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Persistent Memory Model

Persistent Memory Model

Allocated memory objects are guaranteed to exist until
deallocation

Explicit deallocation is not safe (dangling pointers) and can be
space-unbounded (memory leaks)

Implicit deallocation (unreachable objects) is safe but may be
slow or space-consuming (proportional to the size of live
memory) and can still be space-unbounded (memory leaks)
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Short-term Memory

Memory objects are only guaranteed to exist for a finite
amount of time

Memory objects are allocated with a given expiration date

Memory objects are neither explicitly nor implicitly deallocated
but may be refreshed to extend their expiration date
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Short-term Memory

With short-term memory programmers or algorithms
specify which memory objects are still needed

and not
which memory objects are

not needed anymore!
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Short-term Memory

Short-term Memory - Sources of Errors

Memory leaks

When not-needed objects are continuously refreshed
When time does not advance

Dangling Pointers

When needed objects are not refreshed
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Programming Model

Programming Model

Explicit memory management

The programmer (or an algorithm) adds memory management
calls to the program code

Hybrid approach for backward compatibility

Per default objects are allocated as persistent and managed by
the existing memory management (malloc/free, garbage
collection)
A refresh-call makes an object short-term, e.g. the objects gets
an expiration date
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Programming Model - Expiration Date

An object gets an expiration date when it gets refreshed and is
then managed by our system

A programmer refreshes objects explicitly

Every refresh-call creates a new expiration date for an object

The object expires when all its expiration dates are expired
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Time

Programming Model - Time

A software clock is used for object expiration

An integer counter which is increased by tick-calls
An expiration date has expired when its value is less than the
time of the software clock

Every thread has its own thread-local clock

Expiration dates expire according to the clock of the thread
which created the expiration date
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Examples

Example - Monte Carlo

monteCar lo ( i n t r e p e t i t i o n s )
{

V e c t o r r e s u l t s = new V e c t o r ( r e p e t i t i o n s ) ;
f o r ( i n t i = 0 ; i < r e p e t i t i o n s ; i ++)
{

RandomWalk walk = createRandomWalk ( ) ;

r e s u l t s . add ( d o C a l c u l a t i o n ( walk ) ;

}

e v a l u a t e R e s u l t s ( r e s u l t s ) ;
}
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Examples

Example - Monte Carlo

monteCar lo ( i n t r e p e t i t i o n s )
{

V e c t o r r e s u l t s = new V e c t o r ( r e p e t i t i o n s ) ;
f o r ( i n t i = 0 ; i < r e p e t i t i o n s ; i ++)
{

RandomWalk walk = createRandomWalk ( ) ;

SCM. r e f r e s h ( walk , 0 ) ;
r e s u l t s . add ( d o C a l c u l a t i o n ( walk ) ;

SCM. t i c k ( ) ;
}

e v a l u a t e R e s u l t s ( r e s u l t s ) ;
}
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Examples

Example - x264 Video Encoder

pop_unused

push_unused

unused
frame
pool

processing
unit

reference buffersinput frames output

refresh
malloc

1

2

3

4

5

6

tick 7

or

concurrent

2



Introduction Self-collecting Mutators Implementation Experiments

Examples

Other Use Cases

benchmark LoC tick refresh free aux total

mpg123 16043 1 0 (-)43 0 44

JLayer 8247 1 6 0 2 9

Monte Carlo 1450 1 3 0 2 6

LuIndex 74584 2 15 0 3 20

Table: Use cases of short-term memory: lines of code of the benchmark,
number of tick-calls, number of refresh-calls, number of free-calls,
number of auxiliary lines of code, and total number of modified lines of
code.
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Implementation

Our implementation is called self-collecting mutators (SCM)

The threads (mutators) of a program collect their expired
objects by themselves
At memory management calls a constant number of expired
objects are collected

We have implementations in C, Java and Go

The C implementation is based on ptmalloc2

The Java implementation is based on the Jikes RVM

For the Go implementation we extended the 6g Go runtime

Available at: tiptoe.cs.uni-salzburg.at/short-term-memory
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Descriptors

Implementation - Descriptors

An Object can have multiple expiration dates

An expiration date is represented by a descriptor, which stores
the expiration date and a pointer to the object

For each expiration date of an object there exists one
descriptor

Every object contains a descriptor counter (1 word) in its
header which counts the number of descriptors pointing to it

4 Object

Descriptor

Expiration 
Date

Pointer to
the object

1
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Descriptors

Implementation - Descriptors Buffer
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Implementation - Descriptor Buffer
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Descriptors

Implementation - Descriptor Buffer
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Implementation - Descriptor Buffer
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malloc/new

Implementation - malloc/new

Definition

malloc(size)
new Object()

The malloc/new call of SCM increases the requested amount
of memory by one word and uses the underlying memory
management then to allocate the memory

In C it is ptmalloc2
In Java and Go it is a mark-sweep garbage collector

The additional header word of an object is used for the
descriptor counter

The descriptor counter is initialized with zero
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refresh

Implementation - refresh

Definition

refresh(object, extension)

The refresh-call creates a new descriptor for the considered
object

The refresh-call consists of four operations:

1 Increase the descriptor counter of the specified object
2 Create a new descriptor and store it in the descriptor buffer

which corresponds to the given expiration extension.
3 (Self-collection) Remove one descriptor from the

expired descriptors list
4 Decrease the descriptor counter of the object which

corresponds to that descriptor

If the descriptor counter gets zero, the object is deallocated
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refresh

Before refresh
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refresh

After refresh
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tick

Implementation - tick

Definition

tick()

The tick-call increases the thread-local time

The descriptor list which expires by that time advance is
appended to the expired descriptor list
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tick

After tick

expired descriptor list
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free

Implementation - free

Definition

free(object)

In C it is still possible to use the free-call for explicit
deallocation

When the descriptor counter of the object is zero, the object
is deallocated

Otherwise nothing is done

The object will be deallocated when its last descriptor expires



Introduction Self-collecting Mutators Implementation Experiments

Garbage Collector

Implementation - Garbage Collector

All objects are considered to compute reachability

Short-term objects are not deallocated

They will be deallocated when their last descriptor expires
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Experiments
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What we want to show

In C

Short-term memory is easier to use while not loosing temporal
performance and with low memory overhead

In Java and Go

Short-term memory is more difficult to use but improves
temporal performance (e.g. reduce the number of garbage
collection runs)
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Experiments - System Configuration

CPU 2x AMD Opteron DualCore, 2.0 GHz

RAM 4GB

OS Linux 2.6.32-21-generic

Java VM Jikes RVM 3.1.0

C compiler gcc version 4.4.3

C allocator ptmalloc2-20011215 (glibc-2.10.1)

Table: System configuration.
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Monte Carlo

Monte Carlo - Total Runtime
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Figure: Total execution time of the Monte Carlo benchmarks in
percentage of the total execution time of the benchmark using self-
collecting mutators.
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Monte Carlo

Monte Carlo - Latency and Free Memory
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Figure: Free memory and loop execution time of the fixed Monte Carlo
benchmark.
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Monte Carlo

Monte Carlo - Tick Frequency - Latency
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Figure: Loop execution time of the Monte Carlo benchmark with
different tick frequencies. Self-collecting mutators is used.
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Monte Carlo

Monte Carlo - Tick Frequency - Free Memory

 16

 18

 20

 22

 24

 26

 28

 1  10  100  1000

fr
e

e
 m

e
m

o
ry

 i
n

 M
B

 
 (

h
ig

h
e

r 
is

 b
e

tt
e

r)

loop iteration (logarithmic)

1 tick/1 iteration
1 tick/50 iterations

1 tick/200 iterations

Figure: Free memory of the Monte Carlo benchmark with different tick
frequencies. Self-collecting mutators is used.



Introduction Self-collecting Mutators Implementation Experiments

mpg123 MP3 converter

mpg123 - Total Runtime

ptmalloc2 895.25ms 100.00%

ptmalloc2 through SCM 899.43ms 100.47%

SCM(1, 256B) 890.18ms 99.43%

SCM(10, 256B) 898.28ms 100.34%

SCM(1, 4KB) 892.18ms 99.66%

SCM(10, 4KB) 892.28ms 99.67%

Table: Total execution times of the mpg123 benchmark averaged over
100 repetitions. Here, SCM(n,m) stands for self-collecting mutators with
a maximal expiration extension of n and descriptor page size m.
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mpg123 MP3 converter

mpg123 - Memory Consumption
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Memory overhead and consumption of the mpg123 benchmark. Again, SCM(n,m)
stands for self-collecting mutators with a maximal expiration extension of n and
descriptor page size m. We write space-overhead(n,m) to denote the memory
overhead of the SCM(n,m) configurations for storing descriptors and descriptor
counters.
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mpg123 MP3 converter

Thank You

check out:

eurosys2011.cs.uni-salzburg.at

http://eurosys2011.cs.uni-salzburg.at 
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