
Fast Concurrent Data-Structures Through
Explicit Timestamping

Mike Doddsa Andreas Haas Christoph M. Kirsch

aUniversity of York

Technical Report 2014-03 February 2014

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series



Fast Concurrent Data-Structures Through
Explicit Timestamping

Mike Dodds1, Andreas Haas2, and Christoph M. Kirsch2

1 University of York (firstname.lastname@york.ac.uk)
2 University of Salzburg (firstname.lastname@cs.uni-salzburg.at)

Abstract. Concurrent data-structures, such as stacks, queues and de-
ques, often implicitly enforce a total order over elements with their un-
derlying memory layout. However, linearizability only requires that ele-
ments are ordered if the inserting methods ran sequentially. We propose
a new data-structure design which uses explicit timestamping to avoid
unwanted ordering. Elements can be left unordered by associating them
with unordered timestamps if their insert operations ran concurrently. In
our approach, more concurrency translates into less ordering, and thus
less-contended removal and ultimately higher performance and scalabil-
ity.
As a proof of concept, we realise our approach in a non-blocking double-
ended queue. In experiments our deque outperforms and outscales the
Michael-Scott queue by a factor of 4.2 and the Treiber stack by a factor of
2.8. It even outscales the elimination-backoff stack, the fastest concurrent
stack of which we are aware, and the flat-combining queue, a fast queue
more scalable than Michael-Scott.

1 Introduction

The main idea of our approach is to timestamp elements as they are added to
a shared data-structure, and to use these timestamps to determine the order
in which elements should be removed. The data-structure can be instantiated
as a stack by removing the element with the latest timestamp, or as a queue
by removing the element with the earliest timestamp. Both kinds of operation
can be combined to give a deque – a double-ended queue. Listing 1.1 shows the
high-level pseudocode for our Timestamped Deque (TS deque).

One might assume that generating a timestamp and adding an element to
the data-structure has to be done together, atomically. This intuition is wrong:
linearizability allows concurrent operations to take effect in any order within
method boundaries – only sequential operations have to keep their order [13].
Therefore we need only order elements if the methods inserting them execute
sequentially. Our approach exploits this fact by splitting timestamp generation
from element insertion, and by allowing unordered timestamps. Two elements
may be timestamped in a different order than they were inserted, or they may



Listing 1.1. TS deque algorithm – insertL / removeL are defined analogously. Imple-
mentations for TS buffer operations are given in Listing 1.2.

1 TS_Deque {
2 TS_Buffer buffer ;
3
4 void insertR ( Element element ) {
5 item = buffer .insR( element );
6 t = buffer . newTimestamp ();
7 buffer . setTimestamp (item ,t);
8 }
9

10 Element removeR () {
11 do {
12 item = buffer . tryRemR ();
13 } whi le (! item. isValid ());
14 i f (item. isEmpty ())
15 return EMPTY;
16 e l s e
17 return item. element ;
18 }
19 }

be unordered, but only when the surrounding methods overlap, meaning the
elements can legitimately be removed in any order. The only constraint is that
elements of sequentially executed insert operations get ordered timestamps.

By separating timestamp creation from adding the element to the data-
structure, the insert method can avoid two expensive synchronisation patterns
– atomic-write-after-read (AWAR) and read-after-write (RAW). We take these
patterns from [3], and refer to them collectively as strong synchronisation. Time-
stamping can be done by a stuttering counter or a hardware instruction like
the x86 RDTSCP instruction, neither of which require strong synchronization.
The underlying data can be stored in many single-producer-multiple-consumer
buffers. This also does not require strong synchronization in the insert operation.
Therefore the whole insert operation does not require any strong synchroniza-
tion, radically reducing its cost.

The lack of synchronization in the insert operation comes at the cost of con-
tention in the remove operation. Indeed, [3] proves that the remove operation
for a deque cannot be implemented without strong synchronisation. Perhaps sur-
prisingly, this problem can be mitigated by reducing the ordering between time-
stamps: intuitively, less ordering results in more opportunities for concurrent
removal, and thus less contention. Our experiments show that data-structures
based on partially-ordered timestamps can achieve performance and scalabil-
ity comparable to or better than state-of-the-art concurrent data-structures. In
particular, our TS stack performs better than any other stack of which we are
aware.



Algorithm structure. Listing 1.1 shows the high-level structure of our TS deque.
The abstract state of the deque is a sequence of elements, and there are four
basic operations:

– insertL / insertR – add an element to the left or right end of the sequence.
– removeL / removeR – remove an element from the left or right end of the

sequence, or return EMPTY.

To get a stack, we take two operations on the same end of the sequence (e.g.
insertR and removeR). To get a queue, we take two operations on opposite ends
(e.g. insertL and removeR).

To simplify the presentation of our algorithm, we define it using a lower-level
structure called a timestamped buffer (TS-buffer). The abstract state of the buffer
is a map from identifiers to values, optionally associated with timestamps. The
TS-buffer offers the following operations:

– insL / insR – add an element to the buffer without attaching a timestamp,
and return a reference to the item.

– newTimestamp – generate a timestamp later than any timestamp of an item
already in the buffer.

– setTimestamp – attach a timestamp to a given item in the buffer.
– tryRemL / tryRemR – try to remove the leftmost / rightmost element of the

buffer.

(Our TS-buffer implementation is discussed directly below, and in detail in Sec-
tion 4.2. Pseudocode is given in Listing 1.2.)

With the TS-buffer operations defined, the structure of Listing 1.1 should be
clear. To insert an element, the algorithm inserts an un-timestamped element
into the buffer (line 5), generates a fresh timestamp (line 6), and sets the new
element’s timestamp (line 7). To remove an element, the algorithm tries to find
and remove an appropriate element (line 12) until it succeeds or discovers the
buffer is empty.

The necessary constraint to ensure linearizability holds straightforwardly: if
two insert operations run sequentially, then the associated elements have ordered
timestamps. Elements arising from concurrent operations can be ordered any
way, so this suffices to ensure that elements are removed in a linearizable order.
(In fact, subtleties arise when multiple insert and remove operations overlap –
see Section 3 and Appendix A for details of the correctness argument).

Implementation approach. We implement the TS-buffer as a collection of single-
producer multiple-consumer buffers (see Section 4.2, Listing 1.2 for pseudocode).
Each thread is associated with a buffer into which it inserts, and tryRemL and
tryRemR search through all the buffers to find the leftmost / rightmost element.
Elements are removed using an atomic compare-and-swap (i.e. an AWAR) to
write a ‘taken’ flag; if the CAS fails, the tryRem operation fails. This contention
means that our algorithm is lock-free but not wait-free; a thread can be forced
to wait indefinitely by contending threads.



We have experimented with various implementations for timestamping itself.
Most straightforwardly, we can use a strongly-synchronised fetch-and-increment
counter. We can avoid strong synchronisation by using a vector of thread-local
counters, meaning the counter may stutter (many threads get the same time-
stamp). We can also use a hardware timestamping operation – for example the
RDTSCP instruction which is available on all modern x86 hardware. In the
past, such instructions have largely been used for analysis and logging. In our
experiments we found hardware timestamping to be by far the best-performing
approach.

Elimination and interval timestamping. We have experimented with several op-
timisations, most importantly elimination and interval timestamping.

In the case of a stack, concurrent insert and remove operations can elimi-
nate each other [10]. Therefore a thread can remove any concurrently-inserted
element, not just the leftmost or rightmost one. Unlike [10], our mechanism for
detecting elimination exploits the existance of timestamps. We read the current
timestamp at the start of a remove; any element with a later timestamp has been
inserted during the current remove, and can be eliminated. It is largely thanks
to elimination that our TS stack is the fastest of our timestamped structures.

Surprisingly, it is not optimal to insert elements as quickly as possible. The
reason is that removal is quicker when there are many unordered leftmost or
rightmost elements, reducing contention and avoiding failed CASes. To exploit
this, we can redefine timestamps as intervals, represented by a pair of start and
end times. Overlapping interval timestamps are considered unordered, and thus
there can be many leftmost / rightmost elements in the deque. To implement
this, newTimestamp() pauses for a predetermined interval after generating a
start timestamp, then generates an end timestamp.

Pausing allows us to trade off the performance of insertion and removal: an
increasing delay in insertion can reduce the number of retries in remove (see
Section 5.3). Though pausing may make insertion slower than a single AWAR
instruction, our experiments suggest what is expensive is not individual instruc-
tions, but rather contention that causes many instructions to be repeated. Our
experiments show that by weakening the order of elements, interval timestamp-
ing can substantially increase overall throughput and decrease latency of re-
moves.

Similarly, although interval timestamping increases the non-determinism of
removal (i.e. the variance in which elements are returned), this need not trans-
late into greater overall non-determinism compared to other state-of-the-art
algorithms. A major source of non-determinism in existing concurrent data-
structures is in fact contention [8]. While interval timestamping increases the
potential for non-determinism in one respect, it decreases it in another.

Paper structure. §2 surveys the related work on concurrent data-structures. In
§3 we argue for the correctness of our algorithm. In §4 we give more details of our
algorithm implementation. In §5 we discuss our experiments, both with different



implementation choices, and with respect to other concurrent data-structures.
§6 concludes.

2 Related Work

Our timestamping approach was inspired by Attiya et al.’s Laws of Order pa-
per [3]. That paper proves that any linearizable stack, queue or deque necessarily
uses the RAW or AWAR patterns in its remove operation. While attempting to
extend this result to insert operations, we were surprised to discover a counter-
example instead: the TS deque. The observation that enqueues need not take ef-
fect in the same order as their atomic operations is used in the basket queue [14],
although unlike the TS deque that algorithm does not avoid strong synchroni-
sation.

Our TS deque implementation reuses concepts from several concurrent data-
structures. Storing elements in multiple partial data-structures instead of one
global data-structure is used in the distributed queue [7] where insert and remove
operations are distributed between partial queues using a load balancer. One can
view the thread-local buffers of the TS-buffer as partial queues and the TS-buffer
itself as the load balancer. The TS-buffer emptiness check also originates from
the distributed queues. Our contribution is that the TS deque leverages the
performance of distributed queues while preserving sequential deque semantics.

The generic, queue-specific, and stack-specific thread-local buffer implemen-
tations are similar to the ConcurrentLinkedDeque in OpenJDK [1], the Michael-
Scott queue [20], and the Treiber stack [23], respectively. All these implementa-
tions are based on linked lists with one or two access pointers which are updated
using CAS. However, unlike these implementations, insertion into our thread-local
buffers does not require CAS or other strong synchronization.

There exist other lock-free concurrent deque implementations based on doubly-
linked lists e.g. Michael [18], Sundell and Tsigas [22]. Generic deque implemen-
tations are generally slower than specialised queue and stack implementations
(if this was not the case, then the faster deque could be used as a queue or
stack). For example, the ConcurrentLinkedDeque in the OpenJDK adds about
40% overhead to the Michael-Scott queue. In our case, the TS deque adds 17%
overhead to the hardcoded TS queue and 67% overhead to the hardcoded TS
stack. Consequently we do not compare our TS deque to other deques, but rather
to faster queue and stack implementations.

Gorelik and Hendler describe a similar timestamping approach to ours in
their short paper announcing the asymmetric flat combining (AFC) queue [6].
In the AFC queue, enqueued items are timestamped and stored in thread-local
buckets. Their approach differs in several respects, however. (1) Their remove
relies on flat-combining-style consolidation rather than CAS, making their algo-
rithm blocking; (2) their timestamps are Lamport clocks similar to TS-stutter,
not hardware-generated intervals; (3) they define a queue rather than a deque.
The fact that they use TS-stutter and define only a queue dramatically simpli-
fies dequeuing in comparison to the TS deque (it also simplifies their proof of



linearizability). The fact they do not use interval time-stamping prevents them
from trading off the cost of enqueuing and dequeuing. As a result, although
inserts are faster, their removes are slower than other flat-combining queues.

The LCRQ queue [2] and the SP queue [11] both index elements using an
atomic counter. The LCRQ queue uses indices to detect buffer overflows in a ring
buffer, whereas the SP queue uses indices to identify elements in thread-local
lists. In both queues elements are found and removed via independent indices
generated by a second atomic counter. However, dequeue operations do not look
for one of the oldest elements as in our TS deque, but rather for the element with
the enqueue index that matches the dequeue index exactly. Both approaches fall
back to a slow path when the dequeue counter becomes higher than the enqueue
counter. In contrast to indices, timestamps in the TS deque need not be unique
or even ordered, and the performance of the TS deque does not depend on a fast
path and a slow path, but only on the number of elements which share the same
timestamp.

Our use of the x86 RDTSCP instruction to generate hardware timestamps
was inspired by the paper on testing FIFO queues [8]. There the (unsychronised)
RDTSC instruction was used to order the invocations of operations. RDTSCP
has since been used in the design of an STM by Ruan et al. [24], who investigate
the instruction’s synchronisation behaviour on a single processor and between
processors.

The elimination-backoff stack is based on a Treiber stack, but detects con-
current push and pop operations using a collision array [10]. Whenever it detects
concurrent push, the pop operation returns the pushed element without modi-
fying the stack. Our TS deque also performs elimination, detecting concurrent
insert and remove operation by comparing timestamps. Note that in the case of
the TS deque a remove operation which eliminates a concurrent insert is faster
than a normal uncontended remove. In the elimination-backoff stack such an
eliminating pop is slower, as synchronization on the collision array requires at
least three successful CAS operations instead of just one.

In our experiments we also compare the TS deque with the flat combining
queue [15]. This consists of a linked-list queue and a lock which controls the
access to the linked list. A thread which acquires the lock not only executes
its own operation on the linked-list queue but also the operations of all other
threads which did not get the lock. Unlike the flat combining queue, our TS
deque is lock-free.

3 Algorithm Correctness

3.1 Sequential Specifications

Deque. Assume a set of values Val. The set of abstract deque states DS is the
set of sequences Val∗. Let σ ∈ DS be an arbitrary deque state. Then insertR
and removeR have the following sequential specifications (‘++’ means sequence
concatenation):



– insertR(v) – Update the abstract state to σ ++ [v].
– removeR() – If σ = [], return EMPTY. Otherwise, σ must be of the form
σ′ ++ [v′] for some value v′. Update the abstract state to σ′ and return v′.

insertL and removeL have analogous specifications.

TS-buffer. The TS-buffer is the underlying data-structure we use to implement
our TS deque. Informally, a TS-buffer is a specialised index which associates
a unique identifier with each stored value and timestamp, and which supports
retrieval of leftmost and rightmost values.

Formally, we assume a set of buffer identifiers, ID representing individual
buffer elements; a set of timestamps, TS, with partial order <TS and top element
>; and a two-element set of kinds, {L,R}, recording whether the element was
added to the left or right of the deque. Many elements in the buffer can be
associated with the same timestamp.

Furthermore, we assume a set of abstract values called bufferstamps, BS,
with total order <BS and top element >. Bufferstamps have no reality as val-
ues in the implementation, but rather record the order in which timestamps are
assigned to elements. (This may differ from both the order elements are added
to the buffer, and the order on the timestamps themselves). Bufferstamps are
needed as part of the abstract specification because we in fact do not (quite)
require that tryRem removes the strictly leftmost or rightmost element accord-
ing to timestamp order; rather a tryRem can ignore an arbitrary subset of the
elements inserted while it executes. The TS-buffer does respect the combination
of timestamp and bufferstamp order. See the aside at the end of this section for
more discussion of bufferstamps.

The abstract state of the TS-buffer is a partial map from identifiers to value-
timestamp-bufferstamp-kind tuples:

Buf : ID ⇀ (Val× TS× BS× Kind)

We define left and right orders <L
buf and <R

buf over timestamp-bufferstamp-kind
tuples:

(x, a, k1) <L
buf (y, b, k2) ∆⇐⇒

(k1 = k2 = L ∧ x <TS y ∧ a <BS b) ∨
(k1 = k2 = R ∧ y <TS x ∧ b <BS a) ∨

(k1 = R ∧ k2 = L)

(x, a, k1) <R
buf (y, b, k2) ∆⇐⇒

(k1 = k2 = R ∧ x <TS y ∧ a <BS b) ∨
(k1 = k2 = L ∧ y <TS x ∧ b <BS a) ∨

(k1 = L ∧ k2 = R)

Intuitively, if two tuples are ordered p <L
buf q, then the value associated with q is

further to the left in the buffer. Similarly, p <R
buf q says q is further to the right.

As elements are added to both sides of the buffer, these orders need to deal with
elements inserted on both sides.



The TS-buffer functions have the following sequential specifications (B is the
abstract prestate of the TS-buffer):

– newTimestamp(v) – pick a timestamp t 6= > such that for all timestamps
t′ 6= > already in B, t′ <TS t. Note that this means many elements can be
issued the same timestamp if the thread is preempted before writing it into
the buffer.

– insR(v) – Pick an ID i /∈ dom(B). Update the abstract state to: B[i 7→
(v,>,>,R)] and return i.

– setTimestamp(i,t) – assume that B(i) = (v,>,>, k). Pick a bufferstamp
b 6= > such that for all bufferstamps b′ 6= > already in B, b′ <BS b. Update
the abstract state to B[i 7→ (v, t, b, k)].

– tryRemR() – There are three possible behaviours:
1. Nondeterministically fail and return invalid. In the implementation, this

corresponds to a failed CAS caused by another thread pre-empting the
removal.

2. If the map is empty (dom(B) = ∅) return empty.
3. Pick an ID i such that: B(i) 7→ (v, t, b, k), and

@i′, v′, t′, b′, k′. t′ 6= > ∧
B(i′) = (v′, t′, b′, k′) ∧ (t, b, k) <R

buf (t′, b′, k′)

Update the abstract state to B[i 7→ ⊥] and return v. Because timestamps
and bufferstamps need not be ordered, there may be many maximal
elements with respect to <R

buf that can be chosen by tryRemR.

Aside: why are bufferstamps needed? The natural sequential specification of
tryRem would be for it to remove a maximal element according to timestamp or-
der, <TS. However, our implementation of tryRem is not linearizable with respect
to this specification. We do not generate and set timestamps in a single atomic
step during insertion, as this would require strong synchronisation. Instead, el-
ements are inserted untimestamped, meaning tryRem may observe an element
before it acquires its timestamp. Untimestamped elements cannot be safely or-
dered, so tryRem considers them maximal in <TS. Therefore, two elements may
be ordered a <TS b before b gets a timestamp, but then ordered b <TS a af-
terwards. This lack of a consistent order prevents tryRem from linearizing with
respect to the simple specification.

Instead we augment our specification with bufferstamps, recording the order
that timestamps are assigned to elements. This ensures that if a <buf b at one
point, then b ≮buf a at all subsequent points (a kind of monotonicity). This is
sufficient to ensure that tryRem sees a consistent order, and thus allows lineariz-
ability. Weakening the specification in this way does not affect the correctness
of the TS deque because any reordering with respect to <TS can only happen
in overlapping calls to insert. Thus, affected operations could be linearized in
either order.



3.2 Correctness Argument

We now sketch the correctness argument for the TS deque. For a detailed cor-
rectness argument, see Appendix A.

We use linearizability [13], the standard correctness condition for concurrent
algorithms. Proofs of linearizability commonly proceed by finding linearization
points: the syntactic point in each method call where it appears to atomically
take effect. This approach is tricky to apply to our algorithm as the order on
insert operations is only fixed later in the trace by the order on remove opera-
tions. Instead, we show directly that for any trace we can build a corresponding
total linearization order.

Assume we have a trace T arising from our algorithm. The trace is a sequence
consisting of operations: calls and returns to deque methods and atomic calls to
the TS-buffer methods. (We assume our TS-buffer is linearizable with respect to
the specification given above – see Section 4.2 and Appendix B for a correctness
argument.) As is standard, we assume all method calls in T have returned.

Building a linearization order. We start with the empty relation on methods in
the trace, and build up the linearization order incrementally from T . Loosely,
the stages in the construction are as follows:

1. Order sequential methods according to the order from returns to calls.
2. Order insert-remove pairs where the value returned by the remove was

added by the insert.
3. Order pairs of remove operations according to the order of their final, suc-

cessful call to tryRem.
4. Order pairs of insert operations according to the order already fixed for

their associated remove operations.
5. Order remove-insert pairs where the final tryRem in the remove is ordered

before the ins in the insert.
6. Order insert-remove pairs which eliminate each other.
7. Order remove-insert pairs where it does not contradict the transitive clo-

sure of the already created order.

Lemma 1. The constructed relation is acyclic.

Proof. By case analysis and appeal to the sequential specification of TS-buffer.
This is by far the trickiest proof – for details see Appendix A.

Order between any remaining unordered methods is irrelevant to the algorithm
behaviour, so we pick as a candidate linearization order <lin any total order
which includes the constructed relation.

Lemma 2. <lin respects the order of sequentially-executing methods.

Proof. By stage 1 of the construction.

Lemma 3. <lin satisfies the sequential deque specification.



Proof. By contradiction. If <lin does not satisfy the sequential specification, there
must be a first method r that violates it. An insert method cannot violate
the specification, so we assume without loss of generality that r is a removeR
returning value e. Furthermore, assume the abstract state before r is σ. There
are three possibilities:

1. e is not a value in σ; or
2. e is in σ, but the rightmost value is e2 6= e; or
3. e = EMPTY but σ is non-empty.

To complete the proof, we show for each case that the structure of the construc-
tion ensures a contradiction. For example, in the first case we appeal to the facts
(1) TS-buffer allows each value to be removed at most once, and (2) <lin orders
a remove after the insert that added its value. This means that e must be in
σ, contradicting the assumption. For full details see Appendix A.

Theorem 1. The TS deque is linearizable with respect to the sequential deque
specification.

Proof. Witnessed for arbitrary trace T by the linearization order <lin and Lem-
mas 2 and 3.

Theorem 2. The TS deque is lock-free.

Proof. Straightforward from the fact that the TS-buffer and thread-local buffers
are lock-free. This follows from the structure of removal: an attempt to remove
an element can only fail when another thread pre-empts it and succeeds.

4 Implementation Details

4.1 Timestamping Algorithms

The sequential specification of TS-buffer (Section 3.1) requires that a newly
generated timestamp has a higher value than any contained in the buffer. To
satisfy this, we use the fact that a timestamp has to be generated before it can
appear in the buffer. All our implementations generate timestamps greater than
or equal to all previously generated timestamps, thereby satisfying the sequential
specification.

TS-atomic. The TS-atomic algorithm takes a timestamp from a global counter
using an atomic fetch-and-increment instruction (such instructions are available
on most modern processors). This guarantees that a new timestamp is greater
than any timestamp generated before.



TS-hardware. The TS-hardware algorithm uses the x86 RDTSCP instruction [16]
to read the current value of the TSC register. The TSC register counts the num-
ber of processor cycles since the last processor reset. Correctness of our algorithm
depends on newTimestamp issuing a timestamp later than any currently held in
the TS-buffer. Ruan et al [24] have tested RDTSCP on various x86 systems as
part of their development of a transactional memory system. Our understanding
of [24, 16] is that RDTSCP provides sufficient cross-processor synchronisation to
ensure correctness, and in our experiments on multiprocessors, we have seen no
anomalies arising from TSC behaviour. However, we are still corresponding with
Ruan to better understand the precise synchronisation guarantees on TSC.

TS-stutter. The TS-stutter algorithm uses thread-local counters which are syn-
chronized by the clock synchronization algorithm of Lamport [17]. To generate a
new timestamp a thread first reads the values of all thread-local counters. It then
increments the maximum value by one, stores the new value in its thread-local
counter, and returns the value as the new timestamp. Note that the TS-stutter
timestamping algorithm does not utilize AWAR or RAW synchronization [3].

The TS-stutter timestamping algorithm may return the same timestamp mul-
tiple times, but never returns a timestamp that already exists in the buffer. This
is because whenever a timestamp exists in the buffer, there exists at least one
thread-local counter with the same or greater timestamp. The TS-stutter algo-
rithm would therefore read the value of that thread-local counter and return a
greater timestamp.

TS-interval. The TS-interval algorithm does not return one value, but rather
an interval timestamp consisting of a pair of timestamps generated by one of
the algorithms above. Let [a, b] and [c, d] be two such interval timestamps. They
are ordered [a, b] <TS [c, d] if and only if b <TS c. That is, if the two intervals
overlap, the timestamps are unordered.

The TS-interval algorithm is correct because the upper limit of any interval
timestamp in the buffer is less than the lower limit generated by the TS-interval
algorithm. Therefore we can choose as the linearization point the generation of
the first timestamp of the interval.

In our experiments we use the TS-hardware algorithm to generate the start
and end of the interval, because it is faster than TS-atomic and TS-stutter.
Adding a delay between the generation of the two timestamps increases the
size of the interval, allowing more timestamps to overlap and thereby reduc-
ing contention during element removal. The effect of adding a delay on overall
performance is analyzed in Section 5.3.

4.2 The TS-buffer

Listing 1.2 shows the pseudocode of our TS-buffer implementation, the under-
lying data-structure used to implement the TS deque (see Listing 1.1).



Listing 1.2. TS-buffer algorithm (insL / tryRemL / isMoreL are defined analogously).
The implementation of the thread-local buffer is described in Appendix C, Listing 1.3.

1 TS_Buffer {
2 ThreadLocalBuffer tlBuffers [ numThreads ];
3
4 TimestampedItem insR( Element element ) {
5 TimestampedItem item = createItem ( element );
6 threadID = getThreadID ();
7 tlBuffers [ threadID ]. insRtl (item );
8 return item;
9 }

10
11 TimestampedItem tryRemR () {
12 TimestampedItem rightMostItem ;
13 i n t startTime = newTimestamp ();
14 i n t containingBuffer ;
15 start= random ();
16 f o r (i=0 to numThreads -1) {
17 TimestampedItem item=
18 tlBuffer [( start +i)% numThreads ]. getRtl ();
19 i f ( isMoreR (item , rightMostItem )) {
20 rightMostItem =item;
21 containingBuffer =( start+i)% numThreads ;
22 }
23 }
24 i f (empty ()) // Emptiness check .
25 return emptyItem ;
26 i f ( rightMostItem . wasAddedRight ()) {
27 i f ( tlBuffer [ containingBuffer ].
28 tryRemRtl ( rightMostItem ))
29 return rightMostItem ;
30 } e l s e {
31 i f (startTime >= rightMostItem . timestamp ) {
32 i f ( tlBuffer [ containingBuffer ].
33 tryRemRtl ( rightMostItem ))
34 return rightMostItem ;
35 }
36 }
37 return invalidItem ;
38 }
39
40 bool isMoreR ( TimestampedItem item1 ,
41 TimestampedItem item2) {
42 i f (item2. wasAddedLeft ()) {
43 i f (item1. wasAddedRight ())
44 return true;
45 return (item1.timestamp < item2. timestamp )
46 } e l s e {
47 i f (item1. wasAddedLeft ())
48 return false;
49 return (item1.timestamp > item2. timestamp )
50 }
51 }
52 }



Thread-local buffers. We implement the TS-buffer using a collection of thread-
local buffers. Each thread inserts elements into its own buffer but may remove
elements from any thread’s buffer. We assume the thread-local buffers support
the following operations:

– insRtl / insLtl – insert an element on the right or left of the buffer.
– getRtl / getLtl – return the identifier of the rightmost or leftmost element

according to <TS.
– tryRemRtl / tryRemLtl – try to remove the identified element from the

buffer.

Our thread-local buffer implementation is a doubly-linked list design discussed
in Appendix C. Only one thread inserts elements into a thread-local buffer so no
strong synchronization is necessary in insRtl / insLtl. Removal is a two-stage
process: first the thread marks a taken flag [9] to indicate the nodes has been
removed, then marked nodes are unlinked lazily, either immediately or by later
operations.3

If the TS deque is to be used solely as a queue or stack, the thread-local
buffers can be optimised. Both queue- and stack-specific thread-local buffers
require only a singly-linked list, and the queue-specific thread-local buffer also
does not require a taken-flag.

The current implementation of the TS deque supports only a static number
of threads. Support for a dynamic number of threads is future work.

TS-buffer operations. All the thread-local buffers are linked from a single array
tlBuffers, which we assume is indexed by thread IDs. We assume a function
getThreadID() which retrieves the current thread’s identifier.

The insR operation first retrieves the thread-local buffer of the executing
thread and then inserts the element into the thread-local buffer using its insRtl
operation.

Starting at a random index, the tryRemR operation searches all thread-local
buffers for a right-most elements, using the isMoreR operation (lines 16–23).
The random start index increases the chance that concurrent tryRemR opera-
tions endup with different elements and thus avoid contention. If the discovered
element was inserted using an insR operation, then tryRemR tries to remove it
from its thread-local buffer using tryRemRtl (lines 26–29). However, if the ele-
ment was inserted using an insL operation, then tryRemR first checks that the
element was inserted before tryRemR started. When tryRemR begins, it records a
starting timestamp (line 13) and then it compares this start time with the can-
didate element (line 31). Only if the element was inserted before tryRemR was
called does tryRemR try to remove it from the thread-local buffer (line 32). If
tryRem could remove an element inserted after it was called, then there could ex-
ist an element with an earlier timestamp that was missed while iterating through
the thread-local buffers.
3 To avoid polluting our benchmarks with memory management effects, unlinked nodes

are not reclaimed. In a real-world implementation, it would be straightforward to
use garbage collection or hazard pointers [19] to manage reclamation.



The isMoreR operation approximates the order <Rbuf defined in Section 3.1.
If both elements were inserted at the right, then the element with the later
timestamp is more right. If both elements were inserted at the left, then the
element with the earlier timestamp is more right. Otherwise the element inserted
at the right is more right.

The TS-buffer insL, tryRemL, and isMoreL work analogously to insR, tryRemR,
and isMoreR.

To simplify the presentation, we have omitted the emptiness check from List-
ing 1.2. Our implementation use the same approach as it is used and proven
correct in [7]. That is, each thread has two thread-local arrays the size of the
number of thread-local buffers. Whenever a thread encounters an empty buffer,
it stores the left and right pointer of the buffer in these arrays. If in two subse-
quent executions of tryRemR no thread-local buffer returns an element, and the
left or right pointers of all thread-local buffers have not changed, then tryRemR
returns EMPTY.

Correctness argument. Here we only sketch a correctness argument for TS-
buffer – for details, see Appendix B. The concrete state of the TS-buffer is a
partial mapping from a thread ID and buffer identifier to a value-timestamp-
bufferstamp-kind tuple:

LBuf : (Thr × ID) ⇀ (Val× TS× BS× Kind)

Note that bufferstamps do not exist as values in the concrete state, since these
are a product of execution order. However, we can easily reconstruct them by
examining the order that timestamps are assigned in the trace. To build the
corresponding set of abstract states, we:

1. erase the thread identifiers.
2. erase a subset of buffer identifiers. This reflects the fact that the linearization

point for the removal can be pushed earlier than the point an element is
removed from the thread-local buffer.

Theorem 3. The TS-buffer implementation is linearizable with respect to the
specification given in Section 3.1.

Proof. All the operations aside from tryRemR / tryRemL are atomic, either be-
cause they consist of a single call to other linearizable modules (newTimestamp,
insR, insL) or because they are implemented as atomic assignment (setTimestamp).
Consequently, we simply show that the atomic calls return appropriate values
and update the abstract state correctly.

The tricky part of the proof lies in showing that a call to tryRemR / tryRemL
satisfies the specification. By careful case analysis, we show that any overlapping
calls to other tryRem operations must be linearizable in a way which allows
the call to return the rightmost or leftmost element at some point during its
execution. See Appendix B for details.



5 Performance Analysis

Our experiments compare the performance and scalability of the TS deque with
several state-of-the-art algorithms:

– the Michael-Scott (MS) queue [20] because it is the de-facto standard lock-
free queue implementation;

– the flat-combining (FC) queue [15] because it is a very fast queue;
– the Treiber stack [23] because it is the de-facto standard lock-free stack

implementation; and
– the elimination-backoff (EB) stack [10] because it is the fastest concurrent

stack we are aware of.4

We ran our experiments on two machines:

– an Intel-based server with four 10-core 2GHz Intel Xeon processors (40 cores,
2 hyperthreads per core), 24MB shared L3-cache, and 128GB of memory
running Linux 3.2.0-38; and

– an AMD-based server with four 6-core 2.1GHz AMD Opteron processors (24
cores), 6MB shared L3-cache, and 110GB of memory running Linux 3.2.0-29.

We show results for the 40-core machine in the paper body. Results for the
24-core machine are in Appendix D.

All measurements were done in the Scal Benchmarking Framework [5]. To
avoid measurement artifacts unrelated to the benchmarked data-structures the
framework uses a custom memory allocator which performs cyclic allocation [21]
in preallocated thread-local buffers for objects smaller than 4096 bytes. Larger
objects are allocated with the standard allocator of glibc. All memory is allocated
cache-aligned when it is beneficial to avoid cache artifacts. The framework is
written in C/C++ and compiled with gcc 4.7.2 and -O3 optimizations.

Scal provides implementations of the MS queue, the FC queue, the Treiber
stack, and the EB stack. Unlike the description of the EB stack in [10] we access
the elimination array before the stack because this improves scalability in our
experiments. We configured the elimination array to a size of 8 in the high
contention benchmarks and to a size of 12 in the low contention benchmarks.
Operations wait in the elimination array for 13µs and 20µs in the high contention
benchmarks and in the low contention benchmarks, respectively. These values
were optimal in our benchmarks when exercised with 80 threads on the 40-core
machine, but may be suboptimal for lower numbers of threads. Similarly, the TS
deque configurations we discuss later are selected to be optimal for 80 threads
on the 40-core machine and may be suboptimal for other configurations. On
the 24-core machine the size of the elimination array is either 8 or 2 and the
4 We decided against benchmarking the DECS stack [4] because (1) no implementa-

tion is available for our platform and (2) according to their experiments, in peak
performance it is no better than a FC stack. We decided against benchmarking the
FC stack because the EB stack outperforms it when configured to access the backoff
array before the stack itself.



waiting time is either 5µs or 2µs, depending on the contention. These values
were optimal in our benchmarks when exercised with 24 threads on the 24-core
machine.

We benchmark the TS deque either as a queue (TS Queue) by using insertL
to insert elements and removeR to remove them; as a stack (TS Stack) by using
the insertR and removeR; and as a deque (TS Deque) by randomly inserting and
removing elements on both sides.

We compare the data-structures in producer-consumer microbenchmarks where
each thread is either a dedicated producer which inserts 1000000 elements into
the data-structure or a dedicated consumer which removes 1000000 elements
from the data-structure. All figures show the performance in successful oper-
ations per millisecond, averaged over 5 executions. To avoid measuring empty
removal, remove operations that do not return an element are not counted.

The contention on the data-structure is controlled by a computational load
which is calculated between two operations of a thread. In the high-contention
scenario the computational load is a π-calculation in 250 iterations, in the low-
contention scenario π is calculated in 2000 iterations.

Comment: the LCRQ queue. We also experimented with the LCRQ queue, using
the implementation available at http://mcg.cs.tau.ac.il/projects/lcrq5.
Although in general the LCRQ outperforms the TS deque, its speed seems to be
at the cost of extremely variable performance. Execution times on our bench-
marks can vary by more than 100% in identical situations (all other implemen-
tations vary by less than 10%). Because of this, we felt we were unable to get
meaningful results from the LCRQ and do not show it in our graphs.

5.1 Performance and Scalability

Figures 1 and 2 show performance and scalability in a producer-consumer bench-
mark where half of the threads are producers and half of the threads are con-
sumers. We present only the results of the TS deque using TS-hardware and
TS-interval timestamping because they provide the fastest insert and remove
operations, respectively. The performance of TS-atomic and TS-stutter time-
stamping is discussed in Section 5.2.

For TS-interval timestamping we use the optimal delay when exercised with
80 threads, derived from the experiments in Section 5.3. The delay thus depends
on the machine and benchmark, e.g. for the TS deque benchmark, we use 25µs
on the 40-core machine and 5µs on the 24-core machine. The impact of different
delays on performance is discussed in Section 5.3. In addition to the generic TS
deque implementation we also measured implementations which use hardcoded
queue-specific (Hardcoded TS Queue) and stack-specific (Hardcoded TS Stack)
thread-local buffers.

5 This version fixes a bug in [2] which lets the LCRQ drop enqueued elements.
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Fig. 1. High contention producer-consumer microbenchmarks on the 40-core machine.
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Fig. 2. Low contention producer-consumer microbenchmarks on the 40-core machine.



Comparison between implementations. The TS data-structures that use TS-
interval timestamping perform better than the TS data-structures that use TS-
hardware timestamping. TS-interval timestamping even scales up to 80 threads
on the 40-core machine. On the 24-core machine only the TS stack and the TS
deque with TS-interval timestamping scale. The TS queue and the hardcoded
TS queue stagnate between 2000 and 2500 operations per millisecond. In general
the TS stack and the TS deque are faster than the TS queue because remove
operations can process elements of concurrent insert operations without check-
ing the timestamp of the elements, as discussed in Section 4.2. The TS deque
is faster than the TS queue and the TS stack in the high contention producer-
consumer benchmark because elements are inserted and removed on both sides
of the deque, resulting in less contention on each side.

Comparison with other data-structures. With more than 20 threads all TS queues
are faster than the MS queue. The FC queue is faster than the TS queues
with TS-hardware timestamping but slower than the TS queue with TS-interval
timestamping when the benchmark is exercised with more than 40 threads. The
TS stacks with TS-interval timestamping are faster than the Treiber stack. The
EB stack is faster then the TS deque when used as a stack but is slower than
the hardcoded TS-interval Stack.

5.2 Analysis of the Timestamping Algorithms

In this section we compare the different timestamping algorithms described in
Section 4.1 by using producer-only and consumer-only benchmarks. All time-
stamping algorithms are measured with the TS deque used as queue, because
the performance of a queue does not depend on the presence of concurrent insert
and remove operations. TS-interval timestamping is configured to use the same
delay as in the experiments in Section 5.1. We include the results of the MS
queue and the Treiber stack as baselines.

Producer-only benchmarks. Figure 3 shows the results of the producer-only mi-
crobenchmark in the high contention scenario. The TS deque with TS-hardware
timestamping and the TS deque with TS-interval timestamping do not perform
any software synchronization in their insert operation. Therefore both of them
scale linearly with an increasing number of threads. However, with TS-interval
timestamping the TS deque is significantly slower because of the constant over-
head introduced by the delay within the timestamping. Especially with a low
number of threads the overhead introduced by the delay dominates performance.
With a lower number of threads a shorter delay would be optimal. TS-atomic
timestamping is faster than TS-stutter timestamping. With TS-atomic time-
stamping the TS deque is faster than both the Treiber stack and the MS queue
whereas the TS deque with TS-stutter timestamping is slower than the Treiber
stack but still faster than the MS queue on both machines.
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Fig. 3. High contention producer-only microbenchmarks on the 40-core machine.

Consumer-only benchmarks. Figure 4 shows the results of the consumer-only
microbenchmark in the high contention scenario. At the beginning of the bench-
mark, the TS queue is pre-filled concurrently by the same number of threads as
there are later consumers during the measured execution of the benchmark. El-
ements may thus be ordered less strictly when using TS-interval and TS-stutter
timestamping.

On the 40-core machine the TS deque with TS-interval timestamping scales
positively up to 80 threads. With the other timestamping techniques the TS
deques scale negatively. Also the MS queue and the Treiber stack scale negatively.
With an increasing number of threads all timestamping algorithms are faster
than the MS queue. With TS-stutter timestamping the TS deque is even faster
than the Treiber stack with more than 30 threads.

Note that TS-interval and TS-stutter timestamping only improve the per-
formance of the remove operation if elements are inserted concurrently. If the
TS deque was pre-filled sequentially, then the performance of the TS deque with
TS-interval or TS-stutter timestamping would be the same as the performance
of the TS deque with TS-atomic timestamping. An insert-sequentially, remove-
concurrently workload is the worst case for the TS deque because elements can-
not share timestamps. With TS-atomic timestamping all elements have unique
timestamps, so the TS deque behaves the same whether inserting sequentially
or concurrently.
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5.3 Analysis of TS-Interval Timestamping

Figure 5 shows the performance of the TS data-structures along with the aver-
age number of CAS retries needed in each remove. These figures were collected
with TS-interval timestamping and an increasing delay in the high contention
producer-consumer benchmark on the 40-core machine. We used these results
to determine the delays for the benchmarks in Section 5.1. For each machine /
benchmark combination, we used the lowest delay which was within 3% of the
maximum performance of any delay.

Initially the performance of the TS data-structures increases with an in-
creasing delay, but beyond 10µs the performance stagnates for the TS queue,
hardcoded TS queue, and TS stack. Beyond 30µs the insert operation becomes
slower than remove and the overall performance declines again. For the TS deque
it takes longer to reach the optimal performance because elements are inserted
on both sides of the deque and therefore there is less contention on each side.
Unlike the other TS data-structures, the hardcoded TS stack has one optimal
delay which is significantly better than other delays.

The figure also shows that high performance correlates strongly with a drop
in CAS retries. We conclude from this that the impressive performance we achieve
with interval timestamping arises from reduced contention in remove.
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Results for the 24-core machine show similar behaviour (see Appendix D).
The main difference is that the maxima on the 24-core machine is shifted to the
left: for lower numbers of threads shorter delays are sufficient to avoid contention
problems.

6 Conclusions

We present a novel approach to implementing ordered concurrent data-structures
like queues, stacks, and deques. Elements are timestamped upon insertion and
removed according to the order of their timestamps. Optimal performance is
achieved by weakening timestamp order so that elements are unordered if their
inserting methods overlap. Our experiments demonstrate that our implementa-
tions are competitive or even faster than the state of the art.

Our work represents a first step in designing data-structures based on weakly-
ordered timestamps. It is quite surprising to us that we have been able to relax
internal orders so drastically while preserving a linearizable specification. In
future work, we plan to experiment with relaxing other internal ordering con-
straints, with dynamically adjusting the level of order in response to contention,
and with exploiting relaxations in the underlying memory model.
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A Correctness Argument for Deque

Assume we have a trace T arising from our algorithm. The trace is a sequence
consisting of operations: calls and returns to deque methods and atomic calls to
the TS-buffer methods. As is standard in linearizability, we assume T is complete
– every method call has an associated return. We write a <T b if operations a
and b are ordered in the trace. To make the notation easier, we assume that
each method instance (consisting of the method’s call, return, and internal calls
to TS-buffer) has a unique identifier, a, b, etc. Given two methods a and b, we
write a val−→ b if a is an insert, b is a remove, and the value returned by b was
originally inserted by a. By the semantics of TS-buffer, each insert is associated
with at most one remove.

Building a linearization order. We now build a linearization order, beginning by
building an acyclic relation <lin over methods in T . We start with the empty
relation <0

lin, and iteratively build <ilin by applying each stage of the following
construction until it no longer applies. <lin is the relation that results once none
of the stages applies.

1. Precedence and value orders:
(a) Let aret be the return operation of one method, and bcall be the call

operation of another. If aret <T bcall, then a <i+1
lin b.

(b) If a val−→ b then a <i+1
lin b.

2. Let r1, r2 be a pair of remove operations (either right or left) that are
unordered in <ilin. If their final tryRem operations are ordered tryRem1 <T
tryRem2, then these operations are ordered r1 <

i+1
lin r2.

3. insertR operations (insertL operations are the same with L and R in-
verted):
(a) Let a1 be an insertR operation with associated setTS1, let r1 be a

removeR operation with associated tryRem1, and let a2 be an insertR
operation with associated ins2 operation. If a1

val−→ r1 and setTS1 <T
tryRem1, and tryRem1 <T setTS2 then a1 and a2 are ordered a1 <

i+1
lin a2.

(b) Let a1 be an insertR operation with associated setTS1, let r1 be a
removeL operation with associated tryRem1, and let a2 be an insertR
operation with associated setTS2. If a1

val−→ r1 and tryRem1 <T setTS2,
then a1 and a2 are ordered a1 <

i+1
lin a2.

(c) Let a1, a2 be a pair of insertR operations that are unordered in <ilin.
i. Suppose there exists no remove operation r2 such that a2

val−→ r2, and
there exists a removeR operation r1 with a1

val−→ r1. Let setTS1 be
associated with a1 and tryRemR1 be associated with r1. If setTS1 <T
tryRemR1, then a2 <

i+1
lin a1

ii. If there exists no remove operation r2 such that a2
val−→ r2, and there

exists a removeL operation r1 with a1
val−→ r1 then the pair is ordered

a1 <
i+1
lin a2.



iii. Suppose there exists a removeR operation r2 and a remove operation
r1 (either left or right) with a1

val→ r1 and a2
val→ r2 and r2 <

i
lin r1

and setTS2 <T tryRem2, where setTS2 is the setTS operation of a2
and tryRem2 is the tryRem operation of r2. Then the pair is ordered
a1 <

i+1
lin a2

iv. Suppose there exists a removeL operation r1 and a remove operation
r2 (either left or right) with a1

val→ r1 and a2
val→ r2 and r1 <

i
lin r2.

Then the pair is ordered a1 <
i+1
lin a2.

4. insert / remove pairs: A remove operation r1 and an insert operation a2
are ordered r1 <lin a2 if the final tryRem1 of r1 and the ins operation ins2
of a2 are ordered tryRem1 <T ins2 in the trace.

5. Elimination for insertR operations (insertL operations are the same with
L and R inverted):
(a) Let a1 be an insertR operation and let r1 be a removeR operation such

that a1
val−→ r1. Let setTS1 be associated with a1 and let tryRemoveR1 be

associated with r1, and let tryRemoveR1 <T setTS1. Let x be another
method (either insert or remove) with x <ilin r1. Then x <i+1

lin a1.
(b) Let a1 be an insertR operation and let r1 be a removeR operation such

that a1
val−→ r1. Let setTS1 be associated with a1 and let tryRemoveR1 be

associated with r1, and let tryRemoveR1 <T setTS1. Let x be another
method (either insert or remove) with r1 <

i
lin x. Then a1 <

i+1
lin x.

Lemma 4. After Stage 1 the linearization relation <1
lin does not contain cycles.

Proof. By construction, any cycle between in <1
lin necessarily correspond to a

cycle in <T . Therefore <ilin is acyclic after Stage 1.

Lemma 5. After Stage 2 the linearization relation <2
lin does not contain cycles.

Proof. <2
lin is a total order on remove operations because it is based on the total

order <T on tryRem calls. As also <1
lin is an order based on the total order <T ,

the union of both orders is again an order.

Next we show that no cycle is constructed in Stage 3.

Lemma 6. Let a1, a2 be two insertR operations, let ret1 be the return operation
of a1, let call2 be the call of a2, and let ret1 <T call2. Then after Stage 3 a2 ≮3

ilina1.

Proof. If a1, a2 are ordered a2 <
3
lin a1, then this order has been created in one

of the stages in Stage 3. We will consider now each stage:

– Stage 3a and Stage 3b: Let setTS1 belong to a1, ins2 belong to a2, let r2

be the remove operation with a2
val−−→ r2, and let tryRem2 belong to r2.

Assuming ret1 <T call2 and a2 <
3
lin a1, then tryRem2 <T setTS1 <T ret1 <T

call2 <T ins2. However, this means that an element is removed from the
TS-Buffer before it is inserted, which violates the sequential specification of
the TS-Buffer.



– Stage 3(c)i and Stage 3(c)iii: Let insR1, setTS1 belong to a1 and newTS2,
setTS2 belong to a2. Let v1 be the buffer ID returned by insR1, and let v2
be the buffer ID returned by insR2. Let r1 be the removeR operation with
a1

val−−→ r1, and let tryRemR1 belong to r1. As a1, a2 were not ordered in
Stage 3a, setTS2 <T tryRemR1. Assuming ret1 <T call2 and a2 <

3
lin a1, then

setTS1 <T ret1 <T call2 <T newTS2 <T setTS2 <T tryRemR1. Because
of the sequential specification of newTS and setTS B(v1) <Rbuf B(v2) and
according to the sequential specification tryRemR1 would not return the value
of v1 but the value of v2, which contradicts the assumption that a1

val−−→ r1.
– Stage 3(c)ii and Stage 3(c)iv: Let setTS1 belong to a1, and newTS2, setTS2

belong to a2. Let v1 be the buffer ID returned by insR1, and let v2 be the
buffer ID returned by insR2. Let r2 be the removeL operation with a2

val−−→ r2,
and let tryRemL2 belong to r2. As a1, a2 were not ordered in Stage 3b,
setTS2 <T tryRemL1. Assuming ret1 <T call2 and a2 <

3
lin a1, then setTS1 <T

ret1 <T call2 <T newTS2 <T setTS2 <T tryRemL2. Because of the sequential
specification of newTS and setTS B(v2) <Lbuf B(v1) and according to the
sequential specification tryRemL2 would not return the value of v2 but the
value of v1, which contradicts the assumption that a2

val−−→ r2.

Lemma 7. Assume there exists a cycle x1 <
3
lin x2 <

3
lin · · · <3

lin xn <
3
lin x1, then

there exist 1 ≤ j < k < l ≤ n such that xj, xk, xl are insertR operations (or
insertL operations).

Proof. Assume the cycle x1, . . . , xn has minimal size, i.e. there does not exist a
cycle with less operations. There was no cycle in <2

lin, so the cycle was closed
by ordering two insertR operations a1 <3

lin a2. In stage 3 any pair of insertR
operations is ordered at most once, so a2 ≮3

lin a1. Let call1 belong to a1, lets
setTS2, ret2 belong to a2. Let xs be the operation in x1, . . . , xn with xs <

3
lin a1.

Let calls and rets belong to xs.
If xs is an insertR operation, then we are done because a1, a2, xs are the

three operations xj , xk, xl.
Now assume that xs is not an insertR operation. The order xs <ilin a1 can

only be constructed in Stage 1a because of precedence. Therefore rets <T call1.
As a1 and a2 are not ordered in Stage 1a it holds that calls <T rets <T call1 <T
ret2. Therefore a2 and xs are not ordered by precedence in Stage 1a. If a2 and
xs were ordered by value in Stage 1b, then Stage 3a or Stage 3b would apply
and construct the order a2 <

3
lin a1. Therefore there has to exist at least one more

operation xt in x1, . . . , xn with a2 <
3
lin xt. Let callt belong to xt. The operations

a2 and xt were ordered either in Stage 1a because of precedence or in Stage 1b
because of a value relation. Assume a2, xt were ordered in Stage 1a. Together
with Lemma 6 this means that rets <T call1 <T ret2 <T callt. However, this
would mean that xs and xt would already have been ordered xs <3

lin xt in
Stage 1a and therefore there would be a smaller cycle without a1 and a2 in it.

Now assume that a2 and xt were ordered in Stage 1b, and assume that xt
is a remove operation. If xt <3

lin xs, then they were either ordered in Stage 1a,



in which case xs could be removed from the cycle because of the transitivity
of precedence, or they were ordered in Stage 2, in which case Stage 3a would
construct the order a2 <

3
lin a1 or a1 and a2 were not ordered at all. The same

holds if there are only remove operations between xt and xs in the cycle.
Therefore we assume now that xu is the first insertL operation xu in the

cycle after xt, and xu−1 is the remove operation which precedes xu in the cycle.
As xs precedes a1 and xu−1 precedes xu, either the order xs <3

lin xu or xu−1 <
3
lin

a1 was constructed in Stage 1a. Both would allow a smaller cycle, and therefore
no cycle is possible with only two insertR operations.
Lemma 8. Assume there exists a cycle x1 <3

lin x2 <3
lin · · · <3

lin xn <3
lin x1 of

minimal size, with 1 ≤ j < k < l ≤ n such that xj, xk, xl are insertR operations
(or insertL operations).

Let setTSj ,setTSk, setTSl belong to xj, xk, xl, respectively, and let rj, rk, rl
be three remove operations with xj

val−−→ rj, xk
val−−→ rk, and xl

r−→l. Let tryRemj,
tryRemk, tryReml belong to rj, rk, rl, respectively. Then for any f ∈ {j, k, l}, if
rf is a removeR operation, then setTSf <T tryRemf , i.e. any pair of operations
xj, xk, xl is ordered after Stage 3.
Proof. Let insj , insk, insl belong to xj , xk, xl, respectively.

No cycle is created before Stage 3. Therefore the cycle is created in Stage 3
and without loss of generality k = j + 1, i.e. xk is a direct successor of xj and
xj ≮1a

lin xk.
It cannot be that rj is a removeR operation and tryRemj <T setTSj because

there does not exist a stage in Stage 3 which would order xj <3
lin xk.

Now assume that rk is a removeR operation and tryRemk <T setTSk. As xk
is not ordered before any other operation in Stage 3, xk+1 is either rk, or xk and
xk + 1 were ordered in Stage 1a.

Assume rk is xk+1. As only Stage 3a Stage 3b can order xj <3
lin xk, and

because of the sequential specification of the TS-buffer, it holds that insj <T
tryRemj <T tryRemk <T setTSk. Hence also rj <3

lin rk, and xk could be replaced
by rj in the cycle, which contradicts Lemma 7.

Now assume that xk, xk+1 were ordered in Stage 1a. With a similar argument
as in the proof of Lemma 7 this would mean that xj and xk could be excluded
from the cycle, which contradicts the assumption that the cycle has minimal
size.

Now assume that for both xj and xk with xk = xj+1 it holds that setTSj <T
tryRemj and setTSk <T tryRemk. We already handled the case that xl = xk+1
and tryRemk <T setTSk. Therefore xk+1 6= xl, which is also a case that is already
handled in the proof of Lemma 7.
Lemma 9. If there exists a cycle x1 <

3
lin x2 <

3
lin · · · <3

lin xn <
3
lin x1, then there

exists also a cycle a1 <
3
lin a2 <

3
lin a3 <

3
lin a1 consisting only of insertR operations

a1, a2, a3 (or insertL operations).
Proof. With Lemma 8 it is guaranteed that in the cycle x1 <

3
lin x2 <

3
lin · · · <3

lin
xn <

3
lin x1 there exist at least three insertR operations which are all related by

<3
lin.



We can then pick any pair of insertR operations a1, a2 with a1 <
3
lin a2 where

a2 is not the successor of a1 in the cycle. As a1 <
3
lin a2, we can shrink the cycle

by removing all operations between a1 and a2 without breaking the cycle. We
repeat shrinking the cycle until no more shrinking is possible and we end up
with a cycle of size 3.

Lemma 10. After Stage 3 the linearization relation <3
lin does not contain cycles.

Proof. With Lemma 9 we only have to consider all possible ways to construct
a cycle a1 <3

lin a2 <3
lin a3 <3

lin a1 of insertR operations a1, a2, a3, which are
finitely many.

In any case we end up either in an order which does not contain a cycle, or
the sequential specification of the TS-buffer is violated, or the order in which
the stages have to be used is violated. Therefore <3

lin does not contain cycles.

Lemma 11. After Stage 4 the linearization relation <4
lin does not contain cycles.

Proof. Assume Stage 4 creates a cycle, and assume it is a cycle of minimal
size. Therefore there exists a remove operation r1 and an insert operation a2
such that r1 <4

lin a2. Without restriction of generality assume that a2 is an
insertR operation. There cannot exist a cycle r1 <4

lin a2 <4
lin r1 because the

order a2 <
4
lin r1 is not created in Stage 1. Therefore exist other operations x1,

. . . , xn in the cycles.
Assume xi is a remove operation and assume that tryRemx belongs to xi,

tryRem1 belongs to r1, and ins2 belongs to a2. If tryRemx <T tryRem1, then
there exists an order xi <4

lin a2 and a smaller cycle would be possible which
does not contain r1. If tryRem1 <T tryRemx, then r1 <

4
lin xi and all operations

between r1 and xi could be removed from the cycle. Therefore r1 is the only
remove operation in the cycle of minimal size.

Next, assume that xi is a insert operation, assume that insx belongs to xi,
and assume that tryRem1 belongs to r1. If tryRem1 <T insx, then r1 <

4
lin xi and

therefore a smaller cycle would be possible which does not contain a2. Therefore
the ins operation of all xi operations are ordered before tryRem1 in <T .

From the total order of T it follows that only one pair of operations xi, xi+1 is
ordered by precedence in Stage 1a. If there existed a second pair xj , xj+1 which
is also ordered by precedence in Stage 1a, then also xi <1a

lin xj+1 or xi <1a
lin xj+1.

In both cases a smaller cycle is possible.
As only Stage 1a orders insertR operations and insertL operations, there

can exist only one insertR operation xi in the cycle such that xi+1 is a insertL
operation. Since the insi+1 operation of xi+1 is ordered insi+1 <T tryRem1, the
reti of xi is also ordered before tryRem1. However, in that case there would exist
a rule in Stage 3 which creates the order xi <4

lin a2 and would therefore create
a smaller cycle, or the cycle would require a second pair of operations being
ordered in Stage 1a, which would also create the possibility of a smaller cycle.
Therefore all operations xi are insertR operations.

For a similar reason as in the proof of Lemma 8 all but one insertR operation
in the cycle are totally ordered in <4

lin. Hence, if there exists a cycle, then it



contains at most three insertR operations. However, with only three insertR
operations and one remove operation it is not possible to create a cycle using only
Stage 1 to Stage 4 in order without some of the TS-buffer operations violating
their sequential specification. Therefore Stage 4 does not create a cycle.

Lemma 12. After Stage 5 the linearization relation <5
lin does not contain cycles.

Proof. Let a1 be an insert operation a1, let r1 be a remove operation with
a1

val−−→ r1, and let x be a second operation. Assume a cycle is created because
a1, x are ordered a1 <

5
lin x in Stage 5. Then there would exist a second cycle

which can be created by replacing a1 by r1, and the second cycle would have
already existed after Stage 4. However, this contradicts Lemma 11.

The constructed relation <lin is acyclic because it is the same as <5
lin.

Now pick any total order <tlin that includes <lin. As <lin is acyclic, such an
order must exist.

Lemma 13. <tlin agrees with sequential method order in T .

Proof. By construction (stage 1a above).

Lemma 14. The method order <tlin satisfies the sequential specification.

Proof. By contradiction. Assume <tlin does not satisfy the sequential specifica-
tion. As insert operations cannot violate the specification, there must be a
first remove operation which does. Assume without loss of generality that it is
a removeR method r1 returning value e1, and that the abstract state before the
operation is the sequence σ. As the sequential specification has been violated,
one of the following must hold:

1. e1 is not a value in σ; or
2. e1 is in σ, but the rightmost value is e2 6= e1; or
3. e1 = EMPTY but σ is non-empty.

Consider these three possibilities in order.

e1 /∈ σ. By the semantics of the TS-buffer, there must be an insert i1 for value
e1 with which r1 is uniquely associated i1

val−→ r1. By the construction of <tlin, it
must be true that i1 <tlin r1 (Stage 1b). Thus e1 must be a member of σ, ruling
out this case.

e1 ∈ σ, but rightmost value is e2 6= e1. As e1, e2 ∈ σ, there must exist insert
operations i1, i2 associated with e1 and e2, such that i1 <tlin r1 and i2 <

t
lin r1.

Furthermore, as e2 ∈ σ, either i2 is not associated with a remove operation, or
the associated remove r2 is ordered r1 <

t
lin r2.

If both i1 and i2 are insertR operations, then Stage 3(c)i, Stage 3(c)iii, or
Stage 5 in our construction obliges us to order them i2 <tlin i1. However, this
means that e1 is further to the right in σ than e2, contradicting our assumption.



A similar argument using Stage 3(c)ii, Stage 3(c)iv, and Stage 5 applies if i1 and
i2 are both insertL operations.

If i1 = insertR and i2 = insertL, then by the sequential semantics, e1 must
be further right in σ than e2, contradicting our assumption.

If i1 = insertL and i2 = insertR, then the insR call in i2 must be ordered
in T after the successful tryRemR in r1. Otherwise by the TS-buffer semantics, r1
could not have returned e1. However in this situation, stage 4 of our construction
obliges us to order r1 <

t
lin i2, meaning e2 /∈ σ and contradicting our assumption.

e1 = EMPTY, but σ is non-empty. If σ is non-empty, there must be an insert
operation i2 such that i2 <tlin r1 and either (1) the associated remove operation
r2 is ordered r1 <tlin r2, or (2) there is no associated remove operation. If r2
exists, by stage 2 the tryRem in r2 must be ordered in T after the tryRem in
r1. Consequently the ins call in i2 must be ordered in T after the tryRem in
r1 – otherwise r1 would not report the queue as empty. By stage 4 we are thus
obliged to order the methods r1 <

t
lin i2, which contradicts our assumption.

Theorem 4. The deque is linearizable.

Proof. Application of Lemma 13 and Lemma 14.

B Correctness of TS-buffer

All the operations aside from tryRemR / tryRemL are atomic, either because
they consist of a single call to other linearizable modules (newTimestamp, insR,
insL) or because they are implemented as atomic assignment (setTimestamp).
Consequently, we only need to show that the atomic calls return appropriate
values and update the abstract state correctly:

– newTimestamp – By assumption, this returns a timestamp greater than any
previously call to newTimestamp. All the timestamps in the buffer have been
generated by newTimestamp. Thus the call generates a timestamp greater
than any in the buffer. The concrete state is unmodified.

– insR / insL – Satisfies the specification trivially by appeal to the specifica-
tion of the thread-local buffer.

– setTimestamp – We assume that we have reconstructed the bufferstamps
correctly, i.e. so that they strictly increase in the trace with calls to setTimestamp.
The call then satisfies the specification trivially by appeal to the semantics
of assignment.

The tricky part of the proof is showing that tryRemR / tryRemL satisfy the
specification. Without loss of generality, we assume the call is a tryRemR call r1.
If the call fails, i.e. returns invalid, then the concrete state is unmodified and the
specification is trivially satisfied. If r1 returns an element e1, we only need to
consider three cases:

1. e1 was the rightmost element at the invocation of r1; or



2. e1 was assigned its timestamp after the invocation of r1; or
3. any element e2 that was further to the right of e1 at the invocation of r1 was

removed within the execution of r1.

The first possibility is that, at the invocation of r1, for all elements e2 in the
abstract state it holds that e1 ≮Rbuf e2. If this holds we can satisfy the sequential
specification by picking the invocation as the linearization point. The abstract
state is updated to remove e1 from the buffer, but it remains in the concrete
state. The subsequent calls in the buffer do not affect the abstract state. By
assumption, r1’s final call to tryRemRtl removes e1 from the concrete state.

The second possibility is that the insR operation i1 that inserts e1 is executed
after the invocation of tryRemR. Then immediately after i1, e1 has a timestamp
/ bufferstamp of >. Therefore it holds for all e2 in the buffer that e1 ≮Rbuf e2.
Thus the linearization point can be added here, and the abstract state updated.
Again, e1 is removed from the concrete state in the final tryRemRtl.

Now consider the third possibility: at the time of the invocation r1 there
exists elements e2, e3, . . . in the buffer such that e1 <Rbuf e2, e1 <Rbuf e3, etc.
at all points during r1. As r1 does not discover e2 in any of the thread-local
buffers, it must have been removed by method r2 before its containing thread-
local buffer is encountered by r1. The same argument applies to e3, e4 etc. If
no further elements further right than e1 are added during r1, we can place
the linearization point for r1 immediately after these thread-local removes have
completed.

However, further elements may get inserted into the buffer during the execu-
tion of r1. Suppose some element e′2 is inserted before r2, r3 etc. have returned,
and that e1 <Rbuf e

′
2 at all points during the execution of r1. If e′2 is inserted

after the invocations of all the removes r2, r3 etc, by the above argument their
linearization points can be their invocation points. Thus we can linearize r1
immediately afterwards.

Suppose e′2 is inserted before the invocation of some remove r2. If e2 <
R
buf e

′
2

at all points, then e′2 must have been removed before the return of r2. Otherwise
r2 would have been obliged to remove it in favour of e2.

Suppose instead e2 ≮Rbuf e
′
2 at some point. This can happen if either (1) both

e2 and e′2 were in the buffer without timestamps at the invocation of r2, or (2)
setTimestamp for e2 interleaved after setTimestamp for e′2. In the first case then
according to the sequential specification r1 and r2 can ignore e′2, and so r2 can be
linearized at its invocation point, and r1 immediately afterwards. In the second
case, setTimestamp for e2 interleaved after setTimestamp for e′2, meaning it
also interleaved after the invocation of r1 and can therefore be ignored at the
beginning of r1 and at the beginning of any r3, r4, . . . which remove elements
further right than e1 at the invocation of r1. Thus r2 can be ignored, and the
remaining methods can be linearized as discussed above.



C Thread-Local Buffer

The implementation of the thread-local buffer for the TS deque is similar to the
implementation of the concurrent linked deque in the OpenJDK [1]. A thread-
local buffer consists of a doubly-linked list of nodes which is accessed by a left
pointer and a right pointer. Both pointers are annotated with ABA-counters to
avoid the ABA-problem [12]. Each node contains a left pointer, a right pointer,
a data field, a taken flag, and an index field. The left and right pointers point
to the left neighbor and the right neighbor of the node, respectively, the data
field stores the element, the taken flag indicates if the element of the node has
been removed from the thread-local buffer, and the index field is used to order
and identify nodes.

The doubly-linked list is closed at its ends by nodes which have themselves
as their left or right neighbor. The doubly-linked list is initialized with a sentinel
node. Initially both left and right pointer of the thread-local buffer as well as
left and right pointer of the sentinel node itself point to the sentinel node.
Moreover the taken flag is set to indicate that the node does not contain an
element.

An element is contained in the thread-local buffer if (1) there exists a node
in the doubly-linked list that contains the element in its data field, if (2) the
taken flag of that node is not set, if (3) the node is reachable from the left
pointer of the thread-local buffer following only right pointers, and if (4) the
node is reachable from the right pointer of the thread-local buffer following
only left pointers. If one of the four conditions does not hold, the element is
not considered as contained in the thread-local buffer.

The nodes in the doubly-linked list are sorted by their indices. The right
neighbor of any node in the doubly-linked list has a higher index than the node
itself. To keep this invariant nodes that are inserted by an insRtl operation get
positive indices which are greater than any index assigned earlier, and nodes
that are inserted by an insLtl operation get negative indices which are less
than any index assigned earlier. By using this order on the doubly-linked list
it is guaranteed that the right-most element in the buffer is contained in the
right-most node which is not marked as taken.

Listing 1.3 shows the pseudocode of the thread-local buffer. To insert an
element at the right side of the buffer with an insRtl operation, first a new
node is created with the next free index assigned to it and the element stored
in its data field. Initially the taken flag is not set, and the right pointer is
set to point to the new node itself. The insRtl operation then tries to find the
right-most node that has not been marked as taken (line 21-24). In line 29-31
the new node is inserted at the right of that right-most node. Only after the
new node is reachable from the right pointer of the thread-local buffer the
element is considered to be contained in the buffer. If the thread-local buffer is
empty, then the iteration in line 21-24 ends at the left-most node of the buffer.
To consistently insert the new node, this left-most node becomes a new sentinel
node (line 25-27) and the left pointer of the thread-local buffer is changed to
point to this sentinel node. The new node is then inserted to the right of the



Listing 1.3. Thread-local buffer algorithm.
1 ThreadLocalBuffer {
2 Node {
3 Node *left ,
4 Node *right ,
5 TimestampedItem item ,
6 i n t index ,
7 bool taken
8 };
9 <Node*, int > *left; // Pointer with ABA counter .

10 <Node*, int > *right ; // Pointer with ABA counter .
11 i n t nextIndex = 1;
12 void init () {
13 Node * sentinel = createNode (data =0, index =0, taken=true );
14 sentinel .left = sentinel .right = sentinel ;
15 left = right = <sentinel , 0>;
16 }
17 void insRtl ( TimestampedItem item) {
18 Node * newNode = createNode (item=item , index=nextIndex , taken=false );
19 newNode ->right = newNode ;
20 nextIndex = nextIndex + 1;
21 <Node*, int > <rightMost , rightAba > = right;
22 whi le (rightMost ->left != rightMost && rightMost ->taken) {
23 rightMost = rightMost ->left;
24 }
25 i f ( rightMost = rightMost ->left) {
26 <Node*, int > <oldLeft , leftAba > = left;
27 left = <rightMost , leftAba +1>;
28 }
29 newNode ->left = rightMost ;
30 rightMost ->right = newNode ;
31 right = newNode ;
32 }
33 void insLtl ( TimestampedItem item) {
34 // Analogous to insRtl , but the index of a new node is initialized with ’index =- nextIndex ’.
35 }
36 <Node*, Node*, int > getRtl () {
37 <Node*, int > <oldLeft , leftAba > = left;
38 <Node*, int > <oldRight , rightAba > = right;
39 Node* result = oldRight ;
40 whi le (true) {
41 i f (result ->index < oldLeft ->index ) return <NULL , oldRight , rightAba >;
42 i f (! result ->taken) return <result , oldRight , rightAba >;
43 i f (result ->left == result ) return <NULL , oldRight , rightAba >;
44 result = result ->left;
45 }
46 }
47 <T, Node*, int > getLtl () {
48 // Analogous to getRtl .
49 }
50 bool tryRemRtl (<Node*, int > <oldRight , aba >, Node *node) {
51 i f (CAS(node ->taken , false , true )) {
52 CAS (right , <oldRight , aba >, <node , aba >);
53 return true;
54 }
55 return false;
56 }
57 bool tryRemLtl (<Node*, int > <oldRight , aba >, Node *node) {
58 // Analogous to tryRemRtl .
59 }
60 }



sentinel node. By using the sentinel node we guarantee that both the right
pointer and the left pointer of the thread-local buffer always point to the same
doubly-linked list.

The getRtl operation first reads the left pointer and the right pointer
of the thread-local buffer. Then it starts iterating over the doubly-linked list
starting at the node stored in the right pointer and following the left pointers
of the nodes. The iteration stops either at a node younger than the node the left
pointer of the thread-local buffer was pointing to at the beginning of the getRtl
operation, or at a node which has not been marked as taken, or at the end of the
doubly-linked list where the left pointer of the node points to itself. If a node
is found whose taken flag is not set, then the element of the node is returned.
Otherwise, getRtl returns NULL. Additionally getRtl returns the value of the
right pointer at the beginning of its execution. The value of the right pointer
is then used in Line 60 in the second CAS of the tryRemRtl operation and in the
emptiness check of the TS-buffer.

The tryRemRtl operation tries to set the taken flag with a CAS and returns
true if it succeeds. Otherwise the tryRemRtl operation returns false. After
succeeding in the first CAS the operation additionally tries to adjust the right
pointer of the thread-local buffer with a CAS. The purpose of that CAS is an
optimization which is described below.

The insLtl, getLtl, and tryRemLtl operations work analogous to their
counterparts insRtl, getRtl, and tryRemLtl. Except for swapping ‘right’ and
‘left’, the only difference is that negative indices are assigned when elements are
inserted by an insLtl operation to keep the doubly-linked list sorted, and that
the comparison of node indices is changed to account for the negative indices
(i.e., ‘<’ is swapped with ‘>’ and ‘>’ is swapped with ‘<’).

Correctness. The correctness of the thread-local buffer is based on the invariant
that the doubly-linked list is sorted by the insertion side and the insertion time
of its nodes. Thereby the right-most or left-most element in the thread-local
buffer can be found simply by finding the right-most or the left-most node in
the doubly-linked list, respectively. As the thread-local buffer allows only a single
thread to insert elements, we do not have to care about concurrent insRtl and
insLtl operations. The atomicity of the tryRemRtl and tryRemLtl operations
is guaranteed by using the taken flag to mark the element of a node as removed
atomically.

The correctness of the getRtl operation is more subtle and in one aspect it
does not conform to its specification. In Line 41 in Listing 1.3 the iteration stops
at a node with a lower index than the node the left pointer of the thread-local
buffer was pointing to at the beginning of the operation. However, there may
be a node further to the left which was added to the doubly-linked list by an
insLtl operation after getRtl reads the value of the left pointer. Stopping
the iteration is an unsound optimization which, however, does not affect the
behaviour of the TS-buffer. No matter if the element of a node further to the
left was returned to the tryRemR operation of the TS-buffer, it would not be
considered as the right-most element anyways because of the if-condition in



Line 31 in Listing 1.2. The condition says that elements will not be considered
which were inserted by an insLtl operation after the invocation of the tryRemR
operation. Therefore the behaviour of tryRemR of the TS-buffer does not change
no matter if getRtl returns an element which gets inserted after the invocation
of getRtl or if it returns NULL instead.

The optimization, however, makes the insRtl operation of the thread-local
buffer much simpler. After Line 29 in the insRtl operation the new node is
already reachable from the left pointer of the thread-local buffer but not from
the right pointer. However, by stopping the iteration in the getLtl operation
at a node older than the node which is referred to by the right pointer of the
thread-local buffer, the new node is not found before also the right pointer
of the thread-local buffer is updated. By making the new node reachable from
both sides at the same time the insRtl method is linearizable with respect
to its sequential specification because the new element becomes visible in the
thread-local buffer by a single operation.

When a getRtl operation returns an element, then it is linearizable with
respect to its specification because there always exists a point in time within the
execution of getRtl where that element is stored in the right-most node in the
doubly-linked list which is not marked as taken. If the element is stored in the
right-most node at the time when getRtl is invoked, then the invocation time of
getRtl is a valid linearization point. If there exist nodes at the invocation time
of getRtl which are further right than the node which contains the returned
element, then these nodes would have been encountered in the iteration except
if they were removed by a tryRemRtl operation in the meantime. In that case,
the linearization point of getRtl is right after the linearization point of the last
tryRemRtl operation which removes one of the nodes which were further right
when getRtl was invoked.

The linearization point of the tryRemRtl operation is the CAS which sets the
taken flag of the node. The second CAS which adjusts the right pointer of the
thread-local buffer is an optimization which tries to change the right pointer
to a node closer to the right-most pointer in the doubly-linked list which is
not marked as taken. The same optimization is done in the insRtl operation in
Line 21-24 where the new node is not added at the right end of the doubly-linked
list but next to the right-most node which is not marked as taken.

D Experiments on the 24-core machine

Figures 6 and 7 show performance and scalability in the producer-consumer
benchmark on the 24-core server machine where half of the threads are producers
and half of the threads are consumers.
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(a) TS-hardware stack
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Fig. 6. High contention producer-consumer microbenchmarks on the 24-core machine.
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Fig. 7. Low contention producer-consumer microbenchmarks on the 24-core machine.
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Fig. 8. High contention producer-only microbenchmarks on the 24-core server machine.

Figure 8 shows the performance of the TS deque used as a queue in a high
contention producer-only benchmark with different timestamping algorithms.

Figure 9 shows the performance of the TS deque used as a queue in a high
contention consumer-only benchmark with different timestamping algorithms.

Figure 10 shows the performance of the TS deque with TS-interval time-
stamping with an increasing delay in the high-contention producer-consumer
benchmark on the 24-core server machine. All measurements are done with 12
threads inserting 1000000 elements into the TS deque and 12 threads removing
1000000 elements from the TS deque.
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Fig. 9. High contention consumer-only microbenchmark on the 24-core server machine.
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Fig. 10. High contention producer-consumer benchmark using TS-interval timestamp-
ing with increasing delay on the 24-core server maching, exercising 12 producers and
12 consumers.


