
Introduction Self-collecting Mutators Implementation Experiments

Short-term Memory for Self-collecting Mutators

Martin Aigner, Andreas Haas, Christoph M. Kirsch,
Michael Lippautz, Ana Sokolova,

Stephanie Stroka, Andreas Unterweger

University of Salzburg

October 12, 2010

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

heap

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed

heap

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed

not needed

heap

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

heap

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

explicit
memory

management
deallocates

here

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

explicit
memory

management
deallocates

here

- memory leaks

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

explicit
memory

management
deallocates

here

- memory leaks
- dangling pointers

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

explicit
memory

management
deallocates

here

garbage
collectors
deallocate

here

- memory leaks
- dangling pointers

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

explicit
memory

management
deallocates

here

garbage
collectors
deallocate

here

- memory leaks
- dangling pointers

- tracing

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

explicit
memory

management
deallocates

here

garbage
collectors
deallocate

here

- memory leaks
- dangling pointers

- tracing
- reference counting

Introduction Self-collecting Mutators Implementation Experiments

Heap Management

Heap Management

needed reachable

unreachable

heap

explicit
memory

management
deallocates

here

garbage
collectors
deallocate

here

- memory leaks
- dangling pointers

- tracing
- reference counting
- reachable memory leaks

Introduction Self-collecting Mutators Implementation Experiments

Persistent Memory Model

Persistent Memory Model

Allocated memory objects are guaranteed to exist until
deallocation

Explicit deallocation is not safe (dangling pointers) and can be
space-unbounded (memory leaks)

Implicit deallocation (unreachable objects) is safe but may be
slow or space-consuming (proportional to the size of live
memory) and can still be space-unbounded (memory leaks)

Introduction Self-collecting Mutators Implementation Experiments

Short-term Memory

Short-term Memory

Memory objects are only guaranteed to exist for a finite
amount of time

Memory objects are allocated with a given expiration date

Memory objects are neither explicitly nor implicitly deallocated
but may be refreshed to extend their expiration date

Introduction Self-collecting Mutators Implementation Experiments

Short-term Memory

Short-term Memory

With short-term memory programmers or algorithms
specify which memory objects are still needed

and not
which memory objects are

not needed anymore!

Introduction Self-collecting Mutators Implementation Experiments

Short-term Memory

Short-term Memory

needed reachable

heap

not expired

unreachable

Introduction Self-collecting Mutators Implementation Experiments

Short-term Memory

Short-term Memory

needed reachable

heap

not expired

conservative
refresh

Introduction Self-collecting Mutators Implementation Experiments

Short-term Memory

Short-term Memory

needed reachable

heap

not expired

conservative
refresh

conservative
expiration

Introduction Self-collecting Mutators Implementation Experiments

Short-term Memory

Short-term Memory - Sources of Errors

Memory leaks

When not-needed objects are continuously refreshed
When time does not advance

Dangling Pointers

When needed objects are not refreshed

Introduction Self-collecting Mutators Implementation Experiments

Self-collecting Mutators

Introduction Self-collecting Mutators Implementation Experiments

Programming Model

Programming Model

Explicit memory management

The programmer (or an algorithm) adds memory management
calls to the program code

Hybrid approach for backward compatibility

Per default objects are allocated as persistent and managed by
the existing memory management (malloc/free, garbage
collection)
A refresh-call makes an object short-term, e.g. the objects gets
an expiration date

Introduction Self-collecting Mutators Implementation Experiments

Expiration Date

Programming Model - Expiration Date

An object gets an expiration date when it gets refreshed and is
then managed by our system

A programmer refreshes objects explicitly

Every refresh-call creates a new expiration date for an object

The object expires when all its expiration dates are expired

Introduction Self-collecting Mutators Implementation Experiments

Time

Programming Model - Time

A software clock is used for object expiration

An integer counter which is increased by tick-calls
An expiration date has expired when its value is less than the
time of the software clock

Every thread has its own thread-local clock

Expiration dates expire according to the clock of the thread
which created the expiration date

Introduction Self-collecting Mutators Implementation Experiments

Examples

Example - Monte Carlo

monteCar lo (i n t r e p e t i t i o n s)
{

V e c t o r r e s u l t s = new V e c t o r (r e p e t i t i o n s) ;
f o r (i n t i = 0 ; i < r e p e t i t i o n s ; i ++)
{

RandomWalk walk = createRandomWalk () ;

r e s u l t s . add (d o C a l c u l a t i o n (walk) ;

}

e v a l u a t e R e s u l t s (r e s u l t s) ;
}

Introduction Self-collecting Mutators Implementation Experiments

Examples

Example - Monte Carlo

monteCar lo (i n t r e p e t i t i o n s)
{

V e c t o r r e s u l t s = new V e c t o r (r e p e t i t i o n s) ;
f o r (i n t i = 0 ; i < r e p e t i t i o n s ; i ++)
{

RandomWalk walk = createRandomWalk () ;

SCM. r e f r e s h (walk , 0) ;
r e s u l t s . add (d o C a l c u l a t i o n (walk) ;

SCM. t i c k () ;
}

e v a l u a t e R e s u l t s (r e s u l t s) ;
}

Introduction Self-collecting Mutators Implementation Experiments

Examples

Example - x264 Video Encoder

pop_unused

push_unused

unused
frame
pool

processing
unit

reference buffersinput frames output

refresh
malloc

1

2

3

4

5

6

tick 7

or

concurrent

2

Introduction Self-collecting Mutators Implementation Experiments

Examples

Other Use Cases

benchmark LoC tick refresh free aux total

mpg123 16043 1 0 (-)43 0 44

JLayer 8247 1 6 0 2 9

Monte Carlo 1450 1 3 0 2 6

LuIndex 74584 2 15 0 3 20

Table: Use cases of short-term memory: lines of code of the benchmark,
number of tick-calls, number of refresh-calls, number of free-calls,
number of auxiliary lines of code, and total number of modified lines of
code.

Introduction Self-collecting Mutators Implementation Experiments

Implementation

Introduction Self-collecting Mutators Implementation Experiments

Implementation

Our implementation is called self-collecting mutators (SCM)

The threads (mutators) of a program collect their expired
objects by themselves
At memory management calls a constant number of expired
objects are collected

We have implementations in C, Java and Go

The C implementation is based on ptmalloc2

The Java implementation is based on the Jikes RVM

For the Go implementation we extended the 6g Go runtime

Available at: tiptoe.cs.uni-salzburg.at/short-term-memory

Introduction Self-collecting Mutators Implementation Experiments

Descriptors

Implementation - Descriptors

An Object can have multiple expiration dates

An expiration date is represented by a descriptor, which stores
the expiration date and a pointer to the object

For each expiration date of an object there exists one
descriptor

Every object contains a descriptor counter (1 word) in its
header which counts the number of descriptors pointing to it

4 Object

Descriptor

Expiration
Date

Pointer to
the object

1

Introduction Self-collecting Mutators Implementation Experiments

Descriptors

Implementation - Descriptors Buffer

expired
descriptor

4

4

4

4

5

5

5

5
5

56

6

6

7

7

7

7
7

1

1

1

2

2

3

3

3

3

not-expired
descriptor

time=4

Introduction Self-collecting Mutators Implementation Experiments

Descriptors

Implementation - Descriptor Buffer

expired descriptor list

4

5

6

7

time=4

Introduction Self-collecting Mutators Implementation Experiments

Descriptors

Implementation - Descriptor Buffer

expired descriptor list

4

5

6

7

0
1
2
3

4 mod 4 =
5 mod 4 =
6 mod 4 =
7 mod 4 =

time = 4
maximal expiration extension = 3

Introduction Self-collecting Mutators Implementation Experiments

Descriptors

Implementation - Descriptor Buffer

Introduction Self-collecting Mutators Implementation Experiments

malloc/new

Implementation - malloc/new

Definition

malloc(size)
new Object()

The malloc/new call of SCM increases the requested amount
of memory by one word and uses the underlying memory
management then to allocate the memory

In C it is ptmalloc2
In Java and Go it is a mark-sweep garbage collector

The additional header word of an object is used for the
descriptor counter

The descriptor counter is initialized with zero

Introduction Self-collecting Mutators Implementation Experiments

refresh

Implementation - refresh

Definition

refresh(object, extension)

The refresh-call creates a new descriptor for the considered
object

The refresh-call consists of four operations:

1 Increase the descriptor counter of the specified object
2 Create a new descriptor and store it in the descriptor buffer

which corresponds to the given expiration extension.
3 (Self-collection) Remove one descriptor from the

expired descriptors list
4 Decrease the descriptor counter of the object which

corresponds to that descriptor

If the descriptor counter gets zero, the object is deallocated

Introduction Self-collecting Mutators Implementation Experiments

refresh

Before refresh

expired descriptor list

4

5

6

7

0
1
2
3

4 mod 4 =
5 mod 4 =
6 mod 4 =
7 mod 4 =

time=4 refresh(object, 0);

Introduction Self-collecting Mutators Implementation Experiments

refresh

After refresh

expired descriptor list

4

5

6

7

0
1
2
3

4 mod 4 =
5 mod 4 =
6 mod 4 =
7 mod 4 =

time=4 refresh(object, 0); add one
descriptor

remove one
descriptor

Introduction Self-collecting Mutators Implementation Experiments

tick

Implementation - tick

Definition

tick()

The tick-call increases the thread-local time

The descriptor list which expires by that time advance is
appended to the expired descriptor list

Introduction Self-collecting Mutators Implementation Experiments

tick

Before tick

expired descriptor list

4

5

6

7

0
1
2
3

4 mod 4 =
5 mod 4 =
6 mod 4 =
7 mod 4 =

time=4

Introduction Self-collecting Mutators Implementation Experiments

tick

After tick

expired descriptor list

8

5

6

7

0
1
2
3

8 mod 4 =
5 mod 4 =
6 mod 4 =
7 mod 4 =

time=5

Introduction Self-collecting Mutators Implementation Experiments

free

Implementation - free

Definition

free(object)

In C it is still possible to use the free-call for explicit
deallocation

When the descriptor counter of the object is zero, the object
is deallocated

Otherwise nothing is done

The object will be deallocated when its last descriptor expires

Introduction Self-collecting Mutators Implementation Experiments

Garbage Collector

Implementation - Garbage Collector

All objects are considered to compute reachability

Short-term objects are not deallocated

They will be deallocated when their last descriptor expires

Introduction Self-collecting Mutators Implementation Experiments

Experiments

Introduction Self-collecting Mutators Implementation Experiments

What we want to show

In C

Short-term memory is easier to use while not loosing temporal
performance and with low memory overhead

In Java and Go

Short-term memory is more difficult to use but improves
temporal performance (e.g. reduce the number of garbage
collection runs)

Introduction Self-collecting Mutators Implementation Experiments

Experiments - System Configuration

CPU 2x AMD Opteron DualCore, 2.0 GHz

RAM 4GB

OS Linux 2.6.32-21-generic

Java VM Jikes RVM 3.1.0

C compiler gcc version 4.4.3

C allocator ptmalloc2-20011215 (glibc-2.10.1)

Table: System configuration.

Introduction Self-collecting Mutators Implementation Experiments

Monte Carlo

Monte Carlo - Total Runtime

 98

 100

 102

 104

 106

 108

 110

 112

 114

 116

MC leaky MC fixed 4xMC fixed

to
ta

l
ru

n
ti
m

e
 i
n

 %

 o
f

th
e

 r
u

n
ti
m

e
 o

f
S

C
M

 (

lo
w

e
r

is
 b

e
tt

e
r)

Monte Carlo Benchmarks

SCM(50,20)
GEN

MS

SCM(50,20) double memory
GEN double memory

MS double memory

Figure: Total execution time of the Monte Carlo benchmarks in
percentage of the total execution time of the benchmark using self-
collecting mutators.

Introduction Self-collecting Mutators Implementation Experiments

Monte Carlo

Monte Carlo - Latency and Free Memory

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500
 100

 1000

 10000

 100000

fr
e

e
 m

e
m

o
ry

 i
n

 M
B

 (

h
ig

h
e

r
is

 b
e

tt
e

r)

lo
o

p
 e

x
e

c
u

ti
o

n
 t

im
e

 i
n

 m
ic

ro
s
e

c
o

n
d

s
 (

lo
g

a
ri
th

m
ic

)
 (

lo
w

e
r

is
 b

e
tt

e
r)

loop iteration

GEN free memory
MS free memory

SCM free memory

GEN loop execution time
MS loop execution time

SCM loop execution time

Figure: Free memory and loop execution time of the fixed Monte Carlo
benchmark.

Introduction Self-collecting Mutators Implementation Experiments

Monte Carlo

Monte Carlo - Tick Frequency - Latency

 500

 1000

 5000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
o

p
 e

x
e

c
u

ti
o

n
 t

im
e

 i
n

 m

ic
ro

s
e

c
o

n
d

s
 (

lo
g

a
ri
th

m
ic

)
 (

lo
w

e
r

is
 b

e
tt

e
r)

loop iteration

1 tick/1 iteration
1 tick/50 iterations

1 tick/200 iterations

Figure: Loop execution time of the Monte Carlo benchmark with
different tick frequencies. Self-collecting mutators is used.

Introduction Self-collecting Mutators Implementation Experiments

Monte Carlo

Monte Carlo - Tick Frequency - Free Memory

 16

 18

 20

 22

 24

 26

 28

 1 10 100 1000

fr
e

e
 m

e
m

o
ry

 i
n

 M
B

 (

h
ig

h
e

r
is

 b
e

tt
e

r)

loop iteration (logarithmic)

1 tick/1 iteration
1 tick/50 iterations

1 tick/200 iterations

Figure: Free memory of the Monte Carlo benchmark with different tick
frequencies. Self-collecting mutators is used.

Introduction Self-collecting Mutators Implementation Experiments

mpg123 MP3 converter

mpg123 - Total Runtime

ptmalloc2 895.25ms 100.00%

ptmalloc2 through SCM 899.43ms 100.47%

SCM(1, 256B) 890.18ms 99.43%

SCM(10, 256B) 898.28ms 100.34%

SCM(1, 4KB) 892.18ms 99.66%

SCM(10, 4KB) 892.28ms 99.67%

Table: Total execution times of the mpg123 benchmark averaged over
100 repetitions. Here, SCM(n,m) stands for self-collecting mutators with
a maximal expiration extension of n and descriptor page size m.

Introduction Self-collecting Mutators Implementation Experiments

mpg123 MP3 converter

mpg123 - Memory Consumption

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140 160 180

number of allocations

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

tick tick tick tick tick

m
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 i
n

 K
B

 (

lo
w

e
r

is
 b

e
tt

e
r)

ptmalloc2 (1)
SCM(1, 256B)(2)

space-overhead(1, 256B)(3)
SCM(10, 256B)(4)

space-overhead(10, 256B)(5)
SCM(1, 4KB)(6)

space-overhead(1, 4KB)(7)
SCM(10, 4KB)(8)

space-overhead(10, 4KB)(9)

Memory overhead and consumption of the mpg123 benchmark. Again, SCM(n,m)
stands for self-collecting mutators with a maximal expiration extension of n and
descriptor page size m. We write space-overhead(n,m) to denote the memory
overhead of the SCM(n,m) configurations for storing descriptors and descriptor
counters.

Introduction Self-collecting Mutators Implementation Experiments

mpg123 MP3 converter

Thank You

check out:

eurosys2011.cs.uni-salzburg.at

http://eurosys2011.cs.uni-salzburg.at

	Introduction
	Heap Management
	Persistent Memory Model
	Short-term Memory

	Self-collecting Mutators
	Programming Model
	Expiration Date
	Time
	Examples

	Implementation
	Descriptors
	malloc/new
	refresh
	tick
	free
	Garbage Collector

	Experiments
	Monte Carlo
	mpg123 MP3 converter

