L ocal Linearizability

Ana Sokolova Porerzsure

joint work with:

Andreas Haas Google Tom Henzinger M.
Andreas Holzer ssisiio Christoph Kirsch pesiss

Michael Lippautz Goge annes Payer Google
Ali Sezgin e elmut Veith B4

Concurrent Data Structures
Correctness and Performance

Ana Sokolova PSSR CONCUR 2016

Semantics of concurrent
data structures

e.g. pools, queues, stacks

e Seqguential specification = set of legal sequences

e.g. queue legal sequence
eng(1)enq(2)deq(1)deq(2)

e Consistency condition = e.q. linearizability /
sequential consistency

e.qg. the concurrent history above is a

linearizable queue concurrent history

Ana Sokolova PRGsiTske CONCUR 2016

Consistency conditions

there exists a legal

seguence that preserves | _ .
precedence L|near|zab|l|ty [Herlihy,Wing '90]

there exists a legal
seguence that preserves
per-thread precedence
(program order)

Ana Sokolova PRGsiTske CONCUR 2016

Performance and scalabillity

-)))

throughput :_)

of threads / cores

Ana Sokolova PSSR CONCUR 2016

Relaxations allow trading

correctness
for
performance

provide the

for better-performing
Implementations

Ana Sokolova PRGsiTske CONCUR 2016

Relaxing the Semantics

Not
“sequentially
correct”

Quantitative relaxations
Henzinger, Kirsch, Payer, Sezgin,S. POPL13

e Seqguential specification = set of legal sequences

« Consistency condition = e.q. linearizability /
sequential consistency

Local linearizability
IN this talk

for queues only

(feel free to ask for more)

Ana Sokolova PRGsiTske CONCUR 2016

|_ocal Linearizability
main idea

Already present in some shared-memory

consistency conditions
(not in our form of choice)

e Partition a history into a set of local histories

 Require linearizability per local history

Local sequential consistency... is also
possible

no global witness

Ana Sokolova PRGsiTske CONCUR 2016

|_ocal Linearizability
(Queue) example

(sequential) history
not linearizable

"

SRS

t2;

t2-induced history, t1-induced history,
linearizable linearizable

locally
linearizable

Ana Sokolova PRGsiTske CONCUR 2016

|_ocal Linearizability
(queue) definition

Queue signature > = {enq(x) | x € V} u {deq(x) | x € V} u {deg(empty)}

IN-methods of thread T
are
engueues performed
by thread T

out-methods of thread T

are degueues
(performed by any thread)
corresponding to engqueues that
are in-methods

Ana Sokolova PRGsiTske CONCUR 2016

|_ocal Linearizability
for Container-Type DS

Signature > = Ins u Rem u SOb u DOb

iIn-methods of thread T
are
Inserts performed by

thread T

out-methods of thread T
are removes and data-observations
(performed by any thread)
1-methods

Ana Sokolova PRGsiTske CONCUR 2016

Where do we stand?

In general

Llnearlzablhty

Local Lmearlzablllty

\4

q\\ Sequential Consistency

Ana Sokolova PSSR CONCUR 2016

Where do we stand?

For queues (and most container-type data structures)

Linearizability

Local Linearizabillity

\4

"SR Sequential Consistency

Ana Sokolova PSR CONCUR 2016

Properties

like linearizability

Local linearizability is compositional unlike sequential consistency

h (over multiple objects) is locally linearizable
iff
each per-object subhistory of h is locally linearizable

uses decomposition into smaller
Local linearizability is modular / histories, by definition
‘decompositional”

may allow for modular verification

Ana Sokolova PRGsiTske CONCUR 2016

Verification (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(x) <senqg(y) A deg(ly)es = deqg(x)es A deq(x)<s deq(y)

Queue linearizability (axiomatic) Henzinger, Sezgin, Vafeiadis CONCUR13

h is queue linearizable
|ff
1. his pool linearizable, and
2. enq(x)@enq(y) A deg(y)eh = deg(X)eh A deq(y)deq(x)

precedence order

Ana Sokolova PRGsiTske CONCUR 2016

Verification (queue)

Queue sequential specification (axiomatic)

S is a legal queue sequence
|ff
1. s is alegal pool sequence, and
2. eng(x) <senqg(y) A deg(ly)es = deqg(x)es A deq(x)<s deq(y)

Queue local linearizability (axiomatic)

h is queue locally linearizable
|ff
1. his pool locally linearizable, and
2. eng(x) kn)ena(y) A degy)eh = deqg(x)eh A deq(y) «n deq(x)

thread-local

precedence order

Ana Sokolova PSR CONCUR 2016

Generic Implementations

Your favorite linearizable data structure implementation

turns into a locally linearizable implementation by:

segment of possibly
dynamic size (n)

LLD @
(locally
linearizable)

LL+D @ local inserts / global (randomly distributed) removes

(also pool
Ana Sokolova PGS |inearizab|e) CONCUR 2016

26
5 24t
3 2l
E ?g LL+D MS queue
g performs
> 1o } significantly better
A 14 | e
2 1l e than
é 10 + M';gg:ff’/’ ’ MS queue
= & LT X
g, 6 ,ﬁ/ """"" XKoo - — s
;§ 4 ,ﬁ"‘"’é&/:/ .
= I -
: é S — B B i e e e - +

2 10 20 30 40 50 60 70 30

number of threads

O |-RADQ - —@ -
LLDLCRQ :---a--:
LLD k-FIFO A

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRGsiTske CONCUR 2016

26
24
22
20
18
16
14
12
10

T LLD &
,_}-;—"f'f- - performs

significantly better
than

million operations per sec (more is better)

S N B O ©

number of threads

O |-RADQ - —@ -
LLDLCRQ :---a--:
LLD k-FIFO A

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRGsiTske CONCUR 2016

26
24
22
20
18
16
14
12
10

- LL+D MS
A queue
e performs better
than
A | the best known
A e S = oJole]IS

million operations per sec (more is better)

S N B O ©

number of threads

O |-RADQ - —@ -
LLDLCRQ :---a--:
LLD k-FIFO A

(a) Queues, LL queues, and “queue-like” pools
Ana Sokolova PRGsiTske CONCUR 2016

L ocal Linearizability

Ana Sokolova Porsatzeure

joint work with:

Andreas Haas Google Tom Henzinger M.

Andreas Holzer ssistio Christoph Kirsch pesiss

Michael Lippautz Google annes Payer Google
Ali Sezgin s elmut Veith B

|_ocal Linearizabllity

Ana Sokolova Porsatzeure

joint work with:

Andreas Haas Google Tom Henzinger B

Andreas Holzer srsistio Christoph Kirsch Pesiss:

Michael Lippautz Googl annes Payer Gousle
Ali Sezgin s elmut Veith B4

