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Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.

short description of paper 12 2015/7/11

CiiT 2018



Performance

Ana Sokolova 

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

MS
LCRQ

k-FIFO

LL+D MS
LLD LCRQ

LLD k-FIFO

1-RA DQ

(a) Queues, LL queues, and “queue-like” pools

0
2
4
6
8

10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads

Treiber
TS Stack

k-Stack
LL+D Treiber

LLD TS Stack
LLD k-Stack

1-RA DS

(b) Stacks, LL stacks, and “stack-like” pools

Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.
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Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.
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Figure 8: Performance and scalability of producer-consumer mi-
crobenchmarks with an increasing number of threads on a 40-core
(2 hyperthreads per core) machine

the situation gets more complex: What if these values were written

by different threads? There are different answers to this question.
One possibility is to ignore returned values that are written by

a thread different to the thread whose thread-induced history we
consider. By doing so, the read-operation will end up in the thread-
induced histories of all threads that wrote a value that was returned.
However, there is no further synchronization between those threads
except the appearance of this operation in all the thread-induced
histories. Another possibility is to also include all write-operations
from other threads that write values read by the read-operation into
a thread-induced history.

7.2 ExLL
As stated in Remark 1, observer methods are added to the
set Ohpiq. For the following discussion, we will make this more
explicit by defining a set Obs of observer methods (as usual in-
cluding values). Then, given a set I of insert method calls and a
history h, we define the set ObshpIq of observations in history h
with respect to I as follows:

ObshpIq “ tobspaq P h|Tj XObs | j P t1, . . . , nu, inspaq P Iu

The set ObshpIq contains for each insert operation in I a corre-
sponding instantiation of an observer method. For ease of presen-

tation, we define two more sets. First, given a thread index i and a
history h, we define the set LocalInshpiq of insert operations that
are local to thread Ti:

LocalInshpiq “ tinspaq P h|Ti | a P V u

And, second, given a set I of insert operations and a history h, we
define the set RemshpIq:

RemshpIq “ trempaq P h|Tj | j P t1, . . . , nu, inspaq P Iu

The set RemshpIq directly corresponds to the first set in the defini-
tion of Ohpiq. Given these three sets, we can define an extension of
local linearizability which we call in the following ExLL:

Ihpiq = LocalInshpiq Y Synchpiq

Ohpiq = trempemptyqu Y RemshpIhpiqq Y ObspIhpiqq

ExLL adds an additional set Synchpiq to the definition of Ihpiq.
Standard local linearizability corresponds to Synchpiq “ H. How-
ever, if we define Synchpiq to be the set that contains all insert-
operations that appear in h, then, we end up with linearizability.

Consider again Figure 5. If we want to prohibit such behavior,
we can impose synchronization on all observers, i.e., add the ob-
server methods to Synchpiq.

Programming Constructs for Synchronization. Usually, relax-
ations of linearizability are performed in a way that gives a pro-
grammer only very little control over the degree of semantic re-
laxation, for example, k-out-of-order queues only have one fixed
global parameter k. Another example are quiescent consistent
queues which can relax their semantics if operations are per-
formed in parallel. However, if the programmer does not explic-
itly control the parallelism of the application in a very fine grained
manner, then again, there is no control over when a relaxation
happens or not. ExLL enables the introduction of fine-grained
data structure synchronization at the program level. For example,
insert-operations can be extended by thread identifiers to specify
synchronization between (subsets of) threads. An insert-operation
inspa, tTj , Tkuq performed in thread Ti synchronizes Ti with
threads Tj and Tk by adding inspaq to Synchpjq and Synchpkq.

We believe that ExLL is a very promising research direction as
it enables new programming styles. Moreover, it shows the virtue
of the simplicity of local linearizability’s definition. A theoretical
investigation of ExLL and efficient implementations of correspond-
ing concurrent data structures is future work.

8. Conclusions
Local linearizability utilizes the idea of decomposing a history
into a set of thread-induced histories and requiring consistency
of all such, yielding an intuitive and verifiable consistency condi-
tion for concurrent objects that enables implementations with su-
perior performance and scalability compared to linearizable and
relaxed implementations. On the theoretical side, we prove that
local linearizability has desirable properties like compositionality
and well-behavedness for container type data structures. We ex-
tensively compare local linearizability to linearizability, as well as
sequential consistency, quiescent consistency, and various shared-
memory consistency conditions. On the practical side, we provide a
generic implementation scheme that turns a linearizable data struc-
ture implementation into a locally linearizable one, resulting in im-
provements of performance and scalability. There are at least two
directions for future work: (1) A detailed study of extensions of lo-
cal linearizability (further implications of decomposition to correct-
ness); and (2) Program-aware correctness, i.e., identifying classes
of programs that are (in)sensitive to notions of (relaxed) semantics.
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