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Abstract Since its introduction in 2000 in the time-triggered programming language
Giotto, the Logical Execution Time (LET) paradigm has evolved from a highly con-
troversial idea to a well-understood principle of real-time programming. This chap-
ter provides an easy-to-read overview of LET programming languages and runtime
systems as well as some LET-inspired models of computation. The presentation is
intuitive, by example, citing the relevant literature including more formal treatment
of the material for reference.

1 LET Overview

Logical Execution Time (LET) is a real-time programming abstraction that was in-
troduced with the time-triggered programming language Giotto [20, 21, 22]. LET
abstracts from the actual execution time of a real-time program. LET determines
the time it takes from reading program input to writing program output regardless
of the time it takes to execute the program. LET is motivated by the observation that
the relevant behavior of real-time programs is determined by when input is read and
output is written and not when programs just execute any code.

Before the introduction of LET two other rather different real-time program-
ming abstractions had been around for quite some time that originated from two
largely disjoint communities: the Zero Execution Time (ZET) abstraction [31, 35]
as the foundation of synchronous reactive programming [18] and the Bounded Ex-
ecution Time (BET) abstraction [31, 35] as the foundation of real-time scheduling
theory [7]. Figure 1 shows the three abstractions.
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Fig. 1 Fundamental real-time programming abstractions [31, 35]

Similar to the LET abstraction, ZET also abstracts from the actual execution time
of a real-time program yet even more than LET. With ZET the execution time of a
program including reading input and writing output is assumed to be zero, or equiv-
alently, the execution platform of a program is assumed to be infinitely fast. ZET is
the key abstraction of synchronous reactive programming. ZET programs are reac-
tive, i.e., always react to input with some output, and synchronous, i.e., do so in zero
time. The execution of ZET programs is correct if the program always writes out-
put before new input becomes available. Establishing correctness typically involves
fixed-point analysis since ZET programs written in synchronous reactive program-
ming languages such as Lustre [19] and Esterel [5] may contain cyclic dependencies.

Unlike the ZET and LET abstractions, BET does not abstract execution times but
instead bounds them using deadlines. Strictly speaking, BET is therefore a model
for temporal constraint programming rather than a programming abstraction. With
BET a real-time program has a deadline, which constrains correct program execu-
tion to the instances when the program completes execution before or at the dead-
line. In the BET model, an execution of the program is incorrect if the program does
not complete within the deadline, even if the program eventually completes with a
functionally correct result. Correct execution of concurrent real-time programs with
multiple, possibly different and recurring deadlines requires real-time scheduling.
Rate-monotonic (RM) and earliest-deadline-first (EDF) scheduling [36] are promi-
nent examples of scheduling strategies in the BET model.

LET is inspired by both the ZET abstraction and the BET model. LET program
execution is correct, i.e., time-safe [21, 22], if the program reads input, in zero time,
then executes, and finally writes output, again in zero time, exactly when the LET
has elapsed since reading input. The end of the LET thus corresponds to a deadline
in the BET model but only for program execution without reading input and writing
output. In other words, if the program completes execution before the deadline,
writing output is delayed until the deadline, i.e., until the LET has elapsed. The
deadline is therefore not only an upper bound, like in the BET model, but also a
lower bound, at least, logically. In the LET model, using a faster machine does
therefore not result in (logically) faster program execution but only in decreased
machine utilization, which makes room for more concurrency. Conversely, more
concurrency on the same machine has no effect on input and output times as long as
the machine is sufficiently fast to accommodate all deadlines.
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1.1 Giotto

LET programs may be event- or time-triggered (or both) in the sense that the time
when input is read and thus when the LET begins is determined by the occurrence
of an event or the progress of time, respectively. Giotto programs, for example, are
time-triggered LET programs while xGiotto [16] programs may be both event- and
time-triggered LET programs, and even the LET itself in xGiotto programs may be
determined by events rather than time.

There are two key results on Giotto programs. Checking time safety of Giotto
programs is easy [26] and time-safe Giotto programs are time-deterministic [21,
22], i.e., the relevant input and output (I/O) behavior of time-safe Giotto programs
does not change across varying hardware platforms and software workloads. Time-
safe execution of Giotto programs requires real-time scheduling, similar to BET
programs, but no fixed-point analysis, unlike ZET programs, since reading input
and writing output is cycle-free. Note that all real-time programming paradigms
have yet in common that they require some form of hardware-dependent, worst-
case execution time (WCET) analysis [14] for establishing correctness.

Giotto programs may specify multiple modes and mode switching logic but can
only be in one mode at a time during execution. Checking time safety of Giotto pro-
grams is easy, i.e., fast, because time safety of the individual modes of a Giotto pro-
gram implies time safety of the whole program regardless of mode switching [26].
The converse is not true since the mode switching logic may prevent modes that are
not time-safe from ever being executed. Checking time safety of a mode is linear
in the size of its description using a standard, utilization-based schedulability test
based on EDF.

LET programs may be distributed across multiple machines, just like ZET and
BET programs. However, the key difference is that LET, unlike ZET and BET, is
a natural, temporally robust placeholder not just for program execution but also for
program communication [29]. Distributing LET programs is thus easy, in particular,
onto architectures that provide time synchronization such as the Time-Triggered
Architecture (TTA) [34]. Even more importantly, the relevant behavior of a time-
safe, distributed version of a time-safe, non-distributed LET program is equivalent
to the relevant behavior of the non-distributed program.

However, Giotto has a scalability issue in the sense that each mode of a Giotto
program needs to specify the whole behavior of the program while being in that
mode. For example, if a Giotto programmer would like to maintain some behavior of
a mode when switching to another mode, both modes need to specify their common
behavior. In other words, a Giotto program is a flat, non-hierarchical description of
a real-time program. Giotto programs may therefore become large for non-trivial, in
particular distributed applications. Giotto programming by example is discussed in
more detail in Section 2.



4 Christoph M. Kirsch and Ana Sokolova

1.2 Hierarchical Timing Language

The Hierarchical Timing Language (HTL) [15, 27] is a Giotto successor that aims
at improving succinctness while keeping time safety checking easy. Modes in HTL
are partial specifications of LET programs that may be hierarchical in the sense that
some modes may be abstract placeholders reserving computation time for refining,
more concrete modes that specify actual program behavior. Intuitively, a concrete
mode refines an abstract mode if the LETs in the concrete mode start later and end
earlier than the LETs in the abstract mode. The key result is that time safety of an
abstract HTL program implies time safety of any concrete HTL program that refines
the abstract program [15]. The converse is again not true. There may be time-safe
concrete HTL programs that refine abstract HTL programs that are not time-safe.
Note that checking refinement is easier than checking time safety [27].

Refinement in HTL enables modular real-time programming [27]. A time-safe
HTL program may be changed locally without the need for re-checking time safety
globally, with the exception of the top level of the program. Modifications to the
most abstract portion of an HTL program may require re-checking time safety
for the whole program. Since correctness of modifications below top level can be
checked fast, i.e., independently of the size of the whole program, HTL programs
may even be modified at runtime through a process called runtime patching while
preserving the real-time behavior of the unmodified parts [32]. Runtime patching is
a semantically robust method for introducing flexibility into real-time programming.
An HTL programming example is discussed in more detail in Section 2.

1.3 Model-driven Development

LET programming is part of a larger, model-driven development (MDD) method-
ology [30] depicted in Figure 2. LET programs may be modeled and validated in
a simulation environment such as Simulink [10] and then translated to executable
code. Here, the key idea is that LET model, program, and code are equivalent with
respect to their relevant real-time behavior [30]. Changes on one level have there-
fore a well-understood effect on the other levels enabling compositional implemen-
tation and validation with LET-based toolkits such as FTOS [6] and TDL [13]. LET-
oriented runtime systems are discussed next.

1.4 The Embedded Machine

LET code generators may target general purpose programming languages such as C
or virtual machines that have been specifically designed for LET semantics such as
the Embedded Machine [23, 25], or E machine, for short, which is an interpreter for
E code. Similar to Giotto and HTL programs, time-safe E code is time-deterministic.
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Fig. 2 Context of LET-based languages and LET-oriented runtime systems

We also say that time-safe E code is time-portable [2, 3] to any platform for which
an E machine implementation exists. E code may also be executed on distributed
systems such as TTA by running an E machine on each host [29].

Checking time safety of arbitrary E code may be difficult but remains easy
for non-trivial classes of E code [24] such as E code generated from Giotto and
HTL [26]. Executing E code requires an E machine as well as an EDF-scheduler.
However, scheduling decisions may also be computed at compile time and repre-
sented by Schedule-Carrying Code (SCC) [28], which is E code extended by spe-
cific scheduling instructions. SCC is an executable witness of time safety. Checking
whether SCC is time-safe is in general easier than generating SCC. An E machine
extended for SCC support may therefore verify time safety prior to execution and
does not require an EDF-scheduler [33].

E code generated from a Giotto program requires pseudo-polynomial space in the
size of the program, i.e., the numerically represented program periods [26]. E code
execution time is linear in the size of the program in this case. E code generated from
an HTL program may even be exponentially larger than the program regardless of
the periods because any hierarchy in the program is flattened prior to code gener-
ation. Flattening can be avoided by targeting a hierarchical version of the E ma-
chine [17]. The resulting E code requires then again only pseudo-polynomial space
in the size of the program and can be executed in linear time. The E machine is
discussed in more detail in Section 2.
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1.5 Variable-Bandwidth Servers

Giotto and HTL are languages in which LET programs are constructed around the
notion of modes. However, a LET program may also be understood as a specifi-
cation of a set of concurrent processes where each process performs I/O as fast as
possible, i.e., logically in zero time, and then computes as predictable as possible,
i.e., logically for a given amount of time, and then performs I/O again and so on.
After performing I/O the process may decide, based on the previous compution and
the new input, what to compute next, which is essentially another way of switching
modes. The logical execution time of each computation phase may also change as
long as it is determined by the process itself.

Variable-Bandwidth Servers (VBS) [8] may provide a natural scheduling plat-
form for executing concurrent processes specified by a LET program. A VBS pro-
cess is a sequence of actions. Each action is sequential code, which is executed in
temporal isolation of any other process in the system, i.e., lower and upper bounds
on the time to execute the action are solely determined by the invoking process.
The bounds may change from one action to the next to accommodate different types
of actions such as latency-oriented as-fast-as-possible I/O actions and throughput-
oriented yet as-predictable-as-possible computation actions. The bounds can be seen
as a generalization of LET from an exact logical value of duration to a realistic in-
terval of permitted values. Running LET programs on VBS remains to be a subject
of future work.

1.6 Models of Computation

Exotasks [2, 3] Timed Multitasking [37]

Real-Time Java [4] Ptolemy [12]

LET-inspired Models of Computation

PTIDES [39]

Fig. 3 LET-inspired models of computation

Figure 3 shows a selection of LET-inspired models of computation. Exotasks [2,
3] implement a real-time scheduling framework in Java using the real-time garbage
collector Metronome [4] for real-time performance. The framework has been in-
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stantiated to provide LET semantics in Java. A more general version called Flex-
otasks [1] provides even more freedom to implement and integrate temporal and
spatial isolation policies.

The key motivation of LET programming is to develop systems that maintain
their relevant real-time behavior across changing hardware platforms and software
workloads. However, requiring all program parts to follow the LET regime may be
unnecessarily restrictive. For example, program parts that are independent of I/O
behavior may be scheduled in a more flexible manner without loosing guarantees
on relevant behavior [11]. Timed multitasking [37] in Ptolemy [12] provides LET
guarantees relative to the occurrences of events, similar to the previously mentioned
xGiotto [16]. However, event scoping in xGiotto enables structured specification of
event handling policies such as implicit assumptions on interarrival times to facil-
itate time safety analyses. Discrete-event models in PTIDES [39] provide another
model of computation that enforces LET but only at communication boundaries,
i.e., sensing, actuating, and other relevant I/O is performed at time instants that are
independent of execution order and speed.

2 LET Programming by Examples

2.1 Giotto

A Giotto program consists of a functionality part and a timing part. The functionality
part contains port, driver, and task declarations, which interface the Giotto program
to a functionality implementation, written in C, for example. For the examples be-
low, we show the timing part of a Giotto program.

Single-mode Giotto program

As a first example, we present a highly simplified version of the control program
for a model helicopter such as the JAviator [9]. Consider the helicopter in hover
mode m. There are two tasks, both given in native code, possibly autogenerated
from Matlab/Simulink models [30]: the control task t1, and the navigation task t2.
The navigation task processes GPS input every 10 ms and provides the processed
data to the control task. The control task reads additional sensor data (not modeled
here), computes a control law, and writes the result to actuators (reduced here to
a single port). The control task is executed every 20 ms. The data communication
requires three drivers: a sensor driver ds, which provides the GPS data to the navi-
gation task; a connection driver di, which provides the result of the navigation task
to the control task; and an actuator driver da, which loads the result of the control
task into the actuator. The drivers may process the data in simple ways (such as
type conversion), as long as their WCETs are negligible. In general, since E code
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execution is synchronous and can thus not be interrupted by other E code, we say
that the WCET of an E code block (i.e., the sum of the WCETs of all drivers as well
as all E code instructions called in that block) is negligible if it is shorter than the
minimal time between any two events that can trigger the execution of E code. In
the case of the helicopter software, the WCETs of all E code blocks are at least one
order of magnitude shorter than 10 ms, which is the time between two consecutive
invocations of E code in this example.

pc
t1

t2

da
pa

ps
ds

di

g

Fig. 4 The dataflow of the example with two periodic tasks [25]

There are two environment ports, namely, a clock pc and the GPS sensor ps; two
task ports, one for the result of each task; and three driver ports —the destinations
of the three drivers— including the actuator pa. Figure 4 shows the dataflow of the
program: we denote ports by bullets, tasks by rectangles, drivers by diamonds, and
triggers by circles. It therefore presents an abstract functional implementation of the
program. Here is a Giotto description of the program timing:

mode m() period 20 {
actfreq 1 do pa(da);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds);

}

The “actfreq 1” statement causes the actuator to be updated once every 20 ms;
the “taskfreq 2” statement causes the navigation task to be invoked twice every
20 ms; etc. Note that the LET of each task is specified by the ratio of the mode
period over the task frequency (20 ms for t1 and 10ms for t2). Here is a simplified
version of the E code generated by the Giotto compiler:

a1: call(da) a2: call(ds)
call(ds) release(t2)
call(di) future(g,a1)
release(t1)
release(t2)
future(g,a2)

The E code consists of two blocks. The block at address a1 is executed at the be-
ginning of a period, say, at 0 ms: it calls the three drivers, which provide data for
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the tasks and the actuator, then hands the two tasks to the scheduler, and finally
activates a trigger g with address a2. When the block finishes, the trigger queue of
the E machine contains the trigger g bound to address a2, and the ready queue of
the scheduler contains two tasks, t1 and t2. Now the E machine relinquishes control,
only to wake up with the next input event that causes the trigger g to evaluate to
true. In the meantime, the scheduler takes over and assigns CPU time to the tasks in
the ready queue according to some scheduling scheme. When a task completes, the
scheduler removes it from the ready queue.

t2

0 0 4 10 10 20

release(t1)

release(t2)

future(g,a2)

call(di)

call(ds)

future(g,a1)

release(t2)

0 ms 0 ms

Synchronous Scheduled Synchronous Scheduled

ms

a1 : call(da) a2 : call(ds)

t1 t1

14

10 ms

18

20 ms

10 mst2

Fig. 5 Earliest-deadline-first (EDF) schedule of the two-task Giotto program (adapted from [25])

There are two kinds of input events, one for each environment port: clock ticks,
and changes in the value of the sensor ps. The implementation of the trigger g is part
of the functional code. In the example, the trigger g: p�c = pc +10 specifies that the
E code at address a2 will be executed after 10 clock ticks. Logically, the E machine
wakes up at every input event to evaluate the trigger, finds it to be false, until at
10 ms, the trigger is true. An efficient implementation, of course, wakes up the
E machine only when necessary, in this case at 10 ms. The trigger g is now removed
from the trigger queue and the associated a2 block is executed. It calls the sensor
driver, which updates a port read by task t2. There are two possible scenarios: the
earlier invocation of task t2 may already have completed, and is therefore no longer
in the ready queue when the a2 block is executed. In this case, the E code proceeds
to put another invocation of t2 into the ready queue, and to trigger the a1 block in
another 10 ms, at 20 ms. In this way, the entire process repeats every 20 ms. The
other scenario at 10 ms has the earlier invocation of task t2 still incomplete, i.e., in
the ready queue. In this case, the attempt by the sensor driver to overwrite a port
read by t2 causes a runtime exception, called time-safety violation. At 20 ms, the
end of the mode period, when ports read by both tasks t1 and t2 are updated and
ports written by both t1 and t2 are read (via the drivers), a time-safety violation
occurs unless both tasks have completed, i.e., the ready queue must be empty. In
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other words, an execution of the program is time-safe if the scheduler ensures the
following: (1) each invocation of task t1 at 20n ms, for n ≥ 0, completes by 20n+
20 ms; (2) each invocation of task t2 at 20n ms completes by 20n+ 10 ms; and
(3) each invocation of task t2 at 20n+10 ms completes by 20n+20 ms. Therefore,
a necessary requirement for time safety is δ1 +2δ2 < 20, where δ1 is the WCET of
task t1, and δ2 is the WCET of t2. If this requirement is satisfied, then a scheduler
that gives priority to t2 over t1 guarantees time safety. Figure 5 presents a time-safe
EDF schedule of the two-task Giotto example, with δ1 = 10 ms and δ2 = 4 ms.

The E code implements the Giotto program correctly only if it is time-safe: dur-
ing a time-safe execution, the navigation task is executed every 10 ms, the control
task every 20 ms, and the dataflow follows Figure 4. Thus the Giotto compiler needs
to ensure time safety when producing E code. In order to ensure this, the compiler
needs to know the WCETs of all tasks and drivers (cf., for example, [14]), as well
as the scheduling scheme used by the operating system. With this information, time
safety for E code produced from Giotto can be checked [26]. However, for arbitrary
E code and platforms, WCET analysis and time-safety checking may be difficult,
and the programmer may have to rely on runtime exception handling, see [25] for
more details. At the other extreme, if the compiler is given control of the system
scheduler, it may synthesize a scheduling scheme that ensures time safety [28].

The time-safe executions of the E code example have an important property:
assuming the two tasks compute deterministic results, for given sensor values that
are read at the input port ps at times 0, 10, 20, . . . ms, the actuator values that
are written at the output port pa at times 0, 20, 40, . . . ms are determined, i.e.,
independent of the scheduling scheme. This is a consequence of the LET paradigm,
because each invocation of the control task t1 at 20n ms operates on an argument
provided by the invocation of the navigation task t2 at 20n − 10 ms, whether or
not the subsequent invocation of t2, at 20n ms, has completed before the control
task obtains the CPU. Time safety, therefore, ensures not only deterministic output
timing, but also deterministic output values; it guarantees predictable, reproducible
real-time code.

Multiple-mode Giotto program

The helicopter may change mode, say, from hover to descend, and in doing so, apply
a different filter. In this case, the navigation task t2 needs to be replaced by another
task t �2. We show how to implement different modes of operation using Giotto and
the generated E code with control-flow instructions. Note that E code can also be
changed dynamically, at runtime, still guaranteeing determinism if no time-safety
violations occur. This capability enables the real-time programming of embedded
devices that upload code on demand, of code that migrates between hosts, and of
code patches [25].

Consider the following timing part of a Giotto program with two modes, ma
(representing the helicopter in hover mode) and mb (descend mode):
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start ma {
mode ma() period 20 {
actfreq 1 do pa(da);
exitfreq 2 do mb(cb);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds);

}
mode mb() period 20 {
actfreq 1 do pa(da);
exitfreq 2 do ma(ca);
taskfreq 1 do t1(di);
taskfreq 2 do t �2(ds);

}
}

The program begins by executing mode ma, which is equivalent to the (single) mode
m of the Giotto program from the previous subsection except for the mode switch
to mode mb. A mode switch in Giotto has a frequency that determines at which rate
an exit condition is evaluated. The exit condition cb of mode ma is evaluated once
every 10 ms (the ratio of the period over the exit frequency). If cb evaluates to true,
then the program switches to mode mb, which is similar to mode ma except that task
t �2 replaces task t2. Task t �2 applies a different filter on the same ports as t2. The mode
switch back to ma evaluates the exit condition ca also once every 10 ms.

This example consists of two modes with equal periods. Programs with multiple
nodes of different periods are also possible in Giotto but mode switching is restricted
at the end of the node period, i.e., only exit frequency of 1 is allowed.

In order to express mode switching in E code, we use a conditional branch in-
struction if(c,a). The first argument c is a condition, which is a predicate on some
ports. The second argument a is an E code address. The if(c,a) instruction evalu-
ates the condition c synchronously (i.e., in logical zero time), similar to driver calls,
and then either jumps to the E code at address a (if c evaluates to true), or proceeds
to the next instruction (if c evaluates to false). Here is the E code that implements
the above Giotto program:

a1: call(da) a3: call(da)
if(cb,a�3) if(ca,a�1)

a�1: call(ds) a�3: call(ds)
call(di) call(di)
release(t1) release(t1)
release(t2) release(t �2)
future(g,a2) future(g,a4)

a2: if(cb,a�4) a4: if(ca,a�2)
a�2: call(ds) a�4: call(ds)

release(t2) release(t �2)
future(g,a1) future(g,a3)
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The two E code blocks in the left column implement mode ma; the two blocks on
the right implement mb. Just like in the single-mode example, the code is free of
deadlines and exception handlers for the three tasks, see [25] for more details on
exception handlers. Note that, no matter which conditional branches are taken, the
execution of any block terminates within a finite number of E code instructions, i.e.,
the code corresponding to a mode is finite and therefore the execution of each mode
instance is finite.

Generating E code, as in the above examples (with additional deadlines and ex-
ception handlers) is the result of the first, platform-independent phase of the Giotto
compiler. The second, platform-dependent phase of the Giotto compiler performs a
time-safety check for the generated E code and a given platform. For single-CPU
platforms with WCET information and an EDF-based scheduling scheme, and for
the simple code generation strategy illustrated in the example, the time-safety check
is straightforward [26]. For distributed platforms, complex scheduling schemes, or
complex code generation strategies, this, of course, may not be the case. The code
generation strategy has to find the right balance between E code and E machine
annotations, see [25] for details. An extreme choice is to generate E code that at
all times maintains a singleton task set, which makes the scheduler’s job trivial but
E code generation difficult. The other extreme is to release tasks as early as pos-
sible, with precedence annotations that allow the scheduler to order task execution
correctly. This moves all control over the timing of software events from the code
generator to the scheduler. In other words, the compiler faces a trade-off between
static (E machine) scheduling and dynamic (RTOS) scheduling. The strategy used
in the examples and implemented in the Giotto compiler chooses a compromise
that suggests itself for control applications. The generated code releases tasks and
imposes deadlines according to the “logical semantics” of the Giotto source. To
achieve controller stability and maximal performance, it is often necessary to min-
imize the jitter on sensor readings and actuator updates. This is accomplished by
generating separate, time-triggered blocks of E code for calling drivers that interact
with the physical environment. In this way, the time-sensitive parts of a program are
executed separately [38], and for these parts, platform time is statically matched, at
the E code level, to environment time as closely as possible. On the other hand, for
the time-insensitive parts of a program, the scheduler is given maximal flexibility.

2.2 Hierarchical Timing Language

In this section we present HTL on one example, the multi-mode control program
for a model helicopter of Section 2.1. In Giotto, the control task t1 is part of both
modes, since Giotto programs are flat. In contrast to that HTL, as the name suggests,
allows for hierarchical models.

An HTL program is built out of four building blocks: program, module, mode,
and task. A program is a set of concurrently running modules. A module consists
of a set of modes and some mode-switching logic between them. Like in Giotto,
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Task t �2

Program P

Module M Module Mab

ca

cb
Mode m

Task t1

Mode ma

Task t2

Mode mb

Fig. 6 HTL program for the multi-mode helicopter control example

each mode has a period and contains tasks. Unlike in Giotto, the periods of all tasks
in a mode are equal to the mode period. Also different from Giotto, some of the
tasks may be abstract tasks, schedulability placeholders for concrete tasks that may
refine them. If a mode contains abstract tasks, then it also specifies a refinement
program which refines the abstract tasks. Moreover, another difference to Giotto is
that mode switching can only happen at the end of a mode (at a period instance).
This is not a restriction, since the otherwise richer structure of HTL provides the
same expressiveness, as we will see in the example of the multi-mode helicopter
control program. The HTL program for our example has two modules: the module
M contains a single mode with period 20 ms containing the concrete control task t1;
the module Mab has two modes each with period 10 ms containing a single concrete
task (t2 and t �2, respectively). The program does not involve refinement since there
are no abstract modes and tasks. Figure 6 depicts a graphical representation of the
HTL program.

In HTL, input is read from and output is written to so-called communicators
which are periodic global variables. A value can be read from or written to a com-
municator at period instances. Communicators have periods that divide the periods
of tasks using them. LET in HTL is therefore specified by the time interval between
the latest communicator period instance that a task reads, and the earliest commu-
nicator period instance that a task writes to (for distributed programs this needs to
be slightly adjusted for modularity [27]). Tasks are linked to communicator period
instances via ports. In the example, each of the three drivers corresponds to a com-
municator and the driver ports are the ports used for the link. Due to the simplicity of
the example, there is no need to mention the ports in the code for the HTL program
of Figure 6. Here is a simplified version of the HTL (pseudo) code:
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program P {
comm da(20), ds(10), di(10)
module M {
mode m(20) {
task t1 in (di,1) out (da,2)

}
}
module Mab {
start ma
if ma ∧ cb then mb
if mb ∧ ca then ma
mode ma(10) {
task t2 in (ds,1) out (di,2)

}
mode mb(10) {
task t �2 in (ds,1) out (di,2)

}
}

}

The mode switching rules are expressed with if-then statements. An instruc-
tion of the form in (d, i) within a task instruction specifies that the task reads from
the i-th period instance of communicator d within the task period. In particular, i= 1
corresponds to the beginning of the task period. Similarly, an instruction out (d, i)
specifies a communicator and its period instance when output is written. HTL also
allows for specifying task precedences within a mode since an input port of a task
may be linked to an output port of a preceding task, but our example does not illus-
trate this (as there are not even multiple tasks per mode).

The example program does not involve refinement so far. Therefore, for time
safety one needs to check schedulability of all possible combinations of active
modes in a program, which in this case amounts to two combinations: (1) mode
m and mode ma, and (2) mode m and mode mb. Since both ma and mb have the same
timing (apart from the maybe different WCETs) and I/O behavior, they can be seen
as refining a single abstract mode mA, as in the program presented in Figure 7.

The program still consists of two modules, the module M as before, and the
module MA containing a single abstract mode mA with period 10 ms and a single
abstract task tA (with input, output, and LET equal to the ones of t2 and t �2 and WCET
equal to the maximum of the WCETs of the two concrete tasks). The abstract mode
has an associated refinement program PR with a single module Mab containing two
modes ma and mb as it was the case with the original module Mab. Both tasks, t2 and
t �2 refine the abstract placeholder task tA. Refining tasks need to have same or more
LET, same or less WCET, and same or weaker task precedences [15, 27]. Now time
safety is guaranteed if the tasks of m and mA are schedulable, since ma and mb both
refine the abstract mode mA. Here is a simplified version of the HTL (pseudo) code
for the example including refinement:
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Task t1

Program P

Module M

Program PR

Module Mab
cb

ca

Module MA

Mode ma

Task t2

Mode mb

Task t �2

Mode mA

Task tA

Mode m

Fig. 7 HTL program with refinement for the multi-mode helicopter control example

program P {
comm da(20), ds(10), di(10)
module M {
mode m(20) {
task t1 in (di,1) out (da,2)

}
}
module MA {
mode mA(10) {
abstract task tA in (ds,1) out (di,2)
refinement program PR {
module M2 {
start ma
if ma ∧ cb then mb
if mb ∧ ca then ma
mode ma(10) {
task t2 in (ds,1) out (di,2)

}
mode mb(10) {
task t �2 in (ds,1) out (di,2)

}
}

}
}

}
}
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For more details on HTL and its modular properties we refer the interested reader
to [27]. E code can be generated for HTL programs in a flat way, as for equivalent
Giotto programs, or in a hierarchical way. Details on HTL code generation can be
found in [17].

3 Conclusion

We have discussed the notion of logical execution time (LET) and provided an
overview of LET programming languages and runtime systems as well as some
LET-inspired models of computation. We have also highlighted the key features of
Giotto and its successor, the Hierarchical Timing Language (HTL), using program
examples. The purpose of the rather informal presentation is to encourage the read-
ers to study the LET paradigm further through original sources.
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