor. For example, as noted in [45], the fact that
Boolean logic with standard modalities is expressive for bisimilarity of the
finitary powerset functor in contrast to finite conjunctions being sufficient
for the expressivity of probabilistic/graded modal logic for the finitary prob-
ability (sub)distribution/multiset functor, is a consequence of an algebraic
property of the involved monoids: both R and N are cancellative monoids
(x+ y = x+ z ⇒ y = z), whereas 2 is not.

An alternative precise way to model (and generalize) the distribution
functor Df is via valuations to effect algebras (which are partial commu-
tative monoids with “orthosupplement”) [43]. Effect algebras capture key
properties of the unit interval [0, 1].

In order to capture the monad structure of both Pf and Df , additional
algebraic structure is needed: instead of monoid valuations or effect-algebra
valuations, one considers semiring valuations with additional properties or
valuations to effect monoids [43] (effect algebras with multiplication satis-
fying certain properties). The unit interval [0,1] is an example of an effect
monoid.

3.5. Coalgebra Results on Discrete Probabilistic Systems

In the past decade, there has been quite some research on coalgebra in-
volving discrete probabilistic systems. Due to their variety and inductive
definition, but also due to their importance in concurrency theory and ver-
ification in general, discrete probabilistic systems are popular examples in
many works in the area of coalgebra. Moreover, all general results on coal-
gebras on Sets could be instantiated to probabilistic systems and in some
cases they provide existing notions and results to justify the general ones,
but more importantly in some cases they provide completely new results,
e.g. [2, 5, 17, 65, 52, 60] that should be of interest to the probabilistic systems
community. We mention a few here. In addition, there have been coalgebraic
approaches to solving particular problems for probabilistic systems that are
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not of a generic kind, but coalgebraic notions are key ingredients in obtain-
ing the results, as in the line of work on behavioral distances described right
below.

Behavioral Distances
A significant amount of work deals with behavioral distances on discrete

and continuous probabilistic systems as coalgebras. We focus on the work
of van Breugel and Worrell [14, 13, 15, 16] since it is essentially coalgebraic.
For more information on other work on behavioral distances we refer the
reader to [15, 59] that describe the situation and provide references to the
literature. The main motivation behind this work is to define a quantitative
analogue of bisimilarity, that will not only relate bisimilar states but provide
metrics on how close the behavior of states are. The work of van Breugel and
Worrell applies to reactive probabilistic systems. To start with, we borrow
the following example from [15]. Consider the reactive probabilistic system
below. Its states x0 and xε

0

•x1

a,1

��

•x0

a, 12
��������

a, 12 ���
��

��
�

•xε
0

a, 12+ε
��������

a, 12−ε����
��

��

•x2

are only bisimilar if ε = 0. However, they behave almost the same for small ε
different from 0. The authors define a pseudometric (two elements can have
distance 0 even if not equal) on the states of such coalgebras, using finality
in a category of coalgebras on pseudometric spaces and nonexpansive maps,
for a functor describing reactive systems. Since the construction is general,
i.e., it works for both continuous and discrete systems, we will get back to
the underlaying theory in Section 4. Here we only mention that the authors
provide algorithms [13, 16] for computing the behavior distances on finite-
state systems, which rely on solving a particular linear programming model.
Moreover, they provide a nice comparison to other existing (non-coalgebraic)
notions of behavioral distance in [14].

Modal Logics
The well-developed theory of coalgebraic modal logics starting from Moss,

extensively expanded by Cirstea, Kurz, Pattinson, Schröder, Venema, and
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others, which also involves work on modular logics for inductively defined
functors, frequently employs discrete probabilistic systems as examples, cf.
e.g. [57, 17, 18, 20, 19, 65, 60]. Many of the general results when instantiated
to probabilistic systems provide new insight or results that the probabilistic
systems community may not be aware of, e.g. [17, 65, 60]. The value of the
results on coalgebraic modal logics is inverse proportional to the space de-
voted here, the main reason for such a treatment being that more information
on coalgebraic modal logics can be found in the survey article by Kupke and
Pattinson [53] in this very issue.

Structural Operational Semantics
Coalgebra theory leads to significant results on discrete probabilistic sys-

tems in structural operational semantics. Bartels [2, 3] instantiated the gen-
eral categorical framework of bialgebras for structural operational semantics
by Turi and Plotkin [73] to reactive probabilistic systems and simple Segala
systems, providing the first formats for structural operational semantics that
guarantee that the operations are well-defined and well-behaved. The latter
means that bisimilarity/behavioral equivalence is a congruence for each op-
eration defined by rules of the given format. Recently in the work of Klin
and Sassone [52] the same framework was instantiated to stochastic systems.
More information on structural operational semantics and the work men-
tioned here can be found in the survey article by Klin [51] in this issue.
Worth noting here is that stochastic transition systems, describing models
like labeled CTMCs, are reactive versions of coalgebras of the monoid valu-
ation functor R−

f , namely they are coalgebras of the functor (R−
f )

A.

Traces
Wementioned before thatD (and each of its variants) is not only a functor

but also a monad modeling probabilistic choice. The monad structure is
important, e.g. for linear-time trace semantics. The coalgebraic trace theory
of Hasuo et al. [37] applies to TF -coalgebras on Sets where T is a monad
modeling branching, and F is a functor modeling linear behavior. Under
certain conditions on T and F , the functor F lifts to the Kleisli category
of T (with objects sets and morphisms f : X → Y being functions f : X →
TY ), where branching is hidden. The main result of [37] shows that, under
additional order-theoretic conditions on T and F , the initial F -algebra in
Sets is a final coalgebra of the lifting of F in the Kleisli category. The
final coalgebra semantics in the Kleisli category provides trace semantics for
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TF -coalgebras. The theory is applicable to the subprobability distribution
monad D≤1 (but not to the variants) and the functor F = 1+A× resulting
in the usual trace semantics for generative probabilistic systems.

The powerset functor P is also a monad, modeling non-deterministic
choice. However, the combination PD is unfortunately not a monad [76, 75]
(due to nonexistence of a required distributive law). In the work of
Varacca [76, 75], the problem of constructing a monad for non-determinism
and probability is addressed and two solutions are proposed: either to re-
place the distribution monad by a new monad of indexed valuations, which
combined with the powerset provides a monad due to the existence of suit-
able distributive law, or to use one monad of convex subsets, on a different
category, for the whole combination. The latter monad was recently used to
describe traces of simple Segala systems by Jacobs [42].

Recent work on generic forward and backward simulations by Ha-
suo [34, 36] also instantiates to generative probabilistic systems, providing
new notions of forward and backward simulations for these systems. For-
ward and backward simulations are sound in the sense that they imply trace
inclusion and are therefore useful as a proof method for trace equivalence.
An interesting application of this method to probabilistic anonymity and
probable innocence can be found in the work of Hasuo et al. [38, 35].

Kleene Algebras
A recent line of research in coalgebra by Silva, Bonchi et al., focuses

on deriving languages of generalized regular expressions, and their sound
and complete axiomatizations, for transition systems modeled as coalgebras,
generalizing the results of Kleene, on regular languages and deterministic
finite automata, and Milner, on regular behaviors and finite LTS. This work
focuses on an inductively defined class of functors which involves the monoid
valuation functor and also leads to results for discrete probabilistic systems [8,
68].

Weak Bisimulation
A long open problem in coalgebra theory is the problem of a coalgebraic

characterization of weak bisimulation. One of the few approaches towards
this [71] is actually inspired by (and somewhat tailored to) concrete work on
probabilistic weak bisimulation. The approach is to transform a given system
to its “double-arrow” system whose transitions are all “weak transitions” of
the original system, and then define weak bisimulation as a bisimulation
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on the transformed system. The paper lists some required properties of
such a transformation, but no generic construction is identified that actually
provides the transformation. One can come up with a suitable transformation
for generative probabilistic systems and for LTS.

4. Continuous Probabilistic Systems

By continuous probabilistic systems we mean probabilistic systems on
continuous state spaces. The notion of interest is no longer a (discrete) prob-
ability distribution, but a (continuous) probability measure. As explained
well by Panangaden [59], the point is that the elements of the space are no
longer the “atoms” of the measure, each element may have probability zero
and yet a subset may have a nonzero probability. The work on continuous
probabilistic systems is in large part coalgebraic, or more precisely it is cat-
egorical and coalgebra-aware. Most of the work on continuous probabilistic
systems is due to Desharnais, Panangaden [59] et al., on labeled Markov pro-
cesses, to Doberkat [27, 28] on stochastic relations, and to van Breugel and
Worrell [15] on behavioral distances. Our aim here is to present a very brief,
and as a consequence somewhat shallow, overview of continuous probabilistic
systems as coalgebras. Coalgebraic treatment of continuous probabilistic sys-
tems also originates in the work of de Vink and Rutten [80], on the category
of ultrametric spaces and nonexpansive functions. We start with the basic
definition of a measurable space, measurable function, and (sub)probability
measure.

A measurable space X = �X,SX� is a pair of a set X and a σ-algebra SX

on X, i.e., a collection of subsets of X, SX ⊆ PX with the properties

(1) ∅ ∈ SX ,

(2) S ∈ SX =⇒ X \ S ∈ SX , and

(3)
�

i Si ∈ SX , for any countable family of measurable sets Si ∈ SX .

The elements of the σ-algebra are called measurable sets.
Let X = �X,SX� and Y = �Y, SY � be measurable spaces. A measurable

function from X to Y is any function f : X → Y with the property that
inverse image of a measurable set is a measurable set, i.e., f−1(SY ) ⊆ SX .

A probability measure on X is a function µ : SX → [0, 1] with the prop-
erties that
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(1) µ(∅) = 0,

(2) µ(X) = 1,

(3) µ(
�

i Si) =
�

i µ(Si), for any countable family of pairwise-disjoint mea-
surable sets Si ∈ SX .

A function µ : SX → [0, 1] is a subprobability measure on X if it satisfies
the properties (1) and (3), which means that the measure of the whole space
is less than or equal to 1 but not necessarily 1.

Definition 4.1. A Markov process on a measurable space X = �X,SX� is a
pair �X, (µx)x∈X� with X being the state set and, for each x ∈ X, µx : SX →
[0, 1] is a transition subprobability measure, i.e., a subprobability measure with
the additional property that for each S ∈ SX the function mS : X → [0, 1]
given by mS(x) = µx(S) is a measurable function from X to the measurable
space [0, 1] with the σ-algebra of Borel sets, the smallest σ-algebra containing
all open sets.

Hence, a Markov process is a continuous-space transition system. Given
a Markov process on X , one interprets µx(S) as the probability that the
system starting in state x makes a transition to one of the states in S. As
in the case of Markov chains, labels make the behavior of Markov processes
more interesting, leading to labeled Markov processes. Labels are reactive,
i.e., in a labeled Markov process on X = �X,SX�, for each x ∈ X and each
label a ∈ A, µx,a : SX → [0, 1] is a transition subprobability measure. We
borrow the following example from [23, 59].

Consider a process with two labels a, b. The state space is the real plane
R2. When the process makes an a-move from state (x0, y0), it jumps to (x, y0),
where the probability distribution for x is given by the densityKα exp(−α(x−
x0)2), where Kα =

�
α/π is the normalizing factor. When it makes a b-move

it jumps from state (x0, y0) to (x0, y), where the distribution for y is given by
the density functionKβ exp(−β(y−y0)2). The meaning of these densities is as
follows. The probability of jumping from (x0, y0) to a state with x-coordinate
in the interval [s, t] under an a-move is

� t

s Kα exp(−α(x−x0)2)dx. Note that
the probability of jumping to any given point is, of course, 0. In this process
the interaction with the environment controls whether the jump is along the
x-axis or along the y-axis but the actual extent of the jump is governed by
a probability distribution. With a single label, the process amounts to an
ordinary (time-independent) Markov process.
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We refer the reader to [23, 24, 25, 59] for more interesting examples and
a very good explanation of the importance of modeling and verifying such
systems.

4.1. Coalgebraic Modeling

In order to model Markov processes as coalgebras one needs a suitable
category and a suitable functor. The most natural choice for a category is
Meas, the category of measurable spaces and measurable functions. For
different reasons, some of which are explained in Section 4.2, in most of the
work on Markov processes different categories were considered. In this brief
survey we mainly remain inMeas and argue that for coalgebraic treatment of
Markov processes it suffices to work with general measurable spaces unless
one prefers bisimilarity to behavioral equivalence. In addition, we explain
how probabilistic systems are modeled in categories of metric spaces for the
purpose of studying behavioral distances.

No matter which category is considered, all works on continuous proba-
bilistic systems agree on the functor: the Giry functor (actually monad) [29].
The initial idea to look for such a monad goes back to unpublished work by
Lawvere [56].

Definition 4.2. Given a measurable space X = �X,SX� the Giry functor

G : Meas → Meas

maps X to the measurable space

GX = �GX ,SGX �

where GX is the set of subprobability measures on X and SGX is the smallest
σ-algebra making all evaluation maps evS, for S ∈ SX , measurable, where
for S ∈ SX , the evaluation map evS : GX → [0, 1] is given by µ �→ µ(S).

A morphism f : X → Y, i.e., a measurable function f : X → Y is mapped
to Gf : GX → GY where Gf(µ) = µ ◦ f−1.

As noticed in [45, 58], the σ-algebra SGX is generated by the collection:

�
Lr(S) | r ∈ Q ∩ [0, 1], S ∈ SX

�

where
Lr(S) = {µ ∈ GX | µ(S) ≥ r} = ev−1

S ([r, 1])
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which are the usual probabilistic modalities, providing an intrinsic connection
between probabilistic modal logics and Giry coalgebras.

Moss and Viglizzo [58] show that every functor on the category Meas
built from the identity and constant functors using products, coproducts,
and the Giry functor has a final coalgebra. The construction uses modal log-
ics: the elements of the final coalgebra are theories (sets of modal formulas)
satisfied by states in all possible coalgebras. Viglizzo [79] also provided an-
other construction of a final coalgebra for the same class of functors, avoiding
the logic.

Proposition 4.3. Markov processes are exactly the G-coalgebras on Meas.

The proposition holds since, by the construction of the σ-algebra SGX
for X = �X,SX�, we have that a function c : X → GX is measurable if and
only if evS ◦ c is measurable for all S ∈ SX . Therefore, c : X → GX
is a Giry coalgebra if and only if �X, (µx)x∈X� with µx = c(x) is a Markov
process, since evS ◦ c = mS.

A large part of the research on continuous probabilistic systems focuses
on stochastic relations and stochastic coalgebraic logic [27, 28]. A stochas-
tic relation in Meas is a Kleisli morphism of the Giry monad, i.e., a map
s : X → GY . Hence, every Markov process (a Giry coalgebra on Meas) is
a stochastic relation (for X = Y), but not the other way around. Most of
the research on stochastic relations is located in other categories (analytic
or Polish spaces) than general measurable spaces, for reasons that we will
discuss in the following section.

4.2. Bisimilarity Problems and Solutions

It is very difficult to show that bisimilarity is an equivalence for Markov
process, in particular it is difficult to show that it is transitive [59, 27, 21].
The reason is the following. Assume c ∼ d and d ∼ e for three Markov
processes, coalgebras on Meas, c : X → GX , d : Y → GY and e : Z → GZ.
Let ��Q, q�, q1, q2� be a witnessing bisimulation for c ∼ d and ��R, r�, r1, r2�
for d ∼ e. Hence we have the following situation:

�Q, q�
q1
�����

q2
�����

�R, r�
r1
�����

r2
�����

�X , c� �Y , d� �Z, e�

Then, for transitivity, it would suffice to complete the following cospan
on the left, to a square on the right.
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�Q, q�
q2

�����
�R, r�

r1
�����

�Y , d�

�P , p�
p1
�����

p2
�����

�Q, q�
q2

�����
�R, r�

r1
�����

�Y , d�

which turns out to be difficult for Markov processes. The category Meas has
pullbacks, so if the coalgebra functor would preserve (weak) pullbacks then
one can complete the square. However, as shown by Viglizzo [78], the Giry
monad on Meas does not preserve weak pullbacks.

A large amount of research dealt with this problem and in all cases the
shift to other categories was taken. In the first coalgebraic treatment of
Markov processes by de Vink and Rutten [80], the category of ultrametric
spaces and nonexpansive maps was considered. The main motivation for do-
ing so was reusing a theorem that guarantees existence of a final coalgebra
for locally contractive functors on ultrametric spaces [74]. The authors men-
tion that it would be good to have weak pullback preservation which would
result in a full-abstractness result implying that bisimilarity is well-behaved,
but leave the issue for future work. A very involved construction [23] of a so-
called semi-pullback provides a way to complete the cospan above to a square,
for (labeled) Markov processes on analytic spaces, showing that bisimilarity
is transitive. This result was followed by a deep analysis of semi-pullbacks
by Doberkat [26, 27] for stochastic relations and thus Markov processes on
Polish and analytic spaces. None of this proves that bisimilarity of (labeled)
Markov processes on Meas is not transitive, but it is quite likely so, as
conjectured already in [23].

Finally, we note that there is no problem with behavioral equivalence:
it is always an equivalence in categories with pushouts, as is the case with
Meas. This fact was explicitly recognized first by Danos et al. [21] where
cocongruences (event bisimulations) were considered for (labeled) Markov
processes. Event bisimulations provide a concrete definition of behavioral
equivalence.

4.3. Comments on Modal Logics for Continuous Probabilistic Systems

A significant part of this work is related to modal logic, in particular the
first result showing that negation-free probabilistic modal logic (with finite
conjunctions) is expressive for bisimilarity of probabilistic systems comes
from the work on labeled Markov processes [7, 23, 59] on Polish/analytic
spaces. In the context of stochastic relations, different bisimulation notions
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are considered in order to show expressivity of probabilistic modal logic with
finite conjunctions, again on Polish/analytic spaces [27, 28]. Expressivity,
also called Hennessy-Milner property, of a logic for bisimilarity means that
two states are bisimilar if and only if they satisfy the same formulas.

Danos et al. [21] showed that negation-free probabilistic modal logic (with
finite conjunctions) is expressive for behavioral equivalence of Markov pro-
cesses on Meas. Recently [45], Jacobs and the author of this paper have
presented another proof of the expressivity of probabilistic modal logic with
finite conjunctions (and no negations) with respect to behavioral equiva-
lence for Markov processes as coalgebras of the Giry functor on Meas, by
providing a dual adjunction between Meas and MSL, the category of meet-
semilattices. The same paper also provides a proof of the expressivity of the
same logic for Markov chains, via a related dual adjunction between Sets
and MSL.

4.4. Behavioral Distances via Finality: Metric vs. Measurable Spaces

The work on behavioral pseudometrics for probabilistic systems by van
Breugel and Worrell, cf. e.g. [14, 15], builds-up on the work of de Vink
and Rutten [80] in the sense that continuous (and as a special case also
discrete) probabilistic systems are modeled as coalgebras of a variant of the
Giry functor on a category of 1-bounded pseudometric spaces.

A 1-bounded pseudometric space is a pair �X, dX� where X is a set and
dX : X × X → [0, 1] is a pseudometric satisfying the symmetry condition
and the triangle inequality. It is 1-bounded since all distances are bounded
by 1, and pseudo since different elements may have distance 0. 1-bounded
pseudometric spaces and nonexpansive maps (functions that do not increase
distances) form a category. The authors show the existence of a final coalge-
bra for locally contractive functors in this category, by slightly generalizing
the result of [74].

Every (pseudo)metric space is a measurable space when equipped with
the Borel σ-algebra, the smallest σ-algebra containing all open sets. In order
to model probabilistic systems as coalgebras on the category of pseudometric
spaces, the following definition yields a functor M : it maps a metric space
�X, dX� to the set of all (tight) Borel probability measures on X, with the
Hutchinson metric. On functions, M is defined just like the Giry functor.
In order to model probabilistic systems, the authors modify the functor to
include (reactive) labels and a so-called discount factor c ∈ (0, 1), resulting
in a functor P . The discount factor ensures that the functor P is locally
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contractive, and intuitively it discounts the future: the smaller the discount
factor, the more the future is discounted. As a consequence, P has a final
coalgebra with carrier Ω = �fix(P ), dfix(P )�. The space Ω is a compact
metric space.

Now, by finality, this induces a metric on the states on any other P -
coalgebra, as follows. Let X = �X, dX� be a 1-bounded pseudometric space
and c : X → PX a P -coalgebra. Let ϕ : X → Ω be the unique homomorphism
obtained by finality. For any two states x, y ∈ X the behavioral distance from
x to y, also called coalgebraic distance, is defined by

d(x, y) = dfix(P )(ϕ(x),ϕ(y)).

The obtained behavior distance is a pseudometric: bisimilar states have dis-
tance 0. Moreover, states have distance 0 if and only if they are bisimilar.
As explained by the authors [15]: the distance between states is a trade-off
between the depth of observations needed to distinguish the states and the
amount each observation differentiates the states.

The authors present several useful characterizations of the introduced
coalgebraic pseudometric, and a comparison to existing (non-coalgebraic)
behavior metrics of probabilistic systems. In particular they show that the
coalgebraic pseudometric coincides (up to the discount factor) with the first
behavioral pseudometric, the logical pseudometric of Desharnais et al. [25].
They also present an algorithm for computing behavioral distances on finite
systems based on a linear programming problem [13, 16]. Moreover, the
coalgebraic distance can be approximated, i.e., the finality homomorphism
ϕ is a fixpoint of a certain function and can be computed by a sequence
of approximations ϕn each inducing a pseudometric dn on the states of a
P -coalgebra that approximate the pseudometric d. To calculate d with a
prescribed degree of accuracy α, the authors show that it suffices to calculate
di for i = 1, . . . , logc(α/2).

Furthermore, van Breugel et al. characterize approximate bisimilarity in-
dependently of the Hutchinson metric (independently of integration) in [10],
and in [9] provide a more general final coalgebra theorem for accessible cat-
egories and accessible functors, that subsume the categories of coalgebras
studied before and cover the case of no discount (c = 1). In a later work [12],
van Breugel, Sharma, and Worrell present an algorithm for approximating
the pseudometric also in case of systems that do not discount the future
(c = 1).
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4.5. Embedding Discrete into Continuous Systems

As expected, Markov chains embed into Markov processes. Clearly, any
discrete probability distribution µ on a set X extends to a probability mea-
sure, µ on the discrete measurable space X = �X,PX� with the discrete
σ-algebra of all subsets. We have µ(X �) = µ[X �]. Therefore, any Markov
chain “is” a Markov process.

However, Markov chains and Markov processes live in different categories.
For a precise embedding, in line with the translation embeddings of Sec-
tion 3.3, more machinery is needed. As shown in [45], there is a translation
functor T that maps a Markov chain to a Markov process on the same state
set so that behavioral equivalence is preserved and reflected. The functor is
induced by a suitable injective natural transformation. It is non-trivial to
show that behavioral equivalence on a Markov chain c : X → DX and on
the corresponding discrete Markov processes T (c) coincide [45] providing an
embedding as in Section 3.3 from chains into processes.

The situation is as follows

CoalgD

��

T �� CoalgG

��
Sets

Disc �� Meas

where Disc denotes the functor from Sets to Meas mapping a set X to the
discrete measurable space on X, and the vertical arrows represent forgetful
functors mapping a coalgebra to its carrier. The functor Disc is a left adjoint
of the forgetful functor from Meas to Sets mapping a measurable space
X = �X,SX� to the set X. The adjunction plays an important role in the
definition of T .

Following this embedding, it may be of interest to build another floor
in the hierarchy of probabilistic systems for different (labeled) continuous
probabilistic systems on the category Meas.

5. Conclusions

We have presented a brief survey of discrete and continuous probabilistic
systems as coalgebras. Via the probability distribution functor on Sets and
the Giry functor onMeas (and related categories) probabilistic systems enter
coalgebra. Discrete systems are inductively built and therefore present a nice
class of examples for other research in coalgebra theory. Treating continuous
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systems is not so straightforward and requires moving to other categories
than Meas in order that bisimilarity is an equivalence. A solution is to
consider behavioral equivalence instead of bisimilarity.

Another fruitful direction in the coalgebraic treatment of probabilistic
systems that we have briefly highlighted is through metric spaces, provid-
ing behavioral distances between states rather than equivalence relations on
states. This work is significant for two reasons: (1) behavioral pseudometrics
provide not only information about whether states of a probabilistic system
behave in the same way or not, but also quantitative information about how
close or how far apart the behavior of such states are; (2) part of the work on
behavioral metrics is essentially coalgebraic, the pseudometrics being defined
via finality.

This survey is already quite long, and we have just flown over the topic of
coalgebraic treatment of probabilistic systems. Aware that in many respects
we lack in explanation and detail, we hope that at least references to the
literature may guide you to your particular destination topic of interest.

Acknowledgements

I am grateful to the organizers of CMCS 2010 for providing me an oppor-
tunity to give a talk and publish this work. Furthermore, I would like to thank
Dirk Pattinson for discussions and pointers to references; Lutz Schröder for
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[17] C. Ĉırstea. A modular approach to defining and characterising notions
of simulation. Information and Computation, 204(4):469–502, 2006.
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[19] C. Ĉırstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal
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