
Short-term Memory for Self-collecting
Mutators

Revised Version

Martin Aigner Andreas Haas Christoph M. Kirsch
Ana Sokolova

Technical Report 2010-06 October 2010

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series

Short-term Memory for Self-collecting Mutators?

Revised Version

Martin Aigner, Andreas Haas, Christoph M. Kirsch, Ana Sokolova

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. We propose a new memory model for heap management,
called short-term memory, and concurrent implementations of short-term
memory for Java and C, called self-collecting mutators. In short-term
memory objects on the heap expire after a �nite amount of time, which
makes deallocation unnecessary. Self-collecting mutators requires pro-
grammer support to control the progress of time and thereby enable
reclaiming the memory of expired objects. We informally describe a sim-
ple translation scheme for porting existing programs to self-collecting
mutators. As shown by our experimental results on several benchmarks,
self-collecting mutators performs competitively with garbage-collected
and explicitly managed systems. Unlike garbage-collected systems, self-
collecting mutators does not introduce pause times and provides constant
execution time of all operations, independent of the number of reachable
objects, and constant short-term memory consumption after a steady
state has been reached. Self-collecting mutators can be linked against
any unmodi�ed C code introducing a per-object space overhead of one
word and negligible runtime overhead. Short-term memory may then
be used to remove explicit deallocation of some but not necessarily all
objects.

1 Introduction

At any time instant during mutator execution, an ideal dynamic heap manage-
ment distinguishes the memory objects on the heap that are still needed by the
mutator in the future (dynamically live) from the memory objects that are not
needed anymore (dead). Heap management is correct if the memory allocated for
the objects that are in what we call the needed set of objects is always guaranteed
to be maintained. Heap management is bounded if the memory allocated for the
objects in the (complementary) not-needed set of objects is always eventually
reclaimed by deallocation or reuse.

Traditional heap management based on explicit deallocation or garbage col-
lection implements di�erent approximations of the needed and not-needed sets.
Explicit deallocation, if used correctly, under-approximates the not-needed set.

? Supported by the EU ArtistDesign Network of Excellence on Embedded Systems
Design and the Austrian Science Funds P18913-N15 and V00125.

Tracing garbage collectors over-approximate the needed set by computing the
set of reachable objects, which contains the needed set if used correctly, i.e., in
the absence of reachable memory leaks. Reference-counting garbage collectors
under-approximate the not-needed set by computing the set of unreachable ob-
jects, which is contained in the not-needed set. The needed and not-needed sets
can also be approximated at the same time by tracing and reference-counting
hybrids [5].

Despite the di�erences in approximation techniques, heap management based
on explicit deallocation or garbage collection implements the same memory
model for programming mutators. Allocated memory is guaranteed to be main-
tained until deallocation, either explicitly, or implicitly through unreachability.
We refer to this model as persistent memory model throughout the report. In
the persistent memory model, memory is persistent until further notice. Thus
objects in the needed set are safe without attention whereas objects in the not-
needed set require action, either by explicit deallocation or garbage collection
hence the name. The advantages and disadvantages of explicit deallocation and
garbage collection are direct consequences of the memory model. Explicit deal-
location is fast but creates dangling pointers through premature deallocation
and memory leaks through missing deallocation. Garbage collection removes the
danger of dangling pointers but introduces cost and complexity for computing
unreachability, directly or indirectly, and may therefore still create reachable
memory leaks. Note that the issue of memory fragmentation is orthogonal to
the discussion here and not considered in this report.

We propose short-term memory as an alternative model to the persistent
memory model for studying an area of dynamic heap management that is in our
opinion largely unexplored, at least by using a general model explicitly. In the
short-term memory model, memory allocated for an object is only guaranteed
to be maintained for a �nite amount of time. Here, each object has, in addition
to the memory that has been allocated for it, a so-called expiration date. When
the object expires, its memory may be reclaimed by deallocation or reuse. If the
object is needed beyond its expiration date, it may be refreshed before it expires,
extending its expiration date but only by a �nite amount of time. Refreshing may
be repeated arbitrarily often but does not accumulate time. Thus, in the short-
term memory model, memory is short-term until further notice. Now, objects in
the not-needed set will be reclaimed without attention whereas objects in the
needed set require action by refreshing.

Similar to the persistent memory model, short-term memory may be imple-
mented by providing, in this case, refreshing information explicitly or implicitly.
Note that explicitly refreshing needed objects can always be done since needed
objects are always reachable, as opposed to explicitly deallocating not-needed
objects, which may or may not be reachable. Moreover, unlike the persistent
memory model, short-term memory induces the notion of two sets that pro-
vide structure that does not exist with persistent memory: the not-expired set
of objects which have not yet expired, and the (complementary) expired set of
objects. It is important to note that the two sets only exist if time is guaran-

needed

not-expired

reachable

heap

co
n
se
rv
a
ti
ve

e
xp

ir
a
ti
o
n

conservative
refresh

Fig. 1. Approximation of the needed set by the not-expired set in the short-term
memory model.

teed to advance. Otherwise, all memory is permanent. As shown in Figure 1,
the not-expired set is controlled by two concepts: conservative refresh of ob-
jects potentially preventing reachable but not-needed objects from expiring, and
conservative expiration potentially delaying expiration of unreachable and thus
not-needed objects.

Heap management in the short-term memory model is correct if the not-
expired set always contains the needed set, and is bounded if the expired set al-
ways eventually contains the objects of the not-needed set, and time advances. It
is interesting to note that the mark phase of a mark-sweep garbage collector may
readily be used to provide refreshing information that guarantees correctness by
conservatively refreshing all reachable objects before time advances. However,
this approach may again su�er from reachable memory leaks.

In this report we focus on explicit refreshing. Like explicit deallocation, ex-
plicit refreshing may be done incorrectly but with di�erent consequences. The
source of incorrect use of explicit refreshing is missing refreshing information,
resulting in memory being reclaimed too early creating dangling pointers. Other
sources of errors in the explicit use of the persistent memory model are avoided
with short-term memory. Multiple explicit deallocation of the same object is an
error in the persistent memory model whereas multiple refreshing in the short-
term memory model has no consequence other than creating runtime overhead.
Unreachable objects can never be explicitly deallocated in the persistent memory
model (source of memory leaks) whereas refreshing needed and thus reachable
objects is always possible.

To summarize, correct explicit deallocation information must be �just right�.
Too much information and too few information is a source of errors. In contrast,
too much explicit refreshing information is still correct. As a consequence, any
over-approximation of the minimal correct refreshing information is also correct.
We believe that even static analysis has the potential to provide such an over-
approximation eventually.

After presenting the short-term memory model in more detail, we discuss
several use cases of short-term memory based on real code that was originally
written in the persistent memory model. We then introduce concurrent imple-
mentations of short-term memory, called self-collecting mutators, written in C
and in Java. Self-collecting mutators supports multi-threaded programs, in par-
ticular correct refreshing without concurrent reasoning similar to using garbage
collectors.

The report presents the following contributions: (1) the short-term memory
model and an analysis of its use by real code; (2) the concurrent self-collecting
mutators implementations in Java and in C, and an implementation analysis; and
(3) con�rmation of the analysis with experimental results on several benchmarks.

The structure of the rest of the report is as follows. In Section 2 we introduce
the concepts of short-term memory. The self-collecting mutators implementa-
tions are presented in Section 3. In Section 4 we present experimental results
of a number of benchmarks. Section 5 concludes the report and presents future
work.

2 Short-term Memory Model

Persistent MM Short-term MM

lifetime of from allocation from allocation
an object until deallocation until expiration

lifetime deallocation refreshing
management

errors dangling pointers, dangling pointers,
memory leaks memory leaks

sources of premature or no incorrect refresh,
errors deallocation no time progress

problems with deallocation time
concurrency synchronization synchronization

problems with implicit (redundant)
real time deallocation refresh

Table 1. Comparison of the persistent memory model with the short-term
memory model.

In this section we present the short-term memory model and compare it with
the persistent memory model. See Table 1 for a summary. We then introduce an
explicit programming model for short-term memory and discuss four use cases
to show how much e�ort it is to use short-term memory. The section concludes
with a discussion of previous work related to short-term memory.

2.1 Model

With short-term memory, each object is only allocated for a �nite amount of time
after which the object expires, which means that its existence is not guaranteed
anymore. So to say, every object has an expiration date. As long as an object
has not expired, its expiration date can be extended by a �nite amount of time
through what we call refreshing.

The notion of time is important for the short-term memory model. It de�nes
the lifetime of every object, which is the time from the allocation of an object
until it expires. If time advances fast, objects will expire faster, and the system
will require less memory. If time stands still, no object will ever expire. This
would be equivalent to a system without deallocation. The de�nition of time
determines some core properties of the memory management system and requires
even more care in the presence of concurrency.

Use of the Model With absolute knowledge, an object can be allocated with
its exact expiration date. Using exact expiration dates resembles explicit deal-
location but may be even more di�cult than knowing the position of explicit
deallocation. On the other hand, for explicit deallocation a pointer to the object
is required at deallocation time, which is not the case with expiration dates.

allocation(6)

allocation(2)

lifetime

lifetime

time

Fig. 2. Allocation with known expiration date.

Figure 2 presents an example of short-term memory with absolute knowledge
about the expiration of objects. The lifetime of both allocated objects is known
at allocation time. The expiration date can already be set then. For example,
the command allocation(6) allocates an object for six time units.

allocation(0)

lifetime

time
unused

tick

Fig. 3. All objects are allocated for one time unit.

In contrast to using exact expiration dates, every object can be allocated for
zero time units, i.e., it will expire at the next time advance. Time advances when

all existing objects are not needed anymore. An example is shown in Figure 3.
All objects have the same expiration date. Even if an object is only used for a
short amount of time, it will not expire before the next time advance.

Another choice between these two extremes is to allocate objects using es-
timated expiration dates, which can later be extended by refreshing. However,
refreshing creates additional runtime overhead. It can be done explicitly by the
programmer or implicitly by an underlying memory management system.

allocation(1)

lifetime

time

refresh(3) refresh(2)

Fig. 4. Allocation with estimated expiration date. If the object is needed longer,
it is refreshed.

Figure 4 illustrates refreshing. An object is allocated with an estimated ex-
piration date. If the object is needed beyond its expiration date, it is refreshed.
In Figure 4 the object exists for six time units in total. Since it was originally
allocated for one time unit only, it had to be refreshed for another �ve, which is
done by two consecutive refresh statements.

The notion of expiration date in the short-term memory model enables
trading-o� compile-time analysis e�ort, runtime overhead, and memory con-
sumption. Allocation with known expiration date (cf. Figure 2) requires full
compile-time analysis, but least runtime overhead and memory consumption.
Allocation for one time unit (cf. Figure 3) requires only light-weight compile-
time analysis needed for time control, but introduces additional memory con-
sumption. With refreshing (cf. Figure 4), compile-time analysis e�ort remains
light-weight and memory consumption improves at the expense of increased run-
time overhead.

Sources of Errors A memory management system based on the short-term
memory model could be used incorrectly creating dangling pointers and memory
leaks.

Dangling pointers, which are pointers to objects that no longer exist, may be
created by premature expiration. Dangling pointers can be avoided, for example,
by continuously refreshing every reachable object at the expense of increased
runtime overhead and memory consumption.

Memory leaks occur when not-needed objects are never deallocated or reused.
With explicit deallocation, memory leaks occur due to missing free calls. Even
with garbage-collected systems reachable memory leaks occur due to references
to not-needed objects. Short-term memory avoids memory leaks which are present
in explicit-deallocation systems, and may avoid reachable memory leaks provided

that reachable but not-needed objects are not continuously refreshed, creating
the potential for dangling pointers again. In Section 4.1 we present a benchmark
where our explicit implementation of short-term memory repairs a reachable
memory leak. Similar handling of memory leaks is described in [17].

However, with short-term memory, memory leaks do occur but under new
circumstances, i.e., when not-needed objects never expire, caused by continuous
refreshing or time standing still. In our explicit implementation of short-term
memory, the programmer, possibly supported by static analysis, needs to make
sure that time advances. It may be possible to implement short-term memory
using real time instead of programmer-controlled time in which case time is
guaranteed to advance eventually but refreshing may be more di�cult to do
correctly.

Concurrency In explicit-deallocation systems it can be di�cult to place deal-
location statements correctly, in particular in the presence of multiple threads.
When several threads use the same object, only the last-accessing thread can
deallocate the object correctly. The di�culty of deallocation comes from the
need of synchronizing deallocation statements among threads. Garbage collec-
tors solve the di�cult problem of correct deallocation in particular for concurrent
programs. The same can be achieved with short-term memory.

When using short-term memory, every thread refreshes the objects it uses,
just as for single-threaded applications. Logically, each object has a separate
expiration date per thread. An object expires when it expires for all threads.
Depending on the notion of time, using short-term memory for concurrent pro-
grams is more or less convenient. Our implementation provides a synchronized
global and an unsynchronized thread-local notion of time. With global time cor-
rect use of short-term memory does not require concurrent reasoning, similar to
using garbage collectors.

We already stated before that memory leaks can be introduced in short-term
memory if time stands still. For multi-threaded applications it is necessary that
global time also advances if some threads are inactive or blocked. This is not a
problem if real time is used but it has to be considered for systems in which time
advance depends on the progress of the thread. Our implementation also solves
the problem of blocking threads.

Real Time Many real-time programs use static memory management in which
all memory is allocated when a program is started. Reasons for this are that it is
di�cult to guarantee the correct use of explicit dynamic memory management,
and that garbage collection performance depends, in the worst case, on the total
number of live objects, either in time or in space.

Short-term memory can be used for real-time programs if refreshing is done
incrementally because refreshing incurs runtime overhead proportional to the
number of needed objects. In a multi-threaded setting redundant refreshes of
shared objects by multiple threads may need to be reduced for better perfor-
mance.

2.2 Use Cases

What we propose in this report is that short-term memory can be used explic-
itly and thereby provides an interesting heap management interface not just to
programmers but potentially also to static analysis tools. The main questions
are then: how easy is it to use short-term memory explicitly, and how many of
the required memory management calls can be added by a static analysis tool?

To answer the �rst question we de�ne a programming model which explicitly
uses short-term memory. Most important for such a programming model is the
de�nition of time. We also de�ne how object allocation and refreshing work. The
answer to the second question remains future work.

Explicit Programming Model We use relative user-de�ned per-thread time
represented by a thread-local clock which is a counter incremented by one when-
ever the thread to which the clock belongs invokes an explicit tick-call. In order
to guarantee that time advances, the user is required to put tick-calls at loca-
tions in the program code that are always eventually executed. Logically, each
object has a separate expiration date for each thread. An object expires when it
has expired for all threads. An object expires for a thread when the thread-local
time is greater than the expiration date of the object for this thread.

Upon allocation an object receives expiration dates for all threads that are
initialized to the respective thread-local times. Refreshing is done by explicit
refresh-calls, which take two parameters, an object which should be refreshed
and an expiration extension. The new expiration date of an object (for the
thread invoking the refresh-call) is the current (thread-local) time plus the given
expiration extension. Moreover, the expiration dates for the threads for which the
object has already expired are set to the respective thread-local times. This way
other threads get a chance to refresh the object before it expires. For example,
a producer of an object may stop refreshing the object and tick as soon as
the object is consumed by a consumer, which then still has a chance to refresh
the object and tick without further coordination with the producer. Note that
it makes no di�erence if an object is refreshed once or multiple times (by the
same thread) within one time unit. Moreover, in some cases it is useful to have
a recursive refresh-call that refreshes all objects reachable from a given object.
Performing a recursive refresh-call is similar to a mark-sweep garbage collector
performing a (partial) mark phase.

The explicit programming model does not require concurrent reasoning for
correct usage by the programmer similar to using garbage collectors. In other
words, each thread may tick and refresh the objects it needs independently of
any other threads. Note that our implementations do not actually maintain
expiration dates for all threads and therefore only approximate this model in
the sense that objects may expire later than they could, but never earlier. As a
result, all memory management operations take constant time at the expense of
potentially increased memory consumption.

Benchmarks We translated the following programs to use short-term memory:

benchmark LoC tick refresh free aux total

mpg123 16043 1 0 (-)43 0 44

JLayer 8247 1 6 0 2 9

Monte Carlo 1450 1 3 0 2 6

LuIndex 74584 2 15 0 3 20

Table 2. Use cases of short-term memory: lines of code of the benchmark,
number of tick-calls, number of refresh-calls, number of free-calls, number of
auxiliary lines of code, and total number of modi�ed lines of code.

1. the mpg1231 MP3 converter version 1.12 written in C,

2. the JLayer MP3 converter2,

3. the Monte Carlo benchmark of the Grande Java Benchmark Suite [15],

4. the LuIndex benchmark of the Dacapo Benchmark Suite [6], version 9.12.

We informally applied a translation scheme that makes establishing correct-
ness easy at the expense of potentially decreased runtime performance and in-
creased memory consumption. We �rst identify the code location that marks the
end of the period of the most frequent periodic behavior of the benchmark, and
where most of the memory expires. We say that this memory is short-term with
respect to that period. We then place a tick-call at this code location, which was
easy for us to �nd in all four benchmarks. We �nally add refresh-calls on objects
that are still needed after executing the tick-call to maintain memory that is not
short-term. All other memory is short-term and will then expire.

The mpg123 benchmark converts a set of mp3 �les to a set of corresponding
wav �les. All memory needed for the conversion of a single �le is short-term,
which means that it expires once the �le is converted. Therefore, one tick-call is
su�cient and is conveniently placed in the code where processing a �le is �nished.
This removes the need for all 43 free-calls in the original code. No refresh-calls
are required.

For the remaining three programs written in Java we only use recursive re-
fresh-calls. Similar to the mpg123 benchmark, the JLayer benchmark converts
mp3 �les to wav �les. However, we have only benchmarked JLayer on a single
�le at a time, and therefore identi�ed frame rather than �le processing as the
relevant periodic behavior for placing a tick-call in the code where processing
a frame is �nished. Four refresh-calls are required for input and output bu�ers.
Another refresh-call is required for a progress-listener object. The application
root object allocated in the main method of JLayer, which needs to exist during
the whole program execution, also requires a refresh-call. This object is a local
object, only reachable from within the main method. Making this object reach-
able from the code location where refreshing is done results in two auxiliary lines
of code.

1 http://www.mpg123.de
2 http://www.javazoom.net/javalayer/javalayer.html

The Monte Carlo benchmark consists of a calculation loop to which we added
a tick-call at the end. Hence, all memory allocated within one loop iteration is
short-term, except for a result object that is generated in every loop iteration and
stored in a result set which requires one recursive refresh-call. A second refresh-
call is required to refresh the application root object, again with two auxiliary
lines of code to make it accessible. A third refresh-call is required on an object
used for time measurements.

The LuIndex benchmark consists of two threads. The �rst thread does not
have a main loop but recursively iterates over �les contained in a hierarchical �le
system. File processing is the relevant periodic behavior here according to our
scheme but more di�cult to identify because of the absence of a main loop. A
tick-call is placed in the code where processing a �le is �nished. Two refresh-calls
and three auxiliary lines of code are necessary to refresh the application root
object and to prevent the current state of the recursion from expiring. Another
refresh-call is required for a result data object. Finally, eleven refresh-calls are
necessary to prevent static variables from expiring. The second thread processes,
in a loop, the data generated by the �rst thread. We placed a tick-call at the
end of this loop and added a refresh-call on its only root object.

2.3 Related Work

Implementing short-term memory essentially requires a representation of the
not-expired and expired sets as well as an algorithm that determines expiration
information and time advance. The algorithm may be an o�ine analysis tool or
an online system, as with most related work, or even a programmer that provides
the information manually, as with self-collecting mutators. The representation
may implement sets to support any algorithm, as in self-collecting mutators, or
more speci�c data structures such as stacks and bu�ers that are more e�cient
but work only for speci�c algorithms, as in some related work.

Stack allocation can be seen as implementing a special case of short-term
memory where the representation are per-thread stacks and the algorithm main-
tains per-frame expiration dates and per-stack time that advances upon returns
from subroutines, which facilitates constant-time allocation and deallocation of
multiple objects. General refreshing is not possible.

Short-term memory is originally inspired by cyclic allocation where the rep-
resentation are cyclic �xed-size per-allocation-site bu�ers [17]. The algorithm
maintains per-bu�er expiration dates set to the size of the bu�er and per-bu�er
time that advances upon each allocation in the bu�er. For example, an alloca-
tion in a three-element bu�er will always receive an expiration date equal to the
current time plus three, i.e., memory allocated in the bu�er will be reused af-
ter three subsequent allocations in the bu�er, making deallocation unnecessary.
Refreshing is again not possible. Note that cyclic allocation requires properly di-
mensioning the bu�ers, which is related to the more general problem of properly
refreshing objects and advancing time with short-term memory.

Region-based memory management [21] can also be seen as implementing a
special case of short-term memory where the representation are per-code-block

regions, which allow to deallocate multiple objects in constant time. The al-
gorithm always uses expiration dates equal to the current time plus one and
maintains per-region time that advances upon events determined by an o�ine
analysis tool. General refreshing is not possible but could be done by copying
objects from one region to another.

Garbage collectors are implementations of the persistent memory model that
compute unreachability, directly or indirectly, for reclaiming otherwise persistent
memory. However, some portions of garbage collectors may be used to implement
special cases of short-term memory. For example, as stated before, the mark
phase of a mark-sweep garbage collector [16] may be used to implement an
algorithm that prevents reachable objects from expiring. The transition from
the mark to the sweep phase can then be seen as time advance for all objects.
More recent work on object staleness, e.g. [8], and memory growth, e.g. [14], may
be used to identify reachable memory leaks for expiring reachable but actually
not-needed objects.

3 Self-collecting Mutators

In this report we present two new concurrent implementations of short-term
memory, called self-collecting mutators, which conservatively approximate the
explicit programming model previously introduced in Section 2.2. We produced
one implementation written in C to enable programs written in C to use short-
term memory, and another one written in Java for Java programs. We elaborate
on the advantages and disadvantages of each implementation after presenting
general design choices. Both implementations have the following properties and
features:

� Constant time complexity for all operations.
� Constant memory consumption by all operations.
� No additional threads and no read/write barriers.

All memory management operations are constant-time, which enables full in-
crementality, and allocate at most constant memory. The system is self-collecting,
i.e., there are no additional threads for memory management, and there are no
read or write barriers. The combination of incrementality and self-collection is
in general only possible at the expense of increased memory consumption since
memory may be reclaimed with a mutator-dependent delay, which nevertheless
bounds the increase in memory consumption.

3.1 Design

Recall the explicit programming model for short-term memory presented in Sec-
tion 2.2. Logically, each object has a separate expiration date for each thread
and expires when it has expired for all threads. Clearly, implementing this may
cause too much space and time overhead since all expiration dates must be stored

and refreshing requires updating all expiration dates of an object. However, for
correct expiration, it is enough to ensure that no object expires earlier than pre-
scribed by its logical expiration dates. Hence, we may approximate the set of all
expiration dates of an object by a subset of it using a notion of global time that
advances at the speed of the slowest-ticking thread.

4

17

5

17

threadlocal time 1
tick

global time

1817

6

18

2 2 2

2 2 32

tick

tickedthreads
counter

3 2 2 1

tick

66

3

2

tick

3

2

threadlocal time 2

threadlocal time 3

Fig. 5. Global time calculation.

Single-Expiration-Date Approximation Each thread has a thread-local
clock which is incremented by one whenever the thread ticks, i.e., invokes a
tick-call. The thread-local clock determines the thread-local time. In addition
to the thread-local clocks, we keep track of global time represented by a global
clock which is a counter incremented by one whenever all threads have ticked
at least once. More precisely, we keep a ticked-threads-counter which is reset
to the total number of threads at every increment of the global time. When a
thread ticks for the �rst time after the ticked-threads-counter has been reset,
we decrement the ticked-threads-counter by one (in an atomic decrement-and-
test operation in C and using a lock in Java). Global time advances when the
ticked-threads-counter reaches zero. For atomic global-time advance and reset of
the ticked-threads-counter we use a lock (in both implementations). The time
period between two advances of the global clock is called the global period. The
calculation of global time is illustrated on an example in Figure 5.

The explicit programming model can be approximated by keeping a single
expiration date evaluated against global time. This means that an object expires
when the global time is greater than the expiration date. When an object is allo-
cated its expiration date is set to the global time plus one. Adding one additional
time unit to the global time is necessary since at the time of allocation some
(but not all) threads may have already ticked in the current global period. Al-
location and expiration of an object in the single-expiration-date approximation
is shown in Figure 6(a). When a thread refreshes an object, the new expiration
date is set to the global time plus one plus the expiration extension, unless the

allocation(0)
exp. date 1 safe expiration

(a)
0 1 2 3

tick tick tick

(b)
0 1 2 3

1 2 3x x x

allocation(0)
exp. date 2

tick tick tick tick

(c)
0

2

2 3

1 3 4xx x x
1

allocation(0)
exp. date 3

Fig. 6. Object expiration in the single-expiration-date approximation (a) and in
the multiple-expiration-date approximation (b,c). Filled circles indicate global-
time advance, and ×'s indicate thread-global-time advance.

result is lower than the old expiration date. This way no thread can shorten the
lifetime of an object already prescribed by another thread. As a result, no object
will expire too early. Moreover, a programmer need not know any of the imple-
mentation details of self-collecting mutators except for the explicit programming
model.

A disadvantage of the single-expiration-date approximation is that global
time does not advance if a thread stops ticking, due to blocking, faults, or pro-
gramming errors. We provide a solution to the problem of blocking and faults
(but not programming errors), using multiple expiration dates that approximate
the programming model better than a single expiration date, at the expense of
increased memory consumption.

Multiple-Expiration-Date Approximation Assume the set of threads is
partitioned into active and passive (blocked/faulty) threads. The computation
of global time remains the same but only on the active threads, i.e., the ticked-
threads-counter counts only active threads. Each thread maintains an additional
clock, called the thread-global clock, which advances at the speed of the global
clock as long as the thread is active and stops when the thread is passive. The
thread-global clock advances at the �rst tick of the thread in the current global
period. Therefore, it is possible that the thread-global time is larger by one time
unit than the global time but only in the remainder of the global period. When a
thread blocks, it is moved from the set of active to the set of passive threads, so
that the ticked-threads-counter does not consider it anymore, ensuring that the

5

4

5

block

global time

15 15

4

16

4

tick

4 4 1414 15

tickedthreads
counter

2 1 1 1 2

unblock
10 x tick

threadglobal time 1

threadglobal time 2

Fig. 7. Thread-global times.

global time advances without this thread. The thread-global time of the blocked
thread remains unchanged as long as it stays blocked. When a thread resumes,
it is moved from the set of passive to the set of active threads assuming that it
has already ticked in the current global period, unless the set of active threads
was empty. Hence, the ticked-threads-counter does not change. Figure 7 shows
the advance of global time and thread-global times as well as the evolution of
the ticked-threads-counter on an example.

An object will now have per-thread expiration dates but not necessarily an
expiration date for each thread. An expiration date for a given thread is evalu-
ated against the thread-global time of the thread. An object expires when it has
expired for all its expiration dates. Upon allocation an object receives a single
expiration date for the thread that allocated the object initialized to the thread-
global time plus two. Adding two additional time units to the thread-global
time is necessary since two time units of the thread-global time are guaranteed
to include one global period. One could add a single additional time unit (in-
stead of two) but only if the allocating thread has already ticked in the current
global period. However, testing this condition and setting the expiration date
must then be done atomically. We have not implemented this optimization since
allocation (and refreshing) are frequent operations. Allocation and expiration of
an object in the multiple-expiration-dates approximation is shown in Figure 6,
distinguishing whether the allocating thread has not ticked, Figure 6(b), or has
already ticked, Figure 6(c), in the current global period. When a thread refreshes
an object a new expiration date is created and set to the thread-global time plus
two plus the expiration extension. If the object already has an expiration date
for the thread, we keep the larger of the two. It is also correct to keep multiple
expiration dates per object and thread, as in the C implementation, as long as
an object expires only when all expiration dates have expired.

The multiple-expiration-date approximation solves the problem of global time
not advancing due to blocking and faulty threads, at the expense of additional
memory consumption. Note that if an object is known to be local to the allo-
cating thread (not shared by any other thread), then its expiration dates can be
evaluated against thread-local time. In such a case, the initial expiration date
can be set to the thread-local time (without additional time units), resulting in

potentially earlier expiration. In the C implementation we provide an API for
distinguishing shared and local objects.

3.2 Implementation

We implemented the single-expiration-date approximation for Java, for C we de-
veloped a multiple-expiration-date approximation. An advantage of the single-
expiration-date approximation is that it allows for a simple implementation of
recursive refresh. For Java, recursive refresh is particularly important because
of the potentially large number of objects used in Java applications. The draw-
back of our current Java implementation is that it can not deal with blocking
and faulty threads. Implementing recursive refresh in the multiple-expiration ap-
proximation is more di�cult and left for future work. However, the absence of
recursive refresh in C is not much of a disadvantage because the missing object
model in C often results in programs with less hierarchical object graphs.

Single-Expiration-Date Implementation for Java The Java implementa-
tion of the single-expiration-date approximation [2] is based on the Jikes Re-
search Virtual Machine [3], version 3.1.0, and the Gnu Classpath3 class library,
version 0.97.2.

We extended the Jikes object model by an object header that consists of three
words storing a 16-bit integer representing the value of the (single) expiration
date of an object, a 16-bit allocation-site identi�er explained below, and two
references to other objects for creating a doubly-linked list of objects sorted by
increasing expiration dates. The list implements an object bu�er that is FIFO
for objects with the same expiration date. There are three bu�er operations:
insert, remove, and select-expired; and two bu�er implementations: insert-pointer
bu�er and segregated bu�er [2] for which the time complexity of all operations
is independent of the size of the bu�ers. The time complexity of the segregated
bu�er operations are O(1) for insert and remove, and O(log n) for select-expired
where n is the maximal expiration extension, which is �xed at compile time in
our implementation. The time complexity of the insert-pointer bu�er operations
are O(1) for select-expired and remove, and O(log n) for insert. We only use the
segregated bu�er implementation in the Java benchmarks because select-expired
operations may be done less often than insert operations.

Object bu�ers are allocated per allocation site [17] and lock-protected for
multi-threading. Per-thread bu�ers are possible to reduce contention but remain
future work. Upon allocation of a new object, the corresponding allocation-site
bu�er is checked for an expired object. If there is one, it is removed from the
bu�er and its memory is reused for the new object. Otherwise, memory for the
new object is allocated from free memory. After setting the expiration date of the
new object, it is inserted into the bu�er. Refreshing an object removes the object
from the bu�er in which the object is stored. The correct bu�er is identi�ed by
the previously mentioned 16-bit allocation-site identi�er in the header of the

3 http://www.gnu.org/software/classpath/

object. Then, the new expiration date of the object is set. Finally, the object is
inserted back into the bu�er. Recursive refresh works by traversing in a single
round the objects that are reachable from a given object and have an expiration
date less than the new expiration date, refreshing each object along the way.
Object traversal stops whenever a leaf object or an object with an expiration
date greater than or equal to the new expiration date is reached. Note that some
objects may thus not be refreshed, i.e., if they are only reachable via objects
that already had an expiration date greater than or equal to the new expiration
date before the recursive refresh. However, this problem does not occur in our
benchmarks. A general solution is related to parallel tracing [18] and remains
future work.

In our current implementation, memory that was allocated once is never
returned to free memory. In particular, the memory of expired objects of di�erent
size allocated at the same allocation site is only reused if it �ts new allocation
requests and is otherwise discarded and never reused again. This is an open issue
for future work, which may be addressed by using per-object-size rather than
per-allocation-site bu�ers. However, the use of per-allocation-site bu�ers has a
convenient side e�ect. The memory of objects allocated at a given allocation site
is only reused if the allocation site is executed again after time advanced. It turns
out that in some benchmarks there are allocation sites that are only executed
during program initialization for allocating permanent objects. We exploit the
side e�ect in these benchmarks to handle permanent objects e�ciently without
refreshing. We may nevertheless handle permanent objects di�erently in the
future through, e.g. in�nite expiration dates.

Another interesting feature of using per-allocation-site bu�ers is that memory
reuse is type-safe. However, reusing memory too early is still an error that results
from missed refreshing or premature time advance. We implemented a debug
mode in Jikes to detect this kind of error. In debug mode, instead of actually
reusing the memory of an object, it is just marked. The error occurs if a marked
object is accessed, which is detected by a read barrier. A marked object that
triggers the barrier should have been refreshed. The debug mode helped us �nd
all necessary refresh-calls in the LuIndex benchmark.

Jikes is a metacircular implementation, which uses the same heap manage-
ment and garbage collector for the VM and the mutator. When using self-
collecting mutators garbage collection is turned o�. Since porting Jikes to short-
term memory may be di�cult and has not been done, we only redirect allocation
requests of the mutator to short-term memory by annotating the classes that are
exclusively used by the mutator. Allocation requests by the VM are therefore
permanent. Allocation requests in classes used by both the VM and the mutator
are also permanent, which is the case in the JLayer and LuIndex benchmarks.
However, since the VM typically stops allocating at some point in time, an ag-
gressive space optimization is possible by redirecting, after that point in time,
all allocation requests, even in classes that are not annotated, to short-term
memory. More details are discussed in Section 4.1.

Multiple-Expiration-Date Implementation for C The C implementation
of the multiple-expiration-date approximation is a dynamic C library available
under GPL [1] based on POSIX threads and the ptmalloc2 allocator of glibc-
2.10.14.

Descriptors. An expiration date of a given memory object in the C implementa-
tion is represented by a descriptor, which is a single word that stores a pointer to
the object. Moreover, each memory object is extended by an object header that
consists of a descriptor counter, which is an integer word that counts, similar
to a reference counter, the number of descriptors that point to the object, i.e.,
the number of expiration dates the object has. Descriptors representing a given
(not-expired) expiration date are gathered in a descriptor list. In other words,
the expiration date value represented by a descriptor is implicitly encoded by
storing the descriptor in a descriptor list for this value. Note that an object may
even have multiple expiration dates with the same value, which means that there
may be multiple descriptors in a descriptor list pointing to the same object.

Fig. 8. The design of the descriptor list.

As shown in Figure 8, a descriptor list is a singly-linked list of descriptor
pages with a head and a tail pointer to the �rst and the last page, respectively.
A descriptor page is a �xed-size record that consists of a pointer to the next
page, an integer word that counts the actual number of descriptors stored in
the page, and a �xed number of words for storing descriptors. The size m of
descriptor pages is �xed at compile time. Descriptor pages are allocated cache-
and page-aligned for better runtime performance. We distinguish di�erent size
con�gurations ofm in our benchmarks. Note that using descriptor pages provides

4 http://www.gnu.org/software/libc/

only a constant-factor, yet potentially signi�cant, optimization over a singly-
linked list of descriptors.

Given a compile-time bound n on the expiration extensions for refreshing,
we use a descriptor bu�er to store n+1 descriptor lists in an array of size n+1,
which supports expiration extensions between zero and n. Note that n+ 1 lists
are su�cient if the descriptors are evaluated against thread-local time. If they are
evaluated against thread-global time, the bu�er needs to store n+ 3 lists (recall
the two additional time units necessary for correct expiration using thread-global
time as previously discussed in Section 3.1). For better runtime performance
descriptor pages are prefetched, i.e., the descriptor lists of a descriptor bu�er
always contain at least one descriptor page, which may nevertheless not contain
any descriptors.

There are two descriptor bu�er operations: insert and move-expired, which
are both O(1). Given a descriptor and an index 0 ≤ i ≤ n, which is computed
from the current time and the expiration extension as described below, the insert
operation stores the descriptor in the last descriptor page of the descriptor list at
position i in the bu�er, if the page is not full. Otherwise, the descriptor is stored
in a new page that is allocated, either from a thread-local page pool or, if empty,
from free memory, and appended to the list. Given an index 0 ≤ i ≤ n, which is
computed from the current time as described below, the move-expired operation
removes from the descriptor pages from the descriptor list at position i in the
bu�er, if it contains at least one descriptor, and appends the pages to a thread-
local descriptor list called the expired-descriptor list. Unlike the descriptor lists
in a descriptor bu�er, the expired-descriptor list may contain descriptors that
represent di�erent expiration dates that have, however, all expired. The then
empty descriptor list at i is re�lled with an empty descriptor page prefetched
either from the thread-local page pool or, if empty, from free memory.

There are two descriptor bu�ers per thread: a locally-clocked bu�er and a
globally-clocked bu�er, containing n+ 1 and n+ 3 descriptor lists, respectively.
The descriptors in the locally-clocked and the globally-clocked bu�er are eval-
uated against thread-local and thread-global time, respectively. Let l be the
current thread-local time. Then the descriptor list in the locally-clocked bu�er
containing descriptors representing an expiration date l is located at position l
mod (n + 1). Given an expiration extension 0 ≤ e ≤ n, a new descriptor repre-
senting an expiration date l + e is therefore inserted by an insert operation into
the descriptor list at position (l + e) mod (n + 1). Thus the descriptors in the
descriptor list at position (l+n) mod (n+1) expire when the thread-local time
advances and must be removed by a move-expired operation. Similarly, if g is the
current thread-global time, then the descriptor list in the globally-clocked bu�er
containing descriptors representing an expiration date g is located at position g
mod (n+ 3). A new descriptor representing an expiration date g+ e is therefore
inserted into the descriptor list at position (g + e + 2) mod (n + 3). Here, the
descriptors in the descriptor list at position (g+n+2) mod (n+3) expire when
the thread-global time advances and must be removed.

Memory management operations. We now describe each memory management
call. A malloc-call simply calls the underlying malloc routine of ptmalloc2 to
allocate a memory block that �ts the requested size plus one word for the object
header containing the descriptor counter initialized to zero. Similarly, a free-call
invokes the underlying free routine of ptmalloc2 to deallocate the given memory
block but only if its descriptor counter is zero. Otherwise, it returns without
deallocation. The calloc and realloc routines of ptmalloc2 have been wrapped in
a similar way. If the realloc-call is invoked on a memory block that does not �t the
requested adjustment in size, a new memory block that �ts is allocated. The old
memory block is then deallocated but again only if its descriptor counter is zero.
This approach has an important consequence: our library can readily be linked
against any existing C code and used without introducing any new memory leaks
and without any modi�cations to the code, unless the code makes assumptions
on the layout of memory management data in memory blocks. We tested this
claim by successfully linking the library against Apache HTTP server-2.2.155

and executing it. Without using short-term memory, our library only introduces
a per-object space overhead of one word, a per-thread space overhead of Θ(n∗m),
where n is the compile-time bound on expiration extensions and m is the size of
descriptor pages, and negligible runtime overhead as shown in Section 4.2.

There are two refresh calls: a local-refresh-call and a global-refresh-call, which
we denote by refresh-call whenever the distinction is irrelevant. Both calls are
O(1) and do not require locking, just atomic increment and atomic decrement-
and-test operations. The local-refresh-call �rst atomically increments the descrip-
tor counter of the given memory object. Then, if the expired-descriptor list is
not empty, the �rst expired descriptor in the list, which is most likely unrelated
to the object under consideration, is removed from the list, i.e., from the �rst
descriptor page in the list. If the page becomes empty, it is removed from the
list. The empty page is then returned either to the thread-local page pool, if
the pool is not full, which is determined by a compile-time bound, or to free
memory by calling the underlying free routine of ptmalloc2. Then, the descrip-
tor counter of the object to which the expired descriptor points is atomically
decremented. If the counter becomes zero, the object is deallocated, again by
calling the underlying free routine of ptmalloc2. Finally, using the previously
described index computation, a new descriptor pointing to the memory object
that is to be refreshed is inserted into the locally-clocked bu�er by an insert op-
eration. Since refreshing always removes one expired descriptor, if there is one,
the memory allocated for descriptors is bounded in the number of refresh calls
between tick-calls, similar to the memory allocated for objects.

The global-refresh-call works similarly but on the globally-clocked bu�er. It
should be used on all objects that may be shared among threads. In contrast, the
local-refresh-call results in less memory consumption but should only be used on
objects that are known to be unshared. Note that replacing global-refresh-calls
on shared objects by local-refresh-calls is possible but may involve concurrent
reasoning. For example, in a producer-consumer scenario with a lock-protected

5 http://httpd.apache.org/

communication bu�er, the producer may invoke local-refresh-calls on the objects
in the bu�er but only advance its thread-local time when it holds the lock on
the bu�er. Conversely, the consumer must then invoke local-refresh-calls on the
objects it removes from the bu�er before releasing the lock in order to prevent
any premature expiration.

The tick-call computes the thread-local, thread-global, and global times, as
described in Section 3.1, in O(1). The call also expires, similar to a refresh-call,
one descriptor from the expired-descriptor list, if there is one. This is optional
but may improve performance. Note that, in future work, we may choose to
expire descriptors also in all other calls such as the malloc-call and free-call, and
to expire more than one descriptor per call as long as it is a constant number of
descriptors. Another option is running auxiliary threads that expire descriptors
concurrently to the mutator.

The tick-call requires a lock but only when it actually advances the global
time, which is anyway only done by a single thread. The lock is still required
to protect the thread against interference from threads that have just been cre-
ated and are now registering with the short-term memory management system.
Thread creation and thus registration is a process that is likely to be much less
frequent than the invocation of tick-calls. Contention on the lock may therefore
be unlikely.

Managing memory objects in persistent or short-term memory can now be
done as follows. A malloc-call allocates persistent memory for a given object. As
long as the object is not refreshed, it remains in persistent memory and thus
requires explicit deallocation by a free-call. However, the �rst refresh-call on the
object, even with an expiration extension of zero, logically transfers the object
to short-term memory. Then, explicit deallocation is unnecessary and should be
replaced by invoking tick-calls instead. A free-call on the object is still possible
but should be avoided since it may lead to double-freeing. Note that the malloc-
call could also do both allocation and refresh in one step, which we nevertheless
chose not to do for backwards compatibility.

Thread registration. Thread registration is the only O(n) operation, where n
is again the compile-time bound on expiration extensions. Thread registration
needs to allocate memory for storing the locally-clocked and globally-clocked
bu�ers, and the expired-descriptor list. However, there may have been threads
in the past that already terminated. Before a thread is destroyed, thread termina-
tion blocks it and saves its bu�ers and list in a global, lock-protected, unbounded
thread-data pool since the thread may still hold descriptors that need to be ex-
pired. When a new thread is later created and registered, thread registration
reuses the bu�ers and lists, if available, instead of allocating new memory. The
new thread is then resumed, as if it already executed and blocked before, and
may thus expire the descriptors of a terminated thread. Other choices such as
auxiliary threads expiring descriptors of terminating threads are possible but
remain future work.

We have already implemented blocking, resuming, registering, and unreg-
istering threads but have only integrated thread registration into the thread

management system. The other operations still require manual invocation. Inte-
grating them as well remains future work.

3.3 Related Work

As already stated in the related work of short-term memory, the work presented
in [17] also describes the use of bu�ers per allocation site with the intention of
eliminating memory leaks. There, cyclic bu�ers whose size is determined in ex-
periments are used. Self-collecting mutators determines bu�er sizes dynamically
depending on tick-calls. Moreover, it allows trading-o� space consumption caused
by sparse tick-calls and time consumption caused by required refresh-calls.

The memory management system described in [17] maintains type safety
as self-collecting mutators for Java does. Other work which provides memory
management type safety to support the design of non-blocking thread synchro-
nization algorithms is reported on in [13]. In [12] the authors propose the use of
type-safe pool allocation to support program analysis.

Reference-counting garbage collectors [9] determine reachability by counting
references pointing to an object. In our C implementation we determine expi-
ration by counting descriptors pointing to an object. A drawback of reference
counting are reference cycles which do not occur in descriptor counting.

The bu�ers in our implementations essentially implement priority queues [10]
where expiration extensions correspond to priorities. It is important to note that
the time complexity of all our bu�er operations is independent of the number
of elements in the bu�er, which may or may not be the case for general priority
queues.

The calculation of global time in self-collecting mutators is related to barrier
synchronization [20]. A barrier forces a set of threads into a global state by
blocking each thread when it has reached a particular point in its execution.
Global time advance corresponds to the global state when all active threads
have ticked at least once in the current global period. However, it does not
impose blocking on the threads. Similar to a barrier, we could also block threads
when they have ticked. In this case, refreshing objects would only require one
instead of two additional time units, potentially reducing memory consumption
at the expense of mutator execution speed. An implementation and adequate
experiments are future work.

Finally, note that the memory behavior of self-collecting mutators can also
be achieved with static preallocation. However, as visible from the benchmarks
in Table 2, self-collecting mutators is convenient to use and does not require
many code changes.

4 Experimental Setup and Evaluation

We discuss performance results obtained with the benchmarks described in Sec-
tion 2.2. The benchmarking setup is shown in Table 3. For the Java benchmarks
we compare self-collecting mutators and two garbage collectors available with

CPU 2x AMD Opteron DualCore, 2.0 GHz

RAM 4GB

OS Linux 2.6.32-21-generic

Java VM Jikes RVM 3.1.0

C compiler gcc version 4.4.3

C allocator ptmalloc2-20011215 (glibc-2.10.1)

Table 3. System con�guration.

Jikes, the mark-sweep garbage collector and the standard garbage collector of
Jikes, a two-generation copying collector where the mature space is handled by an
Immix collector [7]. We measured throughput (total execution time) and mem-
ory consumption of the three Java benchmarks and of four concurrent instances
of the Monte Carlo benchmark. Moreover, for the Monte Carlo benchmark, we
measure latency (loop execution time) for the comparison with the garbage-
collected systems and show, for the single-instance Monte Carlo benchmark,
the e�ect of using di�erent frequencies of tick-call invocations on latency and
memory consumption.

For the C benchmark we compare self-collecting mutators and ptmalloc2.
We measure the average (min/max) execution time of all self-collecting muta-
tors operations, throughput (total execution time), and memory overhead and
consumption.

4.1 Java Benchmarks

For the Java benchmarks we use replay compilation [19] provided by the produc-
tion con�guration of Jikes, which runs a JIT compiler in the recording phase.

Total Execution Time and Memory Consumption We execute each mea-
surement 30 times and calculate the average of the total execution times. We
determine the minimal heap size necessary to execute each benchmark with self-
collecting mutators. The same heap size is then used for the garbage-collected
systems if it su�ces for the execution which is true in all but one benchmark.

MC MC 4×MC JLayer LuIndex
leaky �xed �xed

SCM(1,1) 40MB 40MB 60MB 95MB 370MB

SCM(50,20) 50MB 40MB 70MB / /

aggressive SCM(1,1) / / / 90MB 250MB

GEN 95MB 40MB 70MB 95MB 370MB

MS 100MB 40MB 70MB 95MB 370MB

Table 4. Heap size for the di�erent system con�gurations. SCM(n, k) stands
for self-collecting mutators with a maximal expiration extension of n. A tick-call
is executed every k-th round of the periodic behavior of the benchmark.

For comparison, we also measure the total execution times with double amount
of memory. The minimal heap sizes for the benchmarks are shown in Table 4.

The original Monte Carlo benchmark (MC leaky) is the only benchmark
where garbage-collected systems need signi�cantly more memory to run. The
reason is that MC leaky produces a reachable memory leak which is not col-
lected by a garbage collector. Self-collecting mutators (SCM) reuses the memory
objects in the memory leak upon expiration. Therefore, running the benchmark
with self-collecting mutators requires much less memory than running it with
garbage-collected systems. With self-collecting mutators the MC leaky bench-
mark can be executed in 40MB. We improve the total execution time of the
benchmark by refreshing with an expiration extension of 50 and reducing the
frequency of tick-calls to one every 20th loop iteration (SCM(50,20)) resulting in
the need for 10MB more, i.e., 50MB heap size. The generational garbage collec-
tor (GEN) requires at least 95MB for a successful run whereas the mark-sweep
garbage collector (MS) requires 100MB. We modi�ed the Monte Carlo bench-
mark and removed the memory leak (MC �xed). The MC �xed benchmark needs
only 40MB heap size on all systems. We executed four concurrent instances of
the Monte Carlo benchmark without memory leak (4×MC �xed). The execu-
tion of 4×MC �xed requires 60MB heap size in the SCM(1,1) con�guration of
self-collecting mutators, additional 10MB are needed in the SCM(50,20) con�g-
uration.

The JLayer benchmark needs 95MB heap size to execute and the LuIndex
benchmark needs 370MB. Both of them do not require refreshing. All objects
which would require refreshing in the JLayer benchmark are allocated perma-
nently because their allocation sites are never executed again. In the LuIndex
benchmark tick-calls are only executed when all memory expires, as in Figure 3.
Both benchmarks bene�t from the aggressive space optimization of self-collecting
mutators described in Section 3.2. At some point in time, determined by test
runs, we turn on the aggressive optimization. For the JLayer benchmark this
point in time is after the conversion of ten frames of the mp3 �le, resulting in
memory consumption decreased by 5MB. We execute the LuIndex benchmark
ten times for one measurement, and turn on the optimization after the �rst
round. The reason is that towards the end of the �rst round classes are loaded
dynamically by the VM resulting in memory allocations. We start measuring the
time after the �rst round. In the LuIndex benchmark the e�ect of the aggressive
optimization is signi�cant, it reduces the needed heap size by 120MB.

For the performance measurements of the Monte Carlo benchmarks we use
the SCM(50,20) con�guration. In our experience this con�guration results in
the best performance. We measure the performance of the systems with the
heap sizes shown in Table 4 as well as with doubled amount of memory. The
results are shown in Figure 9. Self-collecting mutators is slightly faster than the
garbage-collected systems, even when more memory is available. The sharing of
the bu�ers in self-collecting mutators between concurrent threads does not a�ect
the performance much because the contention on each bu�er is low. The JLayer
and LuIndex benchmarks were not measured with the SCM(50,20) con�gura-

 96

 98

 100

 102

 104

 106

 108

 110

 112

 114

 116

MC leaky MC fixed 4xMC fixed

to
ta

l
ru

n
ti
m

e
 i
n

 %
 o

f
th

e
 r

u
n
ti
m

e
 o

f
S

C
M

 (

lo
w

e
r

is
 b

e
tt
e
r)

Monte Carlo Benchmarks

SCM(50,20)
GEN

MS

SCM(50,20) double memory
GEN double memory

MS double memory

Fig. 9. Total execution time of the Monte Carlo benchmarks in percentage of
the total execution time of the benchmark using self-collecting mutators.

 99

 99.5

 100

 100.5

 101

 101.5

 102

 102.5

 103

 103.5

 104

JLayer LuIndex

to
ta

l
ru

n
ti
m

e
 i
n

%
 o

f
th

e
 r

u
n
ti
m

e
 o

f
S

C
M

 (

lo
w

e
r

is
 b

e
tt
e
r)

SCM(1,1)
aggressive SCM(1,1)

GEN
MS

GEN double memory
MS double memory

Fig. 10. Total execution time of the JLayer and the LuIndex benchmarks in
percentage of the total execution time of the benchmark using self-collecting
mutators.

tion since they do not require refreshing and SCM(50,20) induces additional
overhead. These benchmarks were measured with the SCM(1,1) con�guration
as well as with the aggressive space optimization, the results are shown in Fig-
ure 10. Note that the aggressive optimization may result in decreased execution
time as in the JLayer benchmark or in increased execution time as in the LuIn-
dex benchmark. Self-collecting mutators is competitive to the garbage-collected
systems in temporal performance of all benchmarks.

Loop Execution Time and Memory Consumption To measure the pause
times of the memory management system and the memory consumption we
recorded the loop execution time and the amount of free memory at the end of
every loop iteration in the Monte Carlo benchmark.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500
 100

 1000

 10000

 100000

fr
e
e
 m

e
m

o
ry

 i
n
 M

B

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

lo
o
p
 e

x
e
c
u
ti
o
n
 t
im

e

 i
n
 m

ic
ro

s
e
c
o
n
d
s
 (

lo
g
a
ri
th

m
ic

)
 (

lo
w

e
r

is
 b

e
tt
e
r)

loop iteration

GEN free memory
MS free memory

SCM free memory

GEN loop execution time
MS loop execution time

SCM loop execution time

Fig. 11. Free memory and loop execution time of the �xed Monte Carlo bench-
mark.

Figure 11 shows the free memory and the loop execution time of the �xed
Monte Carlo benchmark. The amount of free memory is nearly constant when the
benchmark is executed with self-collecting mutators. New result objects are allo-
cated in every loop iteration, but they do not require much space. The loop execu-
tion time is nearly constant. It has a jitter of less than 100 microseconds. Both
garbage-collected systems have similar loop execution times as self-collecting
mutators except for the iterations in which garbage collection is triggered. The

loop execution time is much larger then. The free-memory curve of the garbage-
collected systems looks like a saw-tooth curve which has a peak after every
garbage collection run. The chart depicts the �rst 2500 loop iterations, further
iterations show the same pattern.

 93

 93.02

 93.04

 93.06

 93.08

 93.1

 93.12

 93.14

 93.16

 93.18

 93.2

 0 5 10 15 20
 100

 1000

 10000

 100000

fr
e
e
 m

e
m

o
ry

 i
n
 M

B

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

lo
o
p
 e

x
e
c
u
ti
o
n
 t
im

e

 i
n
 m

ic
ro

s
e
c
o
n
d
s

 (
lo

w
e
r

is
 b

e
tt
e
r)

loop iteration

loop execution time thread1
loop execution time thread2
loop execution time thread3
loop execution time thread4

free memory thread1
free memory thread2
free memory thread3
free memory thread4

Fig. 12. Free memory and loop execution time of four concurrent instances of
the Monte Carlo benchmark using self-collecting mutators.

Next we measure the memory consumption and the loop execution times
of self-collecting mutators with four concurrent instances of the Monte Carlo
benchmark. Figure 12 shows the �rst 20 loop iterations. The values representing
free memory for a given thread correspond to the overall free memory measured
at the end of a loop iteration of the thread. The memory consumption is con-
stant (also for all further iterations), but the system initially requires some loop
iterations to �nd its steady state. Thereafter the bu�ers of all allocation sites
are large enough and no additional memory is needed. The loop execution time
still does not vary much.

At last we analyze the time-space trade-o� controlled by the number of loop
iterations per tick-call. The loop execution times are shown in Figure 13, the
free memory over time is visualized in Figure 14. For the measurements we
considered three scenarios: tick at every loop iteration, tick at every 50th loop
iteration and tick at every 200th iteration. We distributed the required refresh-
calls uniformly over all time units to achieve full incrementality. As a result, the
loop execution time has only small variance. The results show that the more
ticks, and thus the more refreshing happens, the greater the loop execution time
is. However, with less ticks memory consumption increases. When a tick-call is
executed only every 200th loop iteration, memory consumption is maximal, but
temporal performance is much better than in the scenario with one tick every

 500

 1000

 5000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

lo
o
p
 e

x
e
c
u
ti
o
n
 t
im

e
 i
n

 m
ic

ro
s
e
c
o
n
d
s
 (

lo
g
a
ri
th

m
ic

)
 (

lo
w

e
r

is
 b

e
tt
e
r)

loop iteration

1 tick/1 iteration
1 tick/50 iterations

1 tick/200 iterations

Fig. 13. Loop execution time of the Monte Carlo benchmark with di�erent tick
frequencies. Self-collecting mutators is used.

 16

 18

 20

 22

 24

 26

 28

 1 10 100 1000

fr
e
e
 m

e
m

o
ry

 i
n
 M

B

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

loop iteration (logarithmic)

1 tick/1 iteration
1 tick/50 iterations

1 tick/200 iterations

Fig. 14. Free memory of the Monte Carlo benchmark with di�erent tick frequen-
cies. Self-collecting mutators is used.

loop iteration and slightly better than in the scenario with one tick every 50th
loop iteration.

Note that the total number of allocated objects increases over time requiring
more and more refreshing. This explains not only the obvious increase in loop
execution time when ticking every loop iteration but also the slight increase in
loop execution time when ticking every 50th and every 200th loop iteration,
nearly not visible in the �gure. Memory consumption increases as time elapses
since a new result object is allocated in every loop iteration. Temporal and spatial
performance appear to be inversely proportional, for example, the scenario with
the least frequent tick-calls is the fastest because of less refreshing but is the
most memory-consuming.

4.2 C Benchmarks

We �rst discuss the average (min/max) execution time of the self-collecting
mutators operations measured during the execution of the mpg123 benchmark.
We then compare self-collecting mutators and ptmalloc2 with this benchmark,
�rst in terms of total execution time and then in terms of memory overhead and
consumption.

Table 5 shows the execution times in CPU clock cycles of the memory man-
agement operations in the mpg123 benchmark averaged over 100 repetitions. The
middle and the right column show the results when persistent and short-term
memory memory are used, respectively. The results con�rm that self-collecting
mutators introduce negligible runtime overhead when persistent memory is used.
Interestingly, the average execution time of allocation is less (138 cycles versus
166 and 172 cycles) when short-term memory is used probably because here self-
collecting mutators allocates and deallocates memory in a di�erent order than
when persistent memory is used. The other entries for short-term memory show
that the bound on expiration extensions and the descriptor page size do not
in�uence execution times.

The total execution times of the mpg123 benchmark averaged over 100 rep-
etitions are shown in Table 6. We experiment with several con�gurations of
self-collecting mutators using the expiration extension bounds 1 and 10, and the
descriptor page sizes 256B and 4KB. Note that in the mpg123 benchmark we
only use an expiration extension of zero. In each loop iteration of the benchmark
27 descriptors are created. The total execution time is nearly the same for all
con�gurations, independently of using local-refresh-calls or global-refresh-calls.
However, memory overhead and consumption does di�er as discussed next.

The memory overhead for storing descriptors and descriptor counters as well
as the total memory consumption of the mpg123 benchmark is shown in Fig-
ure15. Memory overhead and consumption are measured before and after every
malloc-call. The expiration extension bound 10 obviously introduces more mem-
ory overhead than the bound 1. The descriptor bu�ers clearly introduce less
overhead with 256B than with 4KB descriptor pages.

The ptmalloc2 system already deallocates and reuses the memory of some ob-
jects within one loop iteration. With self-collecting mutators memory consump-

persistent MM short-term MM

malloc of ptmalloc2 166 (78 / 199k) /

free of ptmalloc2 86 (14 / 169k) /

malloc of SCM 172 (82 / 267k) 138 (75 / 271k)

free of SCM 91 (10 / 157k) /

local-refresh(1, 256B) / 227 (131 / 548k)

local-refresh(10, 256B) / 225 (131 / 548k)

local-refresh(1, 4KB) / 228 (131 / 548k)

local-refresh(10, 4KB) / 230 (131 / 548k)

global-refresh(1, 256B) / 226 (116 / 551k)

global-refresh(10, 256B) / 224 (116 / 551k)

global-refresh(1, 4KB) / 227 (116 / 551k)

global-refresh(10, 4KB) / 228 (116 / 551k)

local-tick(1, 256B) / 378 (277 / 164k)

local-tick(10, 256B) / 359 (277 / 71k)

local-tick(1, 4KB) / 375 (277 / 164k)

local-tick(10, 4KB) / 366 (277 / 164k)

global-tick(1, 256B) / 367 (229 / 169k)

global-tick(10, 256B) / 352 (229 / 151k)

global-tick(1, 4KB) / 365 (229 / 169k)

global-tick(10, 4KB) / 361 (229 / 169k)

Table 5. Average (min/max) execution time in CPU clock cycles of the memory
management operations in the mpg123 benchmark. Here, e.g. local-refresh(n,m)
stands for the local-refresh-call with a maximal expiration extension of n and
descriptor page size m. When local/global-refresh is used then the tick-call is
denoted by local/global-tick.

ptmalloc2 895.25ms 100.00%

ptmalloc2 through SCM 899.43ms 100.47%

local-SCM(1, 256B) 890.18ms 99.43%

local-SCM(10, 256B) 898.28ms 100.34%

local-SCM(1, 4KB) 892.18ms 99.66%

local-SCM(10, 4KB) 892.28ms 99.67%

global-SCM(1, 256B) 893.76ms 99.83%

Table 6. Total execution times of the mpg123 benchmark averaged over 100 rep-
etitions. Here, local/global-SCM(n,m) stands for self-collecting mutators with a
maximal expiration extension of n and descriptor page sizem, using local/global-
refresh.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180

number of allocations

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

tick tick tick tick tick

m
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 i
n
 K

B

 (

lo
w

e
r

is
 b

e
tt
e
r)

ptmalloc2 (1)
local-SCM(1, 256B)(2)

space-overhead(1, 256B)(3)
global-SCM(1, 256B)(4)
local-SCM(10, 256B)(5)

space-overhead(10, 256B)(6)
local-SCM(1, 4KB)(7)

space-overhead(1, 4KB)(8)
local-SCM(10, 4KB)(9)

space-overhead(10, 4KB)(10)

Fig. 15. Memory overhead and consumption of the mpg123 benchmark. Again,
local/global-SCM(n,m) stands for self-collecting mutators with a maximal ex-
piration extension of n and descriptor page size m, using local/global-refresh.
We write space-overhead(n,m) to denote the memory overhead of the local-
SCM(n,m) con�gurations for storing descriptors and descriptor counters.

tion is higher because objects allocated in one loop iteration are not deallocated
before the next loop iteration. The use of the global-refresh-call introduces three
times more memory consumption than the use of the local-refresh-call because
the descriptors and thereby the corresponding objects expire later.

Self-collecting mutators is also competitive to explicit deallocation in tem-
poral performance of the mpg123 benchmark, at the expense of moderately
increased memory consumption. However, self-collecting mutators signi�cantly
simpli�es memory management usage over explicit deallocation as shown in Ta-
ble 2.

5 Conclusion and Future Work

We proposed the short-term memory model and presented Java and C imple-
mentations of a memory management system called self-collecting mutators that
uses the model. In short-term memory objects are allocated with an expiration
date, which makes deallocation unnecessary. Self-collecting mutators provides
constant-time memory operations, supports concurrency, and performs compet-
itively with garbage-collected and explicitly managed systems. Moreover, short-
term memory consumption typically becomes constant after an initial period of
time. We presented experiments that con�rm our claims in a number of bench-
marks.

We informally described a simple translation scheme for porting existing
programs to self-collecting mutators. In most of the benchmarks we only had to
insert a negligible number of lines of code compared to the total number of lines
of code. Using self-collecting mutators was here almost as easy as programming in
a garbage-collected system, yet with decreased runtime overhead and improved
predictability.

As near-term future work, we plan to implement the multiple-expiration-
dates approximation in Java in order to deal with blocking and faulty threads.
The challenge will be to support recursive refresh. In the C implementation we
plan to �nish integrating blocking, resuming, and unregistering threads into the
thread management system, and perform further experiments on non-trivial,
concurrent benchmarks. Additionally, we started working on implementing the
multiple-expiration-dates approximation for Go. The challenge will probably be
to maintain the scalability of goroutines.

Medium-term future work may be on fully time- and space-predictable mem-
ory management by combining self-collecting mutators with real-time allocators
such as Compact-�t [11] and comparing the result with real-time garbage col-
lectors such as Metronome [4]. More long-term research may focus on exploring
di�erent time de�nitions, e.g. based on real time, but also establishing correct-
ness, by providing a program analysis tool for automatic translation of programs
to short-term memory or more advanced runtime support.

References

1. Aigner, M., and Haas, A. Short-term memory implementation for C, 2010.
http://tiptoe.cs.uni-salzburg.at/short-term-memory/.

2. Aigner, M., Haas, A., Kirsch, C. M., Payer, H., and Sokolova, A. Short-
term memory for self-collecting mutators. Tech. Rep. TR 2010�03, University of
Salzburg, 2010.

3. Alpern, B., Attanasio, C. R., Barton, J. J., Burke, M. G., Cheng, P.,

Choi, J.-D., Cocchi, A., Fink, S. J., Grove, D., Hind, M., Hummel, S. F.,

Lieber, D., Litvinov, V., Mergen, M. F., Ngo, T., Russell, J. R., Sarkar,

V., Serrano, M. J., Shepherd, J. C., Smith, S. E., Sreedhar, V. C., Srini-

vasan, H., and Whaley, J. The Jalapeño virtual machine. IBM Syst. J. 39, 1
(2000), 211�238.

4. Bacon, D. F., Cheng, P., and Rajan, V. T. A real-time garbage collector
with low overhead and consistent utilization. In Proc. POPL (2003), ACM.

5. Bacon, D. F., Cheng, P., and Rajan, V. T. A uni�ed theory of garbage
collection. In Proc. OOPSLA (2004), ACM.

6. Blackburn, S. M., Garner, R., Hoffmann, C., Khang, A. M., McKinley,

K. S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z.,

Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss, J. E. B., Moss, B.,

Phansalkar, A., Stefanovi¢, D., VanDrunen, T., von Dincklage, D., and

Wiedermann, B. The DaCapo benchmarks: Java benchmarking development and
analysis. In Proc. OOPSLA (2006), ACM.

7. Blackburn, S. M., and McKinley, K. S. Immix: a mark-region garbage collec-
tor with space e�ciency, fast collection, and mutator performance. In Proc. PLDI

(2008), ACM.
8. Bond, M. D., and McKinley, K. S. Leak pruning. In Proc. ASPLOS (2009),

ACM.
9. Collins, G. E. A method for overlapping and erasure of lists. Commun. ACM

3, 12 (1960), 655�657.
10. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction

to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001, ch. 6.5: Priority
queues, pp. 138�142.

11. Craciunas, S. S., Kirsch, C. M., Payer, H., Sokolova, A., Stadler, H.,

and Staudinger, R. A compacting real-time memory management system. In
Proc. ATC (2008), USENIX.

12. Dhurjati, D., Kowshik, S., Adve, V., and Lattner, C. Memory safety
without runtime checks or garbage collection. In Proc. LCTES (2003), ACM.

13. Greenwald, M. Non-blocking synchronization and system design. Tech. rep.,
Stanford University, 1999.

14. Jump, M., and McKinley, K. S. Cork: dynamic memory leak detection for
garbage-collected languages. In Proc. POPL (2007), ACM.

15. Mathew, J. A., Coddington, P. D., and Hawick, K. A. Analysis and devel-
opment of Java Grande benchmarks. In Proc. JAVA (1999), ACM.

16. McCarthy, J. Recursive functions of symbolic expressions and their computation
by machine, Part I. Commun. ACM 3, 4 (1960), 184�195.

17. Nguyen, H. H., and Rinard, M. Detecting and eliminating memory leaks using
cyclic memory allocation. In Proc. ISMM (2007), ACM.

18. Oancea, C. E., Mycroft, A., and Watt, S. M. A new approach to parallelis-
ing tracing algorithms. In Proc. ISMM (2009), ACM.

19. Ogata, K., Onodera, T., Kawachiya, K., Komatsu, H., and Nakatani,

T. Replay compilation: improving debuggability of a just-in-time compiler. In
Proc. OOPSLA (2006), ACM.

20. Tanenbaum, A. S. Modern Operating Systems. Prentice Hall, 2001.
21. Tofte, M., and Talpin, J.-P. Region-based memory management. Inf. Comput.

132, 2 (1997), 109�176.

