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Semantics of concurrent
data structures

e.g. pools, queues, stacks

* Sequential specification = set of legal sequences

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

» Consistency condition = e.q. linearizability /
sequential consistency
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Local Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

* Partition a history into a set of local histories

* Require linearizability per local history

Local sequential consistency... is also
possible

no global witness
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iIN-methods of thread |,
methods that go in h;

by increasing the

IN-methods, .
LL gradually moves to out-methods of thread i,
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For queues (and most container-type data structures)
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Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
Iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

may allow for modular verification
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Veritication (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. sis alegal pool sequence, and
2. eng(x) <seng(y) A deg(y)es = deqg(x)es A deq(x) <s deqg(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. enq(x) nena(y) A deq(y)eh = deq(x)eh A deq(y) «n deq(x)

thread-local

precedence order
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Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD ®
(locally
linearizable)

LL+D ® local inserts / global (randomly distributed) removes
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