|_ocal Linearizabllity

Ana Sokolova

joint work with:

Andl’eas aas Google
Andreas Holzer #wisiio

All Sezgin #is:

UNIVERSITY
of SALZBURG

Tom Henzinger B
Christoph Kirsch P
annes Payer Googl
elmut Veith B

Rigorous methods
for
engineering of
and
reasoning about
reactive systems

Ana Sokolova PRrsiZsuks CiiT 2018

Rigorous methods
for
engineering of
and
reasoning about
reactive systems

Ana Sokolova PRSXERRE CiiT 2018

Background big picture

IIIIIIIIII
of SALZBURG

CiiT 2018

Background big picture

Computer Science

CiiT 2018

Background big picture

Computer Science

CiiT 2018

Background big picture

Computer Science

Ana Sokolova PGSz CiiT 2018

Background big picture

Computer Science

CiiT 2018

Background big picture

Computer Science

CiiT 2018

Background big picture

Computer Science

Ana Sokolova PGSz CiiT 2018

Background big picture

Computer Science

Ana Sokolova PGSz CiiT 2018

Background big picture

Computer Science

CiiT 2018

Background big picture

Computer Science

CiiT 2018

Background big picture

Computer Science

CiiT 2018

Background big picture

Computer Science

CiiT 2018

Current favourites

Computer Science

CiiT 2018

|_ocal Linearizabllity

Ana Sokolova

joint work with:

Andl’eas aas Google
Andreas Holzer #wisiio

All Sezgin #is:

UNIVERSITY
of SALZBURG

Tom Henzinger B
Christoph Kirsch P
annes Payer Googl
elmut Veith B

Concurrent Data Structures:
Semantics and Relaxations

IIIIIIIIII

CiiT 2018

Concurrent Data Structures
Correctness and Performance

IIIIIIIIII

CiiT 2018

Concurrent Data Structures
Correctness and Performance

structure and power

IIIIIIIIII

CiiT 2018

Semantics of concurrent
data structures

CiiT 2018

Semantics of concurrent
data structures

e.g. pools, queues, stacks

Ana Sokolova PRsisure CiiT 2018

Semantics of concurrent
data structures

A enq(2 deq(1
e.g. pools, queues, stacks
t2: deq(?)

Ana Sokolova PRsisure CiiT 2018

Semantics of concurrent
data structures

A enq(2 deq(1
e.g. pools, queues, stacks
t2: deq(?)

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRsisure CiiT 2018

Semantics of concurrent
data structures

e.g. pools, queues, stacks

* Sequential specification = set of legal sequences

e.g. queue legal sequence

eng(1)enqg(2)deq(1)deq(2)

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRsisure CiiT 2018

Semantics of concurrent
data structures

e.g. pools, queues, stacks

* Sequential specification = set of legal sequences

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

» Consistency condition = e.q. linearizability /
sequential consistency

e.g. the concurrent history above is a

linearizable queue concurrent history

Ana Sokolova PRsisure CiiT 2018

Consistency conditions

Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRrsiZsuks CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRrsiZsuks CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRsisure CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRsisure CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

Ana Sokolova PRsisure CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRsisure CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRsisure CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

v

Sequential Consistency [Lamport'79]

there exists a legal
sequence that preserves

per-thread precedence
(program order)

Ana Sokolova PRsisure CiiT 2018

Consistency conditions

there exists a legal

sequence that preserves . . -
precedence Linearizability [Herlihy,Wing '90]

there exists a legal
seguence that preserves
per-thread precedence
(program order)

Ana Sokolova PRsisure CiiT 2018

Performance and scalabillity

-)))

throughput :_)

of threads / cores

Ana Sokolova PRrsiZsuks CiiT 2018

Relaxations allow trading

correctness
for
performance

Ana Sokolova PRrsiZsuks CiiT 2018

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations

Ana Sokolova PRsisure CiiT 2018

Relaxing the Semantics

Ana Sokolova PRrsiZsuks CiiT 2018

Relaxing the Semantics

* Sequential specification = set of legal sequences

* Consistency condition = e.q. linearizability /
seqguential consistency

Ana Sokolova PRrsiZsuks CiiT 2018

Relaxing the Semantics

Quantitative relaxations

Henzinger, Kirsch, Payer, Sezgin,S. POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRsisure CiiT 2018

Relaxing the Semantics

NOt
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Ana Sokolova PRSXERRE CiiT 2018

Relaxing the Semantics

NOt
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability

In this talk

Ana Sokolova PRsisure CiiT 2018

Relaxing the Semantics

NOt
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
In this talk

for queues only
(feel free to ask for more)

Ana Sokolova PRsisure CiiT 2018

Relaxing the Semantics

NOt
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

* Sequential specification = set of legal sequences

» Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
In this talk

for gueues only

(feel free to ask for more)

Ana Sokolova PRsisure CiiT 2018

Relaxing
the
Consistency
Condition

Ana Sokolova PRrsiZsuks CiiT 2018

Relaxing
the
Consistency
Condition

Linearizability

(CONCUR10)

Ana Sokolova PRsisure CiiT 2018

IIIIIIIIII
of SALZBURG

Local Linearizability
main idea

CiiT 2018

Local Linearizability
main idea

* Partition a history into a set of local histories

* Require linearizability per local history

IIIIIIIIII

CiiT 2018

Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
main idea

Already present in some shared-memory
consistency conditions

(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also

possible

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova PRsisure CiiT 2018

IIIIIIIIII
oooooooooo

Local Linearizability
(Queue) example

CiiT 2018

Local Linearizability
(Queue) example

(sequential) history
not linearizable

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
(Queue) example

(sequential) history
not linearizable

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
(Queue) example

(sequential) history
not linearizable

t1-induced history,
linearizable

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
(Queue) example

(sequential) history
not linearizable

t1-induced history,
linearizable

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
(Queue) example

(sequential) history
not linearizable

3

e

12;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova PRsisure CiiT 2018

IIIIIIIIII
of SALZBURG

Local Linearizability
(queue) definition

CiiT 2018

Local Linearizability
(queue) definition

Queue signature Y = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

A S IOIO H IIIIIIIIII CiiT 20'8

Local Linearizability
(queue) definition

Queue signature > = {enqg(x) | x e V} u

{deq(x) | x € V} u

{deqg(empty)}

CiiT 2018

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PRsisure CiiT 2018

Local Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

iIn-methods of thread T
are
enqueues performed
by thread T

out-methods of thread T
are dequeues
(performed by any thread)
corresponding to enqueues that
are in-methods

Ana Sokolova PRsisure CiiT 2018

IIIIIIIIII
of SALZBURG

Generalizations of
| ocal Linearizability

CiiT 2018

Signhature >

Generalizations of
| ocal Linearizability

CiiT 2018

Sighature >

Generalizations of
Local Linearizability

CiiT 2018

Sighature >

Generalizations of
Local Linearizability

iIn-methods of thread |,
methods that go in hi

CiiT 2018

Generalizations of
Local Linearizability

Sighature >

iIn-methods of thread |,
methods that go in hi

out-methods of thread |,
dependent methods
on the methods in Inn(i)
(performed by any thread)

Ana Sokolova PRsisure CiiT 2018

Generalizations of
Local Linearizability

Sighature >

iIn-methods of thread |,
methods that go in hi

out-methods of thread |,

dependent methods
on the methods in Inn(i)
(performed by any thread)

Ana Sokolova PRsisure CiiT 2018

Generalizations of
Local Linearizability

Sighature >

iIN-methods of thread |,
methods that go in h;

by increasing the

IN-methods, .
LL gradually moves to out-methods of thread i,

linearizability dependent methods
on the methods in Inn(i)
(performed by any thread)

Ana Sokolova PRsisure CiiT 2018

Where do we stand?

In general

Lmearlzablhty

Local Llnearlzablhty

v

q\\ Sequential Consistency

Ana Sokolova PRrsiZsuks CiiT 2018

Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

'*\ Sequential Consistency

Ana Sokolova PRrsiZsuks CiiT 2018

Properties

Ana Sokolova PRSXERRE CiiT 2018

Properties

Local linearizability is compositional

Ana Sokolova PRsazitke CiiT 2018

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

Ana Sokolova PRsazitke CiiT 2018

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

Ana Sokolova PRsisure CiiT 2018

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

Local linearizability is modular /
‘decompositional”

Ana Sokolova PRsisure CiiT 2018

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller

Local linearizability is modular / histories, by definition
‘decompositional”

Ana Sokolova PRsisure CiiT 2018

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

may allow for modular verification

Ana Sokolova PRsisure CiiT 2018

Veritication (queue)

Queue sequential specification (axiomatic)

s Is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. enqg(x) <seng(y) A deqg(y)es = deqg(x)es A deqg(x) <s deq(y)

Ana Sokolova PRrsiZsuks CiiT 2018

Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. eng(x) <nengly) A degly)eh = deqg(x)eh A deqg(y) «n deq(x)

Ana Sokolova PRsisure CiiT 2018

Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(ly)eh = deg(x)eh A deq(y)deq(x)

precedence order

Ana Sokolova PRsisure CiiT 2018

Veritication (queue)

Queue seqguential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. eng(x) <nieng(y) A deg(y)eh = deqg(x) eh A deq(y) «n deq(x)

Ana Sokolova PRrsiZsuks CiiT 2018

Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. enq(x) nena(y) A deq(y)eh = deq(x)eh A deq(y) «n deq(x)

thread-local

precedence order

Ana Sokolova PRSXERRE CiiT 2018

Generic Implementations

Ana Sokolova PRrsiZsuks CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

Ana Sokolova PRSXERRE CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

Ana Sokolova PRrsiZsuks CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

Ana Sokolova PRsisure CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

Ana Sokolova PRrsiZsuks CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

IIIIIIIIII

Ana Sokolova PRisAZEurs

CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

local inserts / global (randomly distributed) removes

Ana Sokolova PRSXERRE CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD ®
(locally
linearizable)

local inserts / global (randomly distributed) removes

Ana Sokolova PRrsiZsuks CiiT 2018

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD ®
(locally
linearizable)

LL+D ® local inserts / global (randomly distributed) removes

(also pool
Ana Sokolova PAGS:ES |inearizab|e) CiiT 2018

million operations per sec (more is better)

Ana Sokolova

26 -
24 +
22 +
20 +
18 +
16 +
14 +
12 +
10 +

S D B N X
|

Performance

.-
..
‘.
R
PR ="
. >
PR B cd
e’
—
- >z
PRa e -
. ~,
PRt
AR et
e
.

-'/"
=

UNIVERSITY
of SALZBURG

(a) Queues, LL queues, and “queue-like” pools

LLD LCRQ :-- -
LLD k-FIFO -

80

I-RADQ i--@-—

CiiT 2018

million operations per sec (more is better)

Ana Sokolova

26 n
24 L
22
20
s LL+D MS queue
16 L performs
14 L /ﬁ " significantly better
12 L e o than
10 | Q,E:ffi“"/ MS queue
g L ///x'/fff;“ ______ oo
6 | B R e
; _ /ﬁ”/ |
L |
o =7 B — I E— E—— e e o +
2 10 20 30 40 50 60 70 80
number of threads

. B oo .

LCRQ :----¢----s LLD LCRQ :-----A----:

k-FIFO LLD k-FIFO -2 -

(a) Queues, LL queues, and “queue-like” pools
o CiiT 2018

26
24
22
20
18
16
14
12
10

million operations per sec (more is better)

S D B~ O X

.
L
- - -
- -~
.- _///
e ‘r‘ -
.7 -
.Zz?
D2t
Vadid
— ,‘;’\' e
.7 < Y semmmm
"’; _ - - -
Pacts ', o am===TT '
- - -
Sl IC I O S €
Y ar LNy X
"" '
e - - —
s,
L
L pts
e
.
2
gl
Cd
n e i
,, 0
ﬁ;/
.
"ﬂ\"
| / —
21
——————

‘,/:: ———————— -T -+_

_ + B B + ~+ —+ —+

T LLD &
ﬁ - performs
ek significantly better
Q than

e

LLD LCRQ :-- -
LLD k-FIFO -

(a) Queues, LL queues, and “queue-like” pools

UNIVERSITY

Ana Sokolova PRisAZEurs

CiiT 2018

26
24
22
20
18
16
14
12
10

million operations per sec (more is better)

S D B~ O X

i e LL+D MS

- ﬁ queue

- o performs better
_ than

i e | the best known

- W27 aam=mmT
LT Qe
,_'4;:‘/’ - O 0 |
B e X *
 C P -
- L et :
"’;;/// D
e

";;4/
|— ¥

2

number of threads

B B o .

LCRQ :---->¢----- LLD LCRQ :-----A----:
k-FIFO LLD k-FIFO -2

(a) Queues, LL queues, and “queue-like” pools

Ana Sokolova PRSXERRE CiiT 2018

|_ocal Linearizabllity

Ana Sokolova

joint work with:

Andreas Haas Google
Andreas Holzer @iz
Michael Lippautz Geogl

Ali Sezgin s

UNIVERSITY
of SALZBURG

Tom Henzinger B
Christoph Kirsch rese:
annes Payer Google
elmut Veith B

|_ocal Linearizabllity

Ana Sokolova P:fsatzeure

joint work with:

Andreas Haas Google Tom Henzinger B

UNIVERSITY

Andreas Holzer swiesio Christoph Kirsch ressss:

Michael Lippautz Goesle annes Payer Google
Ali Sezgin B elmut Veith B

Ali Sezgin

ERUSIVERITY OF
F CAMDRINGT

Hannes Payer

GU \JSIC

Christoph Kirsch

UNIVERSITY
of SALZBURG

Tom Henzinger

I‘ST AUSTRIA

Andreas Holzer Google
& TORONTO

Helmut Veith

Gouogle

Michael Lippautz

