L ocal Linearizability

Ana Sokolova ParerLzsure

joint work with:

Andreas Haas P Tom Henzinger M.
Andreas Holzer ssisiio Christoph Kirsch pesiss

Michael Lippautz P annes Payer Goosie
Ali Sezgin s elmut Veith@

Concurrent Data Structures
Correctness and Performance

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Semantics of concurrent
data structures

e.g. pools, queues, stacks

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

e Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Consistency conditions

there exists a sequential

witness that preserves . _ o
precedence L|near|zab|l|ty [Herlihy,Wing '90]

\4

there exists a sequential
witness that preserves per-
thread precedence
(program order)

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Performance and scalabillity

-)))

throughput :_)

of threads / cores

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Relaxing the Semantics

Not
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Seqguential specification = set of legal sequences

« Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
IN this talk

for queues only
(feel free to ask for more)

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

|_ocal Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

e Partition a history into a set of local histories

 Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

|_ocal Linearizability
(Queue) example

(sequential) history
not linearizable

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

|_ocal Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

in-methods of thread i
enqueues performed
by thread |

out-methods of thread |

dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Generalizations of
|_ocal Linearizability

Signhature >

iIn-methods of thread |,
methods that go in h;

by increasing the

IN-methods, |
LL gradually moves to out-methods of thread i,

linearizability dependent methods
on the methods in Inn(i)
(performed by any thread)

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Where do we stand?

In general

Llnearlzablhty

Local Lmearlzablllty

\4

q\\ Sequential Consistency

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Where do we stand?

For queues (and all pool-like data structures)

Linearizability

Local Linearizabillity

\4

"SR Sequential Consistency

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Where do we stand?

Linearizability

Local Linearizability /

& Pool-seq.cons.

\4

\ Sequential Consistency

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

may allow for modular verification

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Verification (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(X) <seng(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue linearizability (axiomatic)

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(y)eh = deg(x)eh A deq(y) deq(x)

precedence order

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Verification (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(X) <seng(y) A deg(y)es = deg(x)es A deq(x)<s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. eng(x) kn)eng(y) A deqy)eh = deq(x)eh A deq(y) «n deq(x)

thread-local

precedence order

Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of
size (n)

LLD @
(locally
linearizable)

LL+D @ local inserts / global (randomly distributed) removes

(also pool
Ana Sokolova PRSI |inearizab|e) RiSE/PUMA Workshop 2015

26
5 24t
3 2l
E ?g LL+D MS queue
g L performs
> 1o } significantly better
A 14 | e
2 12l e than
é 10 + M';gg:ff’/’ ’ MS queue
= & LT X
g, 6 ,ﬁ/ """"" XKoo - — s
;§ 4 ,ﬁ"‘"’é&/:/ .
= I -
: é S — B B i e e e - +
2 10 20 30 40 50 60 70 30

number of threads

O |-RADQ - —@ -
LLDLCRQ :---a--:
LLD k-FIFO A

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

26
24
22
20
18
16
14
12
10

P LLD ®
,_}-;—"f'f- - performs

significantly better
than

million operations per sec (more is better)

S N B O ©

number of threads

O |-RADQ - —@ -
LLDLCRQ :---a--:
LLD k-FIFO A

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

26
24
22
20
18

16 T
14 | performs better

12 than
10 the best known
oJole]IS

LLD MS queue

million operations per sec (more is better)

S N B O ©

number of threads

O |-RADQ - @ -
LLDLCRQ :---a--:
LLD k-FIFO A

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PGSiZake RiSE/PUMA Workshop 2015

