
Local Linearizability
Ana Sokolova

joint work with:

Christoph Kirsch
Tom Henzinger

Andreas Holzer

Ali Sezgin Helmut Veith
Hannes PayerMichael Lippautz

Andreas Haas

Rigorous methods
for

engineering of
and

reasoning about
reactive systems

Ana Sokolova CiiT 2018

Rigorous methods
for

engineering of
and

reasoning about
reactive systems

Ana Sokolova

concurrent

CiiT 2018

Background big picture

Ana Sokolova CiiT 2018

Computer Science

Background big picture

Ana Sokolova CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Ana Sokolova CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Concurrency

Ana Sokolova CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Concurrency

Formal Methods

Ana Sokolova CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Concurrency

Formal Methods

Algebra and Coalgebra

Ana Sokolova CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Concurrency

Formal Methods

Algebra and Coalgebra

Ana Sokolova

Probabilistic
Systems

CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Concurrency

Formal Methods

Algebra and Coalgebra
Security

Ana Sokolova

Probabilistic
Systems

CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Real-Time

Systems

Concurrency

Formal Methods

Algebra and Coalgebra
Security

Ana Sokolova

Probabilistic
Systems

CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Memory

Management

Systems

Real-Time

Systems

Concurrency

Formal Methods

Algebra and Coalgebra
Security

Ana Sokolova

Probabilistic
Systems

CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Memory

Management

Systems

Real-Time

Systems

Concurrency

Formal Methods

Data

Structures

Algebra and Coalgebra
Security

Ana Sokolova

Probabilistic
Systems

CiiT 2018

Computer Science

Background big picture

Theoretical Computer Science

Memory

Management

Systems

Real-Time

Systems

Concurrency

Formal Methods

Data

Structures

Algebra and Coalgebra
Security

Ana Sokolova

Probabilistic
Systems

Q

U

A

N

T

I

T

I

E

S

CiiT 2018

Computer Science

Theoretical Computer Science

Memory

Management

Systems

Real-Time

Systems

Concurrency

Formal Methods

Data

Structures

Algebra and Coalgebra
Security

Ana Sokolova

Probabilistic
Systems

Q

U

A

N

T

I

T

I

E

S

Current favourites

CiiT 2018

Local Linearizability
Ana Sokolova

joint work with:

Christoph Kirsch
Tom Henzinger

Andreas Holzer

Ali Sezgin Helmut Veith
Hannes PayerMichael Lippautz

Andreas Haas

Concurrent Data Structures:
Semantics and Relaxations

Ana Sokolova CiiT 2018

Concurrent Data Structures
Correctness and Performance

Ana Sokolova CiiT 2018

Concurrent Data Structures
Correctness and Performance

Ana Sokolova CiiT 2018

structure and power

Semantics of concurrent
data structures

Ana Sokolova CiiT 2018

Semantics of concurrent
data structures

Ana Sokolova

e.g. pools, queues, stacks

CiiT 2018

Semantics of concurrent
data structures

Ana Sokolova

e.g. pools, queues, stacks
t1: enq(2) deq(1)

enq(1) deq(2)t2:

CiiT 2018

Semantics of concurrent
data structures

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

e.g. pools, queues, stacks
t1: enq(2) deq(1)

enq(1) deq(2)t2:

CiiT 2018

Semantics of concurrent
data structures

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

e.g. pools, queues, stacks

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

t1: enq(2) deq(1)

enq(1) deq(2)t2:

CiiT 2018

Semantics of concurrent
data structures

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

e.g. pools, queues, stacks

e.g. queue legal sequence
enq(1)enq(2)deq(1)deq(2)

e.g. the concurrent history above is a
linearizable queue concurrent history

t1: enq(2) deq(1)

enq(1) deq(2)t2:

CiiT 2018

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence [Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2:

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2:

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a legal
sequence that preserves
per-thread precedence

(program order)

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

t1: enq(1) deq(2)

deq(1)t2: enq(2)

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a legal
sequence that preserves
per-thread precedence

(program order)

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

t1: enq(1) deq(2)

deq(1)t2: enq(2)

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a legal
sequence that preserves
per-thread precedence

(program order)

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

t1: enq(1) deq(2)

deq(1)t2: enq(2)

Consistency conditions

Ana Sokolova

Linearizability

Sequential Consistency

there exists a legal
sequence that preserves

precedence

t1: enq(2) deq(1)

enq(1) deq(2)t2: 1

2 3

4

there exists a legal
sequence that preserves
per-thread precedence

(program order)

1

2 3

4

[Herlihy,Wing ’90]

[Lamport’79]

CiiT 2018

Performance and scalability

Ana Sokolova

throughput

of threads / cores

:-)))

:-)

:-(
:-\

CiiT 2018

Relaxations allow trading

correctness
for

performance

Ana Sokolova CiiT 2018

Relaxations allow trading

correctness
for

performance

Ana Sokolova

provide the potential
for better-performing

implementations

CiiT 2018

Relaxing the Semantics

Ana Sokolova CiiT 2018

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova CiiT 2018

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

CiiT 2018

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

not
“sequentially

correct”

CiiT 2018

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

Local linearizability
in this talk

not
“sequentially

correct”

CiiT 2018

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

Local linearizability
in this talk for queues only

(feel free to ask for more)

not
“sequentially

correct”

CiiT 2018

Relaxing the Semantics

• Sequential specification = set of legal sequences

• Consistency condition = e.g. linearizability /
sequential consistency

Ana Sokolova

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

Local linearizability
in this talk for queues only

(feel free to ask for more)

not
“sequentially

correct”

too weak

CiiT 2018

Relaxing
the

Consistency
Condition

Ana Sokolova CiiT 2018

Relaxing
the

Consistency
Condition

Ana Sokolova

Local Linearizability
(CONCUR16)

CiiT 2018

Local Linearizability
main idea

Ana Sokolova CiiT 2018

Local Linearizability
main idea

• Partition a history into a set of local histories

• Require linearizability per local history

Ana Sokolova CiiT 2018

Local Linearizability
main idea

• Partition a history into a set of local histories

• Require linearizability per local history

Ana Sokolova

Already present in some shared-memory
consistency conditions

(not in our form of choice)

CiiT 2018

Local Linearizability
main idea

• Partition a history into a set of local histories

• Require linearizability per local history

Ana Sokolova

Already present in some shared-memory
consistency conditions

(not in our form of choice)

Local sequential consistency… is also
possible

CiiT 2018

Local Linearizability
main idea

• Partition a history into a set of local histories

• Require linearizability per local history

Ana Sokolova

Already present in some shared-memory
consistency conditions

(not in our form of choice)

Local sequential consistency… is also
possible

no global witness

CiiT 2018

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

CiiT 2018

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

CiiT 2018

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

CiiT 2018

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

t1-induced history,
linearizable

CiiT 2018

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

t1-induced history,
linearizable

CiiT 2018

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

t1-induced history,
linearizable

t2-induced history,
linearizable

CiiT 2018

Local Linearizability
(queue) example

Ana Sokolova

t1: enq(1)

deq(1)enq(2)

deq(2)

t2:

(sequential) history
not linearizable

t1-induced history,
linearizable

t2-induced history,
linearizable

locally
linearizable

CiiT 2018

Local Linearizability
(queue) definition

Ana Sokolova CiiT 2018

Local Linearizability
(queue) definition

Ana Sokolova

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

CiiT 2018

Local Linearizability
(queue) definition

Ana Sokolova

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with a thread T, we put

IT = {enq(x)T ∈ h | x ∈ V}

OT = {deq(x)T’ ∈ h | enq(x)T ∈ IT} ∪ {deq(empty)}

CiiT 2018

Local Linearizability
(queue) definition

Ana Sokolova

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with a thread T, we put

IT = {enq(x)T ∈ h | x ∈ V}

OT = {deq(x)T’ ∈ h | enq(x)T ∈ IT} ∪ {deq(empty)}

in-methods of thread T
are

enqueues performed
by thread T

CiiT 2018

Local Linearizability
(queue) definition

Ana Sokolova

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with a thread T, we put

IT = {enq(x)T ∈ h | x ∈ V}

OT = {deq(x)T’ ∈ h | enq(x)T ∈ IT} ∪ {deq(empty)}

in-methods of thread T
are

enqueues performed
by thread T

out-methods of thread T
are dequeues

(performed by any thread)
corresponding to enqueues that

are in-methods

CiiT 2018

Local Linearizability
(queue) definition

Ana Sokolova

Queue signature ∑ = {enq(x) | x ∈ V} ∪ {deq(x) | x ∈ V} ∪ {deq(empty)}

For a history h with a thread T, we put

IT = {enq(x)T ∈ h | x ∈ V}

OT = {deq(x)T’ ∈ h | enq(x)T ∈ IT} ∪ {deq(empty)}

in-methods of thread T
are

enqueues performed
by thread T

out-methods of thread T
are dequeues

(performed by any thread)
corresponding to enqueues that

are in-methods
h is locally linearizable iff every thread-induced history
 hT= h | (IT ∪ OT)
 is linearizable.

CiiT 2018

Generalizations of
Local Linearizability

Ana Sokolova CiiT 2018

Generalizations of
Local Linearizability

Ana Sokolova

Signature ∑

CiiT 2018

Generalizations of
Local Linearizability

Ana Sokolova

Signature ∑

For a history h with n threads, choose

Inh(i)

Outh(i)

CiiT 2018

Generalizations of
Local Linearizability

Ana Sokolova

Signature ∑

For a history h with n threads, choose

Inh(i)

Outh(i)

in-methods of thread i,
methods that go in hi

CiiT 2018

Generalizations of
Local Linearizability

Ana Sokolova

Signature ∑

For a history h with n threads, choose

Inh(i)

Outh(i)

in-methods of thread i,
methods that go in hi

out-methods of thread i,
dependent methods

on the methods in Inh(i)
(performed by any thread)

CiiT 2018

Generalizations of
Local Linearizability

Ana Sokolova

Signature ∑

For a history h with n threads, choose

Inh(i)

Outh(i)

in-methods of thread i,
methods that go in hi

out-methods of thread i,
dependent methods

on the methods in Inh(i)
(performed by any thread)

h is locally linearizable iff every thread-induced history
 hi = h | (Inh(i) ∪ Outh(i))
 is linearizable.

CiiT 2018

Generalizations of
Local Linearizability

Ana Sokolova

Signature ∑

For a history h with n threads, choose

Inh(i)

Outh(i)

in-methods of thread i,
methods that go in hi

out-methods of thread i,
dependent methods

on the methods in Inh(i)
(performed by any thread)

h is locally linearizable iff every thread-induced history
 hi = h | (Inh(i) ∪ Outh(i))
 is linearizable.

by increasing the
in-methods,

LL gradually moves to
linearizability

CiiT 2018

Where do we stand?

Ana Sokolova

In general

Linearizability

Sequential Consistency

Local Linearizability

CiiT 2018

Where do we stand?

Ana Sokolova

For queues (and most container-type data structures)

Linearizability

Sequential Consistency

Local Linearizability

CiiT 2018

Properties

Ana Sokolova CiiT 2018

Properties

Ana Sokolova

Local linearizability is compositional

CiiT 2018

Properties

Ana Sokolova

Local linearizability is compositional
like linearizability

unlike sequential consistency

CiiT 2018

Properties

Ana Sokolova

Local linearizability is compositional

h (over multiple objects) is locally linearizable
 iff
each per-object subhistory of h is locally linearizable

like linearizability
unlike sequential consistency

CiiT 2018

Properties

Ana Sokolova

Local linearizability is compositional

h (over multiple objects) is locally linearizable
 iff
each per-object subhistory of h is locally linearizable

like linearizability
unlike sequential consistency

Local linearizability is modular /
“decompositional”

CiiT 2018

Properties

Ana Sokolova

Local linearizability is compositional

h (over multiple objects) is locally linearizable
 iff
each per-object subhistory of h is locally linearizable

like linearizability
unlike sequential consistency

Local linearizability is modular /
“decompositional”

uses decomposition into smaller
histories, by definition

CiiT 2018

Properties

Ana Sokolova

Local linearizability is compositional

h (over multiple objects) is locally linearizable
 iff
each per-object subhistory of h is locally linearizable

like linearizability
unlike sequential consistency

Local linearizability is modular /
“decompositional”

uses decomposition into smaller
histories, by definition

may allow for modular verification

CiiT 2018

Verification (queue)

Ana Sokolova

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

CiiT 2018

Verification (queue)

Ana Sokolova

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

Queue linearizability (axiomatic)

h is queue linearizable
 iff
1. h is pool linearizable, and
2. enq(x) <h enq(y) ⋀ deq(y) ∈ h ⇒ deq(x) ∈ h ⋀ deq(y) ≮h deq(x)

Henzinger, Sezgin, Vafeiadis CONCUR13

CiiT 2018

Verification (queue)

Ana Sokolova

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

Queue linearizability (axiomatic)

h is queue linearizable
 iff
1. h is pool linearizable, and
2. enq(x) <h enq(y) ⋀ deq(y) ∈ h ⇒ deq(x) ∈ h ⋀ deq(y) ≮h deq(x)

Henzinger, Sezgin, Vafeiadis CONCUR13

precedence order

CiiT 2018

Verification (queue)

Ana Sokolova

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
 iff
1. h is pool locally linearizable, and
2. enq(x) <hi enq(y) ⋀ deq(y) ∈ h ⇒ deq(x) ∈ h ⋀ deq(y) ≮h deq(x)

CiiT 2018

Verification (queue)

Ana Sokolova

Queue sequential specification (axiomatic)

s is a legal queue sequence
 iff
1. s is a legal pool sequence, and
2. enq(x) <s enq(y) ⋀ deq(y) ∈ s ⇒ deq(x) ∈ s ⋀ deq(x) <s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
 iff
1. h is pool locally linearizable, and
2. enq(x) <hi enq(y) ⋀ deq(y) ∈ h ⇒ deq(x) ∈ h ⋀ deq(y) ≮h deq(x)

thread-local
precedence order

CiiT 2018

Generic Implementations

Ana Sokolova CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation

CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation
Φ

CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:

CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:

t2t1 tn…

Φ Φ Φ

CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

t2t1 tn…

Φ Φ Φ

CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

t2t1 tn…

Φ Φ Φ

local inserts / global (randomly distributed) removes

CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

t2t1 tn…

Φ Φ Φ

local inserts / global (randomly distributed) removes

LLD Φ
(locally

linearizable)

CiiT 2018

Generic Implementations

Ana Sokolova

Your favorite linearizable data structure implementation
Φ

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

t2t1 tn…

Φ Φ Φ

local inserts / global (randomly distributed) removes

LLD Φ
(locally

linearizable)

LL+D Φ
(also pool

linearizable) CiiT 2018

Performance

Ana Sokolova

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

CiiT 2018

Performance

Ana Sokolova

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

LL+D MS queue
performs

significantly better
than

MS queue

CiiT 2018

Performance

Ana Sokolova

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

LLD Φ
performs

significantly better
than
Φ

CiiT 2018

Performance

Ana Sokolova

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

LL+D MS
queue

performs better
than

the best known
pools

CiiT 2018

Local Linearizability
Ana Sokolova

joint work with:

Christoph Kirsch
Tom Henzinger

Andreas Holzer

Ali Sezgin Helmut Veith
Hannes PayerMichael Lippautz

Andreas Haas

Thank You!

Local Linearizability
Ana Sokolova

joint work with:

Christoph Kirsch
Tom Henzinger

Andreas Holzer

Ali Sezgin Helmut Veith
Hannes PayerMichael Lippautz

Andreas Haas

Thank You!

Andreas Haas

Andreas Holzer

Michael Lippautz

Ali Sezgin

Christoph Kirsch

Hannes Payer

Helmut Veith

Tom Henzinger

