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Semantics of concurrent
data structures

e.g. pools, queues, stacks

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

e Consistency condition = e.q. linearizability /
sequential consistency

e.qg. the concurrent history above is a

linearizable queue concurrent history
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Consistency conditions

there exists a legal

seguence that preserves | _ .
precedence L|near|zab|l|ty [Herlihy,Wing '90]

there exists a legal
seguence that preserves
per-thread precedence
(program order)
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Performance and scalabillity

-)))

throughput :_)

# of threads / cores
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Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations
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Relaxing the Semantics

Not
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Seqguential specification = set of legal sequences

« Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
IN this talk

for queues only

(feel free to ask for more)
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|_ocal Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

e Partition a history into a set of local histories

 Require linearizability per local history

Local sequential consistency... is also
possible

no global witness
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|_ocal Linearizability
(Queue) example

(sequential) history
not linearizable

"

SRS

t2;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable
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|_ocal Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

IN-methods of thread T
are
engueues performed
by thread T

out-methods of thread T

are degueues
(performed by any thread)
corresponding to engqueues that
are in-methods
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|_ocal Linearizability
for Container-Type DS

Signature > = Ins u Rem u SOb u DOb

iIn-methods of thread T
are
Inserts performed by

thread T

out-methods of thread T
are removes and data-observations
(performed by any thread)
1-methods
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Where do we stand?

In general

Llnearlzablhty

Local Lmearlzablllty

\4

q\\ Sequential Consistency
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Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

"SR Sequential Consistency
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Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

may allow for modular verification
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Verification (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(x) <senqg(y) A deg(ly)es = deqg(x)es A deq(x)<s deq(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(y)eh = deg(X)eh A deq(y)deq(x)

precedence order
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Verification (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(x) <senqg(y) A deg(ly)es = deqg(x)es A deq(x)<s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. eng(x) kn)ena(y) A degy)eh = deqg(x)eh A deq(y) «n deq(x)

thread-local

precedence order
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Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD @
(locally
linearizable)

LL+D @ local inserts / global (randomly distributed) removes

(also pool
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(a) Queues, LL queues, and “queue-like” pools
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