
Scal: Non-Linearizable Computing
Breaks the Scalability Barrier

Christoph M. Kirsch Hannes Payer Harald Röck

Technical Report 2010-07 November 2010

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series

ScalA: Non-Linearizable Computing
Breaks the Scalability Barrier?

Christoph M. Kirsch Hannes Payer HaraldRöck

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. We propose a relaxed version of linearizability and a set of load bal-
ancing algorithms for trading off adherence to concurrent data structure seman-
tics and scalability. We consider data structures that store elements in a given
order such as stacks and queues. Intuitively, a concurrent stack, for example, is
linearizable if the effect of push and pop operations on the stack always occurs
instantaneously. A linearizable stack guarantees that pop operations return the
youngest stack elements first, i.e., the elements in the reverse order in which the
operations that pushed them onto the stack took effect. Linearizability allows to
reorder concurrent (but not sequential) operations arbitrarily. We relax lineariza-
bility to k-linearizability with k > 0 to also allow sequences of up to k−1 sequen-
tial operations to be reordered arbitrarily and thus execute concurrently. With a
k-linearizable stack, for example, a pop operation may not return the youngest but
the k-th youngest element on the stack. It turns out that k-linearizability may be
tolerated by concurrent applications such as process schedulers and web servers
that already use it implicitly. Moreover, k-linearizability does provide positive
scalability in some cases because more operations may be executed concurrently
but may still be too restrictive under high contention. We therefore propose a
set of load balancing algorithms, which significantly improve scalability by ap-
proximating k-linearizability probabilistically. We introduce Scal, an open-source
framework for implementing k-linearizable approximations of concurrent data
structures, and show in multiple benchmarks that Scal provides positive scalabil-
ity for concurrent data structures that typically do not scale under high contention.

1 Introduction

Making data structures concurrent typically involves some form of synchronization that
relies on lock-based, lock-free, or even wait-free mechanisms. The challenge has been
to guarantee correctness, that is, linearizability [11], while still providing scalability.
This is a highly non-trivial problem, in particular, as the number of available cores in
modern systems rapidly increases. The scalability of applications is limited by Am-
dahl’s Law, which states that the degree to which we can speed up an application on
a multi-core system is limited by the amount of code that cannot be parallelized and
must be executed sequentially. Since operations on shared data structures may not be

? This work is supported by the EU ArtistDesign Network of Excellence on Embedded Systems
Design and the Austrian Science Fund No. P18913-N15.

fully parallelized there is an intrinsic concurrency bottleneck in many applications us-
ing shared data structures that gets increasingly problematic with an increasing number
of cores.

Even basic linearizable data structures such as stacks and queues have negative
scalability under high contention due to synchronization. However, it turns out that
linearizability is often not needed. Consider, for example, a webserver which stores
incoming requests in a shared FIFO queue running on a server machine with possibly
hundreds of cores. Requests are dequeued and handled by worker threads at a later point
in time. In such a scenario it is often not important to process the requests in perfect
FIFO order. Instead, it may be sufficient if the order in which the requests are handled
is FIFO up to a constant that bounds the deviation from FIFO order for fairness.

We therefore propose to relax linearizability to k-linearizability for trading off ad-
herence to data structure semantics and scalability. Linearizability requires that each
data structure operation takes effect at some time instant between its invocation and its
response. In particular, concurrent operations, which overlap in time, may take effect in
arbitrary order whereas sequential, i.e., non-overlapping operations must take effect in
sequential order. The notion of k-linearizability with k > 0 also allows sequences of up
to k−1 sequential operations to be reordered arbitrarily and thus execute concurrently.

We describe and analyse an open-source framework called Scal for implementing
k-linearizable approximations of concurrent data structures. Instead of a single instance
of a data structure Scal maintains k so-called partial data structures, which are identi-
cal instances of the original data structure, and a load balancing select function that
distributes data structure operations among the k partial data structures. For exam-
ple, a k-linearizable FIFO queue provides fairness up to k, i.e., it guarantees that a
dequeue operation on the FIFO queue returns one of the k oldest elements. However, k-
linearizability may still be too restrictive under high contention since the select function
still requires synchronization. We therefore propose probabilistic, synchronization-free
algorithms as alternative implementations of the select function, which significantly im-
prove scalability by randomly distributing data structure operations among the k partial
data structures. In this case, k-linearizability is only approximated with some probabil-
ity.

The value of k directly determines the scalability of the data structure, i.e., it deter-
mines how many data structure operations can potentially be performed concurrently
and in parallel without causing contention. In Scal different types of linearizable data
structures can be implemented as k-linearizable data structures. In particular, the syn-
chronization mechanism of the original data structure is orthogonal to Scal. Note that k
and the select function can be configured by the programmer at compile time or online
with the help of performance counters. For example, a select function may be chosen
with k = 1 under low contention and with increasing k as contention increases. Scal
provides the same interface as the original data structures and allows to express con-
currency just in the variable k, which may result in a software engineering benefit. Pro-
grammers do not need to worry about complex implementation techniques to improve
the scalability of data structures [15].

We claim the following contributions: 1. The notion of k-linearizability and a set
of load balancing algorithms for trading off adherence to data structure semantics and

scalability. 2. The design of Scal that provides k-linearizability for concurrent data struc-
tures using load balancing select functions and partial data structures. 3. The implemen-
tation of Scal that consists of various load balancing select functions and data structures
which can be arbitrarily combined. 4. An evaluation of Scal and a detailed analysis of
its components. The results of the experiments confirm that Scal shows in the presented
benchmarks positive scalability for concurrent data structures that typically do not scale
under high contention.

The rest of the paper is organized as follows. In Section 2 we introduce the notion of
k-linearizability and its properties. In Section 3 we present the generic structure of Scal
as well as different select functions and data structures. In Section 4 we discuss related
work. Experimental results are presented and discussed in Section 5. The conclusion is
in Section 6.

2 k-Linearizability

The definition of k-linearizability is based on the original definitions of sequentiality
and linearizability [11]. Sequentiality and linearizability are correctness conditions that
determine in which order concurrent operations on a shared data structure may be per-
formed such that each operation appears to take effect instantaneously. We consider
data structures such as stacks and queues that provide an insert and a remove operation,
and store elements in a given order determined by an ordering condition such as last-in
first-out (LIFO), first-in first-out (FIFO), or highest priority first. We focus on stacks
and queues here since k-linearizability has an effect on the order in which elements are
stored that is monotone in k, i.e., the larger the k the more the elements may be out-of-
order, cf. Proposition 1. Monotonicity establishes a bounded relationship between ad-
herence to data structure semantics and k-linearizability and thus scalability. However,
note that, similar to the definition of linearizability, our definition of k-linearizability
works for any concurrent data structure. In the following we discuss correctness and
ordering conditions in more detail and then introduce the definition of k-linearizability.

We use the concept of a history H to model the execution of a concurrent system. A
history H is a finite sequence of invocation and response events of operations performed
by concurrent threads on a shared data structure. An operation op0 precedes operation
op1, if the response event of op0 happens before the invocation of op1. The sequential
order in which a single thread performs operations is called program order. We omit
further details and refer the reader for a formal definition of a history as well as for how
histories are verified to be sequential or linearizable to [11, 10].

Let Σ be the set of possible states of a shared data structure after applying a history
H to an empty instance of the shared data structure using a correctness condition ξ
and an ordering condition o. The states in Σ are sequences of elements which may be
stored in the data structure instance after performing a series of concurrent operations.
Elements in the sequences are ordered from left to right. For example, using ordering
condition FIFO an insert operation adds an element to the right end of the sequence and
a remove operation removes the left-most element of the sequence. Let function Φ :
H ×Ξ×Ω→Π return a set Σ ∈Π of possible states for a history H ∈H , a correctness
condition ξ ∈ Ξ, an ordering condition o ∈ Ω, where H , Ξ, Ω, and Π are the sets of

histories, correctness conditions, ordering conditions, and possible states of a shared
data structure, respectively.

insert() =remove()

insert()

insert()

time

time

Fig. 1. History H1

Sequentiality requires operations performed by a single thread on a shared data
structure to take effect in program order. The relative order of operations performed by
different threads does not need to be kept. A history H is sequential if the first event of
H is an invocation that is immediately followed by a matching response, and each re-
sponse is immediately followed by an invocation (except possibly the last one). Figure 1
shows a history H1 of two threads performing insert and remove operations on a shared
data structure. The possible states of a shared data structure after applying history H1,
correctness condition sequentiality, and ordering condition FIFO to an empty instance
of the shared data structure are

Φ(H1,sequentiality,FIFO) = {< B1,A2 >,< A2,B1 >}.
The remove operation of history H1 returns element A1 which must therefore be the

first element stored in the data structure instance. Elements B1 and A2 may be stored
in arbitrary order since the order of operations performed by different threads does not
need to be kept.

Linearizability requires that each data structure operation takes effect at some time
instant between its invocation and response. A history H is linearizable if there is a
sequential history S which implements H such that, if operation op0 precedes operation
op1 in H, then the same is true in S. Hence, operations in a linearizable history which
overlap in time may take effect in arbitrary order whereas non-overlapping operations
must take effect in sequential order. Let us consider again history H1 of Figure 1. The
insert operations of elements A1 and B1 overlap in time and may therefore take effect
in arbitrary order whereas the insert operations of elements B1 and A2 do not overlap in
time and therefore must take effect in sequential order. Thus there is one possible state
of a shared data structure after applying history H1, correctness condition linearizability,
and ordering condition FIFO to an empty instance of the shared data structure:

Φ(H1, linearizability,FIFO) = {< B1,A2 >}.
Next we introduce the notion of virtual delay, which allows us to weaken the orig-

inal correctness conditions by increasing the number of possibilities to reorder opera-
tions. We assume that each operation returns at its response event but may then still be
virtually delayed until its so-called virtual response event. The time span between the
response event and the virtual response event of an operation is called virtual delay.

insert()

insert()

insert()

=remove()

time

virtual delay

virtual delay

virtual delay

virtual delay

time

Fig. 2. History H2 with virtual delay 1

Non-overlapping operations can be extended with virtual delays to become opera-
tions that overlap. As a result, the order in which these operations take effect can be
changed since they happen virtually in parallel. Note that even operations of a single
thread can be extended with virtual delays to overlap, which allows us to change the
program order of these operations, as depicted in Figure 2. Using the notion of virtual
delay we define k-sequentiality as follows.

Definition 1 (k-Sequentiality) A history Hk is k-sequential with k > 0 if it is obtained
from a sequential history H by virtually delaying each response event in H until the
(k−1)th subsequent response event.

We also say that a k-sequential history is a history with virtual delay k−1. Note that
1-sequentiality is equivalent to sequentiality, i.e., a sequential history is a history with
virtual delay 0. The possible states of a shared data structure after applying history H2,
correctness condition 2-sequentiality, and ordering condition FIFO to an empty instance
of the shared data structure are

Φ(H2,2−sequentiality,FIFO) = {< A1,B1 >,< B1,A1 >}.
The insert operations of elements A1 and A2 virtually overlap in time and may there-

fore take effect in arbitrary order. Element A2 happens to be the first element returned
by the remove operation, so it must be the first element in the data structure. Elements
A1 and B1 may be stored in arbitrary order in the data structure.

The program order of the operations performed by thread T1 in H2 without virtual
delay determines that element A1 must be located in the shared FIFO queue before
element A2, but A2 is returned by the remove operation before A1. This implies that
the program order is not kept. Hence, history H2 is not sequential and therefore not
linearizable, but it is 2-sequential.

Next k-linearizability is defined according to the original definition of linearizabil-
ity [11].

Definition 2 (k-linearizability) A history H is k-linearizable if there is a k-sequential
history S which implements H such that, if operation op0 precedes operation op1 in H,
then the same is true in S.

We say that a data structure is k-linearizable if all valid histories of its use are k-
linearizable. Note that 1-linearizability is equivalent to linearizability. Let us consider
again history H2 of Figure 2. The possible states of a shared data structure after applying

history H2, correctness condition 2-linearizability, and ordering condition FIFO to an
empty instance of the shared data structure are:

Φ(H2,2−linearizability,FIFO) = {< A1,B1 >}.
The insert operations of elements A1 and A2 virtually overlap in time. The insert

operations of elements A1 and B1 do not overlap in time. Element A2 is the first element
returned by the remove operation. Therefore, element A1 must be the second element
in the data structure followed by element B1 which results in the data structure state
mentioned above.

The following proposition states how different virtual delays affect the number of
possible data structure states after applying a given k-linearizable history to a shared
data structure.

Proposition 1 For a given history H, correctness condition k-linearizability, and an
ordering condition o, it holds that, for any virtual delays k1−1 and k2−1 with k1 > 0
and k2 > 0, if k1 ≤ k2 then Φ(H,k1−linearizability,o)⊆Φ(H,k2−linearizability,o).

A larger virtual delay increases the number of possibilities to reorder
data structure operations of a given history, which results in a larger num-
ber of possible shared data structure states and therefore increasingly weak-
ens shared data structure semantics. For k1 = k2 Proposition 1 holds triv-
ially since Φ(H,k1−linearizability,o) = Φ(H,k1−linearizability,o). If k1 < k2
and if all operations in history H are overlapping with each other then again
Φ(H,k1−linearizability,o) = Φ(H,k2−linearizability,o). Otherwise the larger virtual
delay of k2 allows more reordering combinations of operations then k1 which results in
Φ(H,k1−linearizability,o)⊂Φ(H,k2−linearizability,o).

3 Scal: k-linearizable data structures

Scal implements k-linearizable data structures using a select function and k partial data
structures, which are identical instances of a given data structure. The select function
determines on which partial data structure an operation is performed. Scal introduces
a wrapper that distributes operations on the partial data structures as depicted in the
pseudo code in Listing 1.1. The actual data structure operation is given in the param-
eters of the generic Scal op function, e.g. as a function pointer. In case of an insert
operation the parameters contain the given element and the return statement returns
a boolean value indicating whether the insert operation was successful. In case of a
remove operation an element is returned if the data structure is not empty, otherwise
NULL is returned.

In the following we discuss different types of select functions, partial data struc-
tures, possible optimizations, and concurrency patterns.

3.1 Select Function

A select function that provides k-linearizability must distribute operations over the k
partial data structures evenly. Achieving an even distribution of operations requires

Listing 1.1. Scal generic structure

1 op(data_structure , parameters) {
2 partial_ds = select(data_structure);
3 return partial_op(partial_ds , parameters);
4 }

expensive global coordination mechanisms, which may anyway provide positive scal-
ability in some cases because more operations may be executed concurrently but
may still be too restrictive under high contention. Select functions that approximate
k-linearizability probabilistically without global coordination may scale to a larger
amount of concurrent load. In this case, the adherence to the given data structure se-
mantics may not be weakened much further as long as the k is sufficiently large and the
data structure is sufficiently utilized. In general, the better a select function distributes
operations over the partial data structures, the more operations can run concurrently
and in parallel, and the better the semantics of the original data structure are approxi-
mated. In addition, a select function should be computationally efficient to minimize its
overhead.

Perfect Load Balancing A select function that provides a perfect balance of opera-
tions and thus k-linearizability can be implemented with global counters that indicate
which partial data structure is to be used next. For example, in a FIFO queue two global
counters are sufficient. One counter indicates on which partial data structure the last
enqueue operation was performed and the other counter indicates on which partial data
structure the last dequeue operation was performed. The global counters are accessed
and modified using atomic operations, which can cause cache conflicts on high con-
tention when multiple threads modify the same memory locations. Positive scalability
can be achieved under low concurrent load since the select function itself is simple and
contention on the shared memory locations rarely happens. A perfectly balancing select
function provides k-linearizability. We refer to it as perfect select function. Note that it
does not provide linearizability for k = 1 in Scal since it is not executed atomically with
the partial data structure operations.

Randomized Load Balancing Another approach is to use a select function that ran-
domly distributes operations over partial data structures. This approach, also known as
randomized load balancing, has been proven to provide good distribution quality if the
random numbers are distributed independently and uniformly [2, 3]. However, generat-
ing such random numbers may be computationally expensive. Therefore, it is essential
to find the right trade-off between quality and overhead of random number generation.
An efficient random number generator that produces evenly distributed random num-
bers was discussed in [17]. The distribution quality of a select function based on a ran-
dom number generator determines the probability of approximating k-linearizability.
We refer to a select function based on a random number generator as random select
function.

Suppose that n operations are performed on k partial data structures using a random
select function. With a probability of at least 1−O(1

k), the maximum number of opera-

tions performed on just one partial data structure is n
k +Θ(

√
n logk

k) [3]. Thus a larger k
leads to a better balance of operations and thus to a higher probability of approximating
k-linearizability.

In order to improve the balancing quality of the random select function d partial
data structures with 1 < d ≤ k may be chosen randomly. Out of the d partial data struc-
tures the instance that contributes most to a better balance is selected. For example,
an enqueue operation on a FIFO queue may be performed on the partial data structure
that contains the fewest elements. We refer to such a select function as d-random se-
lect function. The overhead of the d-random select function increases linearly in d since
the random number generator is called d times. Suppose again that n operations are per-
formed on k partial data structures. With a probability of at least 1−O(1

k), the maximum
number of operations performed on one partial data structure is then n

k +Θ(log logk
d) [3].

The parameter d allows us to trade off balancing quality and global coordination over-
head. Moreover, d = 2 leads to an exponential improvement in the balancing quality in
comparison to the random select function. Note that d > 2 further improves the balanc-
ing quality but only by a constant factor [3]. Again, a larger k leads to a better balance
of operations and thus to a higher probability of approximating k-linearizability.

 0.1

 1

 10

 100

 1000

 10000

 100000

2 4 8 16 32 64 128 256 512 1024 2048 4096

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
th

e
 a

m
o

u
n

t
o

f
p

a
rt

ia
l
d

a
ta

 s
tr

u
c
tu

re
 s

e
le

c
ti
o

n
s
 (

lo
g

 s
c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

k (log scale)

random 2-random 3-random hw-random

Fig. 3. Balancing quality of different random select functions with increasing number of partial
data structures (k)

We conducted several experiments to evaluate the balancing quality of four differ-
ent random select functions: random, 2-random, and 3-random use a simple but efficient
random number generator as discussed in [17]; and hw-random is a random select func-

tion that takes the time stamp counter register of the CPU (RDTSC) modulo k. During
each experiment the select function is executed a million times and we keep track how
often each partial data structure is selected. Figure 3 shows the standard deviation of
the amount of partial data structure selections. For each random select function the ex-
periment is repeated using values between 2 and 4096 for k. For example, the standard
deviation of how often a partial data structure among 16 partial data structures (k = 16)
is selected by the 2-random select function is 1 and 10000 by the hw-random select
function. hw-random produces the worst distribution among the four evaluated select
functions. The experiments also confirm that the d-random select functions provide a
significant improvement in balancing quality in comparison to the random select func-
tion. The standard deviation of the amount of performed operations on the k partial data
structures using the d-random select functions is approximately 1. However, in terms of
execution time the d-random select functions are d times slower than the random select
function since their random number generator is invoked d times more often.

Thread-based Load Balancing Thread-local data can be used as selection criteria for
a select function. For example, a select function can be implemented as a static mapping
between thread IDs and partial data structures. All operations of a given thread are for-
warded to a unique partial data structure. Another example are thread-local round-robin
counters which distribute data structure operations of a single thread in round-robin
manner over the partial data structures. Both strategies are efficient since the select
function is simple and just operates on thread-local data. However, arguing about distri-
bution quality and probability of reaching a given balance is difficult, since the behavior
of all threads operating on the data structure determine the balance and not a global ran-
dom number generator.

Hardware-based Load Balancing A hardware-based select function can take advan-
tage of CPU-local data structures. For example, if a select function is executed by a
given thread on CPU core i it may choose partial data structure i. Similar approaches
are already widely used in various operating systems such as in the Linux scheduler
and in userland programs such as the mostly lock-free memory allocator [7]. CPU-
local data structures increase locality and reduce interconnect traffic. Realizing this in
userland requires mechanisms like multi-processor restartable critical sections [7] or
scheduler activations [1], which give userland programs information about scheduling
decisions. In the future we plan to evaluate hardware-based select functions for userland
applications.

3.2 Partial Data Structures

In Scal a data structure is composed of k partial data structures. Each partial data struc-
ture is an instance of the same unmodified linearizable data structure and treated as a
black box. In particular, a partial data structure uses the same synchronization mecha-
nisms as the original linearizable data structure.

The remove operation of a k-linearizable data structure returns with a probability of
1/k the same element as the original linearizable data structure. A larger k increases the

probability that more operations are performed concurrently and in parallel. However,
it decreases the probability of choosing the partial data structure that approximates the
original data structure semantics best, which weakens the Scal approximation of the
given data structure semantics.

In the following we discuss how different types of data structures that maintain an
order of the stored elements are handled in Scal.

Time-Dependent Data Structures For time-dependent data structures the time instant
of the data structure operation determines the order of the elements in the data structure.

The most prominent representatives of this type of data structure are stacks and
FIFO queues. They typically provide an insert and a remove operation. The semantical
weakening introduced by k-linearizability becomes apparent when performing a remove
operation. The remove operation may return an element that is in timely order at most k
elements away from the element that would have been returned by the linearizable data
structure.

Value-Dependent Data Structures In value-dependent data structures the values of
the elements determine the order of the elements in the data structure. Such data struc-
tures typically provide an insert and a remove operation with a given ordering condition,
e.g., remove the element with the largest value. Prominent representatives of such data
structures are priority queues. Note that in order to balance the elements of a priority
queue, the d-random select function has to take the values of the elements into account
and not just the number of elements in the partial data structures [21, 4].

3.3 Optimizations

Different optimizations can be applied to the generic structure of Scal to improve its
applicability and performance. In the following we discuss a backoff algorithm that
improves the applicability of Scal and a mechanism to tune Scal online to achieve better
scalability.

Backoff Algorithm Some applications are based on the assumption that a remove op-
eration returns an element if there exists at least one element in the data structure, or
that an insert operation fails only if the data structure is full. A k-linearizable data struc-
ture that does not meet these requirements can lead to deadlocks, crashes, or abnormal
behavior of the application. Scal as introduced above does not meet these requirements.
For example, the select function of a remove operation may choose an empty partial
data structure although there exist not empty ones, or the select function of an insert
operation may choose a full partial data structure although there exist not full ones.

In order to correct a bad choice of a select function we propose so-called backoff al-
gorithms. A backoff algorithm can be implemented based on the global state of the data
structure or using a heuristic. The global state, for instance, could be represented by
a counter that holds the number of elements in all partial data structures. The counter
is incremented after a successful insert operation and decremented after a successful

Listing 1.2. Precise backoff algorithm

1 op(data_structure , parameters) {
2 do {
3 partial_ds = select(data_structure);
4 elem = partial_op(partial_ds , parameters);
5 if (valid(elem)) {
6 update(counter , parameters);
7 return elem;
8 }
9 } while (valid(counter , parameters));

10

11 return null;
12 }

Listing 1.3. Heuristic backoff algorithm

1 op(data_structure , parameters) {
2 checks = MAX_CHECKS;
3 while (checks != 0) {
4 partial_ds = select(data_structure);
5 elem = partial_op(partial_ds , parameters);
6 if (valid(elem))
7 return elem;
8 else if (!valid(elem) && checks == 0)
9 return null;

10 checks --;
11 }
12 }

remove operation. If an operation does not succeed the backoff algorithm inspects the
counter to determine whether the data structure is full or empty and restarts or aborts
the operation, as shown in Listing 1.2. Updating and inspecting the global counter re-
quires synchronization and can lead to cache conflicts, which limits scalability and may
deteriorate the overall performance.

A heuristic backoff algorithm may simply retry a certain number of times before
deciding that a data structure operation cannot be performed. Listing 1.3 extends the
generic Scal wrapper of Listing 1.1 with such a heuristic. In the worst case this heuris-
tic chooses MAX CHECKS times an improper partial data structure before aborting.
The average number of retries depends on different factors such as the data structure
operation call rate or the application workload.

We implemented both backoff algorithms discussed above and present experimental
results in Section 5.

Self-tuning Scal The number k of partial data structures and the type of select func-
tion are tuning parameters of Scal. Both parameters influence the scalability and the
semantics of data structures.

In our current implementation of Scal k is set at program startup time. However, k
could be adapted online according to profiling information provided by different per-
formance counters. For example, for lock-based data structures the number of failed
attempts of taking a lock over a given time period or for lock-free data structures the
number of operation retries over a given time period are significant performance indi-
cators. The adaption algorithm for k can be implemented as follows: k can be increased
at any point in time. Decreasing k by l partial data structures puts the data structure
in a transient state where insert operations are performed on the first k− l partial data
structures. Moreover, remove operations may be performed on all k partial data struc-
tures. The end of the state transition is reached when the last l partial data structures are
empty or k is increased by more than l partial data structures.

As discussed in Section 3.1 different select functions provide different performance
benefits depending on the workload. Therefore, it might be beneficial to change the
select function at runtime. Self-tuning Scal is future work.

3.4 Concurrency Patterns

In this section we describe common producer-consumer scenarios and how k-
linearizable data structures may be configured to achieve scalability. The presented pat-
terns may be useful in a number of applications but are not a complete list of patterns
and the proposed configurations may not provide scalability in general.

Static Producer-Consumer Ratio A static producer-consumer ratio exists in appli-
cations that use a static number of producers and consumers, which do not change at
runtime.

In an application with one producer and n consumers or vice versa, the single pro-
ducer or consumer instance may use a select function that distributes data structure
operations over all partial data structures. The n producers or consumers may then be
assigned to a single partial data structure or to a subset of the partial data structures
resulting in cache benefits and reduced interconnect traffic.

In a scenario with a fixed number of m producers and n consumers the producers and
consumers could be assigned to a single partial data structure or to a subset of partial
data structures. A select function that dynamically assigns threads to different partial
data structures may then not be needed.

Dynamic Producer-Consumer Ratio A dynamic producer-consumer ratio can be
found in applications where the number of producers and/or consumers is not known at
application start-up time and can change at runtime.

With a fixed number of producers and a dynamic number of consumers the pro-
ducers can be assigned to a single partial data structure or to a subset of partial data
structures. The consumers may then take advantage of a select function that distributes
operations dynamically over all partial data structures. The same holds for the opposite
setting with a fixed number of consumers and a dynamic number of producers.

If the number of producers and consumers is dynamic, a select function that dis-
tributes operations dynamically over all partial data structures may be used for both
producers and consumers.

4 Related Work

In this section we discuss previous work on concurrent systems and concurrent data
structures that are related to Scal. We implemented some of the related data structures
and evaluated them in experiments in Section 5.

4.1 Concurrent Systems

CPU-local data structures typically help to reduce contention on shared data structures,
improve cache utilization, and reduce interconnect traffic. For example, multi-processor
thread schedulers, like the completely fair scheduler of the Linux kernel, use CPU-local
run queues to eliminate the single linearization point of a global run queue. CPU-local
data structures are mostly used in operating system kernels but there are also userland
applications that take advantage of this design [7]. Random load balancing between
CPU-local run queues of a thread scheduler where each core randomly picks another
core to balance tasks between their CPU-local run queues was discussed in [18]. The
authors showed that such a distributed random load balancing strategy approximates
sufficiently the task order of a scheduler based on a single run queue. A study in the
context of earliest-deadline-first (EDF) schedulers was conducted in [5]. A global EDF
scheduler with a single run queue was compared to a partitioned EDF scheduler that
uses CPU-local run queues. These approaches tolerate a weakening of scheduling se-
mantics in terms of task order to gain performance improvements. Scal is based on the
same idea but provides a generic API to trade off adherence of data structure semantics
and scalability.

Scal is also related to distributed data structures that spread their data over multi-
ple computers. For instance, the distributed hash table presented in [8] uses a special
management unit that handles load distribution, ensures data consistency, and provides
linearizability. The authors showed that such a design provides high throughput and al-
lows to handle a high degree of concurrency. In Scal data is distributed over multiple
instances of the same data structure to control the trade-off between adherence to data
structure semantics and scalability. Note that Scal could in principle distribute partial
data structures over different computers. This is left for future work.

Similar to distributed data structures, distributed databases [22] also spread data
over multiple computers. Google’s BigTable [6] is a special form of a distributed
database designed for large-scale distributed systems. BigTable can be used in differ-
ent kinds of applications while providing scalability. In distributed databases such as
BigTable a database management system (DBMS) is in charge of providing data con-
sistency while balancing the load on the distributed database. The select function of
Scal can be seen as a simple DBMS, which distributes load over partial data structures.

A compiler that generates a parallel program and gives only a statistical accuracy
guarantee on the output is presented in [13]. The generated program does not produce
the same output as its sequential version. This approach simplifies the implementation
of the compiler and provides more possibilities for parallelization. Similar to Scal, but
on a different level, accuracy is traded for performance.

Software transactional memory [20] gained a lot of interest in recent years since it
simplifies programming in a parallel environment and promises better scalability than

traditional lock-based synchronization. k-linearizable data structures are orthogonal to
software transactional memory. They may allow to speed up systems in which soft-
ware transactional memory is used when data structure operations are distributed over
k partial data structures potentially reducing the number of transaction retries.

4.2 Concurrent Data Structures

Concurrent data structures are key components to provide scalability of applications.
Traditionally, scalability of concurrent data structures may be increased by using fine-
grained synchronization mechanisms which may allow a higher degree of concurrency
in comparison to a single global lock.

In [16] the authors proposed a two-lock queue where one lock protects the head
and the other lock protects the tail of the queue. The two locks allow one enqueue
and one dequeue operation to be performed concurrently. The approach does not scale
well when several threads perform enqueue or dequeue operations concurrently. The
same paper introduces a lock-free queue, which is implemented as part of the Java
concurrency package. Under high concurrent load this algorithm does not scale since
all threads apply at least two compare-and-swap operations in the enqueue operation
and one compare-and-swap operation in the dequeue operation. For our experiments
we implemented the lock-free queue and showed that its Scal implementation scales.
Another lock-free queue is the basket queue of Hoffman et al. [12].

Treiber presented a lock-free stack algorithm, which uses a compare-and-swap op-
eration to manipulate the top pointer of a stack [23]. We evaluate this algorithm with
different Scal configurations in our experiments and show that it scales with Scal. The
performance of the lock-free stack algorithm can be improved by using a so-called
elimination backoff stack [9]. It combines complementary data structure operations of
threads to minimize global data structure access. A non-linearizable stack algorithm
based on the elimination tree technique was proposed in [19]. It is a lock-free algorithm
which introduces a high constant overhead. This significantly degrades performance
under low concurrent loads. Additionally, it is not linearizable and the authors do not
discuss the trade-off between data structure semantics and scalability.

Priority queues based on skip-lists allow fine-grained synchronization but also suf-
fer from synchronization overhead. In our experiments we evaluate the lock-based skip-
list algorithm presented in [14] and show that it scales in Scal. A skip-list is composed
of a set of sorted linked lists. Each list has a level, ranging from the lowest level 0 to a
given maximum level. List level 0 contains all the list elements and each higher-level list
is a sublist of the lower-level lists containing links to the lower level. The higher-level
lists can be viewed as shortcuts into the lower-level lists. An element in the skip-list is
found by starting at the highest-level list. Each level is traversed until the right short-
cut to the lower level is found which is used to descend in the level hierarchy. This
procedure is performed until list level 0 is reached where the elements are located.

5 Experiments

In this section we discuss the results of our experiments. We evaluate the overhead
of Scal and compare different lock-based and lock-free data structures with their k-
linearizable counterparts.

All experiments ran on a server machine with four 6-core 2.1GHz AMD Opteron
processors (24 cores) and 48GB of memory on Linux 2.6.32. In all experiments the
benchmark threads were executed with real-time priorities to minimize system jitter.
All algorithms are implemented in C and compiled using gcc 4.3.3 with -O3 optimiza-
tions. Allocation and deallocation of elements used in the data structures was done on a
thread-local basis to minimize cache problems and to avoid scalability issues introduced
by the allocator.

5.1 Overhead

select function no contention high contention
perfect 51 ns 3113 ns
random 59 ns 64 ns
2-random 108 ns 259 ns

Table 1. Select function overhead

We examine the perfect, random, and 2-random select functions in a no-contention
scenario where one thread operates on a given data structure and in a high-contention
scenario where 24 threads operate on a given data structure. The average overhead in
nanoseconds of the select functions is depicted in Table 1. In the no-contention scenario
the perfect select function introduces the lowest overhead with just 51 nanoseconds
whereas under high contention it takes an average of 3113 nanoseconds to complete
a request. Contention occurs on the global round-robin counters, which are a scalabil-
ity bottleneck as discussed in Section 3.1. The random select function shows similar
performance in the no-contention and in the high-contention scenario. It operates on
thread-local data only. The performance of the 2-random select function slightly de-
creases under high contention because the number of elements in the partial data struc-
tures are examined to achieve a better balance of operations. Cache invalidations occur
when the counters are accessed and modified by atomic operations of other concurrent
data structure operations.

5.2 Producer-Consumer Benchmark

We conducted several experiments using a producer-consumer benchmark that creates
high pressure on the shared data structure. The benchmark starts with an empty instance
of the data structure. Then, each thread inserts and removes elements in alternating order
one million times. In total each thread performs 50% insert and 50% remove operations.

To prevent measuring startup effects we synchronize the start of all threads. Since the
data structure is initially empty the maximum number of elements in the data structure
is bounded by the number of threads. Moreover, with a linearized data structure each re-
move operation returns an element because it is always preceded by an insert operation
of the same thread. For several different Scal configurations we repeated each bench-
mark with a different number of threads and measured how much time each thread
needed to complete one million operations. Each measurement was done ten times to
eliminate measuring inaccuracies. The presented results are the average of the ten mea-
surements. We use the number of operations performed by all threads per millisecond
as our metric of throughput. Additionally, we count how often the remove operation re-
turns null as an indicator of how close the semantics of the k-linearizable data structure
approximates its linearizable counterpart.

We present two figures for each evaluated data structure. Figure 4 depicts the
throughput in operations per millisecond on the y-axis against the number of threads
on the x-axis. Figure 5 depicts the semantics using the average number of null-returns
per thread on the y-axis (log-scale) against the number of threads on the x-axis.

Throughput The first type of data structure we analyze is a FIFO queue using two
different implementations. One implementation uses a lock per partial data structure.
The other implementation is the lock-free Michael Scott queue [16].

Figure 4(a) shows the results of the k-linearizable lock-based FIFO queue using
different select functions and different values of k. The baseline is the original algo-
rithm not using Scal. If more than one thread is present the baseline’s throughput is
always lower than of any Scal configuration. The perfect select function does not scale
to large numbers of threads and k > 1 provides only a constant speed-up. In contrast
both random and 2-random select functions achieve positive scalability. The random
select function performs slightly better as long as the number of threads is smaller than
or equal to the number of available CPUs. For more threads than CPUs 2-random pro-
vides better performance and still shows positive scalability. Since a d-random select
function provides a better distribution of operations in comparison to the random select
function it allows more operations to be performed concurrently.

The throughput of the lock-free Michael Scott queue is depicted in Figure 4(b).
Similar to the lock-based FIFO queue the throughput of the baseline decreases if more
threads compete for access to the data structure. The throughput of the perfect select
function is similar to the lock-based version. For smaller k the random and 2-random
select functions perform much better than the lock-based FIFO queue. Moreover, the
difference between these two select functions is not as distinct as in the previous imple-
mentation.

The results of lock-based and lock-free stack implementations are shown in Fig-
ure 4(d) and Figure 4(e), respectively. Similar to the queue experiment the perfect se-
lect function does not scale. Both the random and the 2-random select functions provide
scalability. The 2-random select function even scales when more threads are started than
CPUs are available on the machine. For the lock-free version the random select function
provides the best performance and scalability.

The results of the lock-based and lock-free implementations of both the stack and
the FIFO queue show that balancing the operations among the partial data structures is
more important for the lock-based data structures, especially if more threads are running
than CPUs are available on the machine. Descheduled threads that hold the global lock
of a partial data structure increase the waiting time of other threads which are interested
in the lock. The better the distribution of data structure operations over the partial data
structures the less frequent such a scenario happens.

The throughput results of a priority queue implementation are shown in Figure 4(c).
Again the perfect select function does not scale. The 2-random select function provides
the best performance and scalability since it establishes the best balance of operations.
The random selection function scales but performs not as good as the 2-random select
function.

Semantics The semantical performance is depicted in Figure 5. We measure the qual-
ity of the data structure semantics by counting how often null was returned by a remove
operation. This method introduces no measuring artifacts but is not precise. We never-
theless believe that it is a reasonable approach to demonstrate semantical weakening.
A precise method would check the distance of the element that is returned by a remove
operation to the element that would have been returned by a linearizable version of the
data structure. However, such a measurement is extremely costly and would signifi-
cantly distort the execution of the data structure operations.

In Figure 5 the baseline is not visible since it is a linearizable data structure and
therefore the remove operation never returns null. For Scal these experiments confirm
that a larger k leads to more null returns, which indicates that small values of k provide
better adherence to the original semantics.

Comparing the different select functions we observed that the remove operation
returns null several times when using the random select function whereas the 2-random
select function returns null only a few times. The 2-random select function has three
orders of magnitude fewer null returns than the random select function. Even though
the results of the perfect select function are of an extreme setting with k = 256 partial
data structures its semantical performance is similar to other select functions that have
only 12 partial data structures. We observed that using the perfect select function and a
small k the remove operation rarely returns null.

The correlation between balancing operations and scalability as well as semantics is
clearly visible. On the one hand, using the random select function the number of times
null is returned increases with the number of threads. In the previous section we also
saw that its scalability is limited. On the other hand, with the 2-random select function
the number of null returns is constant and even slightly decreases if the number of
threads increases. It scales better than the random select function. More interestingly,
the semantical performance of the 2-random select function is similar and only slightly
worse than the perfect select function configuration, while its performance in terms of
throughput, however, is much better.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

ti
o

n
s
/m

s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(a) lock-based FIFO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

ti
o

n
s
/m

s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(b) lock-free FIFO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

ti
o

n
s
/m

s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(c) lock-based priority queue

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

ti
o

n
s
/m

s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(d) lock-based stack

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 4 8 12 16 20 24 32 48 64

o
p

e
ra

ti
o

n
s
/m

s
 (

m
o

re
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(e) lock-free stack

Fig. 4. Throughput in data structure operations/ms with increasing number of threads on a 24-core
server machine

5.3 Additional Load

In the producer-consumer benchmarks the threads perform only data structure oper-
ations without any computation between each invocation. These benchmarks generate
high contention on the shared data structure. In order to have more realistic benchmarks
we modified the producer-consumer example such that threads perform some compu-
tation between each invocation. The additional load is created by an iterative algorithm

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
v
e

ra
g

e
 n

u
ll

re
tu

rn
s
/t

h
re

a
d

 (
lo

g
 s

c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(a) lock-based FIFO

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
v
e

ra
g

e
 n

u
ll

re
tu

rn
s
/t

h
re

a
d

 (
lo

g
 s

c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(b) lock-free FIFO

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
v
e

ra
g

e
 n

u
ll

re
tu

rn
s
/t

h
re

a
d

 (
lo

g
 s

c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(c) lock-based priority queue

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
v
e

ra
g

e
 n

u
ll

re
tu

rn
s
/t

h
re

a
d

 (
lo

g
 s

c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(d) lock-based stack

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
v
e

ra
g

e
 n

u
ll

re
tu

rn
s
/t

h
re

a
d

 (
lo

g
 s

c
a

le
,

le
s
s
 i
s
 b

e
tt

e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(e) lock-free stack

Fig. 5. Adherence to data structure semantics in average null returns/thread with increasing num-
ber of threads on a 24-core server machine

that computes π. In the following we present the results of runs using an average com-
putational load of 1130 nanoseconds and 3670 nanoseconds which correspond to 500
and 2000 iterations, respectively. The more load we introduce between the shared data
structure operations the less contention is on the shared data structure.

The results of the lock-based and lock-free FIFO queue with additional load are de-
picted in Figure 6, the results of the stack and priority queue are similar and therefore

omitted. The lock-free baseline performs well and scales up to 7 and 14 threads for low
and high computational load, respectively. In contrast we can always find a Scal config-
uration that scales well up to the number of available CPUs. Scalability can be achieved
by using a much lower value for k in comparison to the experiments in Section 5.2.
For low computational load a configuration k = 32 and for high computational load a
configuration k = 8 is sufficient, as shown in Figure 6(a) and Figure 6(b), respectively.
In the low computational load experiment in Figure 6(a) the lock-based and lock-free
2-random select function configuration show the best performance.

In the high computational load experiment, as depicted in Figure 6(b), the lock-
free 2-random select function configuration provides the best performance again. The
second best configuration is the lock-free perfect select function configuration, which
scales up to 19 threads. More importantly, the perfect select function provides better
scalability and better performance than the baseline version for either computational
load.

The semantical performance of the experiments with computational load is depicted
in Figure 7. As discussed in Section 5.2 the perfect select function provides better se-
mantics in comparison to the 2-random select function. In comparison to the previous
experiments, which did not have any computational load between each invocation of
a data structure operation, the remove operation returns null more frequently. This is
expected since the data structure contains less elements due to the additional load and,
therefore, the probability of choosing an empty partial data structure is higher than in
the previous section.

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

lock-free baseline
lock-based baseline

lock-free perfect k=32

lock-free 2-random k=32
lock-based perfect k=32

lock-based 2-random k=32

(a) 1130 ns average computational load

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

lock-free baseline
lock-based baseline
lock-free perfect k=8

lock-free 2-random k=8
lock-based perfect k=8

lock-based 2-random k=8

(b) 3670 ns average computational load

Fig. 6. Throughput of the lock-based and lock-free FIFO queue in operations/ms with additional
load in between data structure operations with increasing number of threads on a 24-core server
machine

5.4 Backoff Algorithm

In Section 3.3 we introduced a precise and a heuristic backoff algorithm to correct a
bad choice of a select function. For example, a bad choice in the producer-consumer

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
v
e
ra

g
e
 n

u
ll

re
tu

rn
s
/t
h
re

a
d
 (

lo
g
 s

c
a
le

,
le

s
s
 i
s
 b

e
tt
e
r)

number of threads

lock-free baseline
lock-based baseline

lock-free perfect k=32

lock-free 2-random k=32
lock-based perfect k=32

lock-based 2-random k=32

(a) 1130 ns average computational load

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
v
e
ra

g
e
 n

u
ll

re
tu

rn
s
/t
h
re

a
d
 (

lo
g
 s

c
a
le

,
le

s
s
 i
s
 b

e
tt
e
r)

number of threads

lock-free baseline
lock-based baseline
lock-free perfect k=8

lock-free 2-random k=8
lock-based perfect k=8

lock-based 2-random k=8

(b) 3670 ns average computational load

Fig. 7. Adherence to data structure semantics in average null returns/thread of the lock-based and
lock-free FIFO queue with additional load in between data structure operations with increasing
number of threads on a 24-core server machine

benchmark is when an empty partial data structure is selected for the remove operation.
As discussed in Section 3.3 some applications may fail if the data structure operations
act differently than expected. We therefore introduced so-called backoff algorithms.

In this section we evaluate the two backoff algorithm for the producer-consumer
benchmark of the lock-free FIFO queue using the 2-random select function for three
different setups: one with no computational load that produces high contention on the
data structure, a setup with a low computational load of 1130 nanoseconds, and a setup
with a high computational load of 3670 nanoseconds between each invocation of a data
structure operation. The results of the experiments are depicted in Figure 8 and Figure 9.
The results of the stack and priority queue are similar and therefore omitted. We only
present results of the 2-random select function here since it provides the best trade-
off of throughput, scalability, and adherence to the original semantics as discussed in
the previous sections. Although the results of the baseline are similar to the numbers
presented in the previous two sections we show them in these figures again to better
compare and discuss the scalability of the Scal configurations.

The precise backoff algorithm limits scalability compared to the benchmarks in the
previous sections that did not use any backoff algorithm. The speedup of the throughput
is only slightly higher than the baseline. However, the throughput stays high, even for
a large number of threads compared to the baseline for which the throughput decreases
dramatically if more than 7 threads with low computational load (or 14 threads with
high computational load) are running. Also note that for these experiments there is an
optimal k = 4 (or k = 8), which is not the largest value of k here. This confirms that a
larger k increases the probability of choosing a bad partial data structure, which triggers
the backoff algorithm more frequently.

The heuristic backoff algorithm performs much better than the precise backoff al-
gorithm and provides positive scalability, see Figure 9. Its performance is only slightly
lower compared to the experiments in the previous sections, which did not use any

backoff algorithm. Again, choosing an appropriate value for k, i.e., k = 16 is important
to achieve positive scalability.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

(a) no computational load

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

(b) 1130 ns computational load

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

(c) 3670 ns computational load

Fig. 8. Throughput of lock-free FIFO queue in operations/ms using the precise backoff algorithm
and the 2-random select function on a 24-core server machine

5.5 Summary

Depending on workload and number of threads, concurrent programs typically gener-
ate a call rate of shared data structure operations, which leads to contention above some
scalability threshold that in turn depends on the implementation of the shared data struc-
ture and the available number and type of CPU cores and their communication infras-
tructure. With Scal the scalability threshold may actually be changed within the limits
of the shared data structure implementation and hardware by appropriately choosing a
select function and a number k of partial data structures. A smaller k leads to a lower
scalability threshold whereas a larger k raises the scalability threshold. The perfect se-
lect function which guarantees k-linearizability allows just a low scalability threshold
whereas probabilistic select functions which only approximate k-linearizability allow
a larger scalability threshold. A user of Scal needs to take these variables into account

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

(a) no computational load

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

(b) 1130 ns computational load

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

ti
o
n
s
/m

s
 (

m
o
re

 i
s
 b

e
tt
e
r)

number of threads

baseline
k=4

k=8
k=16

k=32
k=64

k=128
k=256

(c) 3670 ns computational load

Fig. 9. Throughput of lock-free FIFO queue in operations/ms using the heuristic backoff algo-
rithm and the 2-random select function on a 24-core server machine

and may choose the configuration with the smallest k value and the most accurate select
function to provide the best adherence to data structure semantics while still providing
scalability.

6 Conclusion

We have presented Scal, an open-source framework for implementing k-linearizable
approximations of concurrent data structures which enables trading off adherence to
data structure semantics and scalability. The implementation is based on so-called select
functions and partial data structures. Given a concurrent data structure, Scal relates the
adherence to its semantics and its scalability through k-linearizability. With sufficiently
large k and sufficiently utilized data structures even larger degrees of scalability without
weakening semantics much further can be obtained by approximating k-linearizability
probabilistically.

The trade-off between adherence to data structure semantics and scalability is dis-
cussed in experiments. Moreover, different select functions and partial data structures
are evaluated under different workloads. The experiments confirm that Scal shows in the

presented benchmarks positive scalability for concurrent data structures that typically
do not scale under high contention.

There are several open questions for future work. In the context of distributed data
structures [8] it would be interesting to evaluate how k-linearizable data structures per-
form in distributed systems. Moreover, we plan to apply k-linearizability to more com-
plicated data structures and evaluate its applicability and performance. As outlined in
Section 3.3 we are going to implement a mechanism that adjusts the number k of par-
tial data structures and the type of select function online. Both parameters influence the
scalability and the semantics of a given shared data structure. A self-tuning algorithm
may thus provide the best performance for a given workload.

References

1. ANDERSON, T., BERSHAD, B., LAZOWSKA, E., AND LEVY, H. Scheduler activations:
effective kernel support for the user-level management of parallelism. In Proc. Symposium
on Operating Systems Principles (SOSP) (1991), ACM, pp. 95–109.

2. AZAR, Y., BRODER, A. Z., KARLIN, A. R., AND UPFAL, E. Balanced allocations (ex-
tended abstract). In Proc. Symposium on Theory of computing (STOC) (1994), ACM,
pp. 593–602.

3. BERENBRINK, P., CZUMAJ, A., STEGER, A., AND VÖCKING, B. Balanced allocations:
The heavily loaded case. SIAM Journal on Computing 35, 6 (2006), 1350–1385.

4. BERENBRINK, P., FRIEDETZKY, T., HU, Z., AND MARTIN, R. On weighted balls-into-bins
games. Theoretical Computer Science 409, 3 (2008), 511–520.

5. BRANDENBURG, B., CALANDRINO, J., AND ANDERSON, J. On the scalability of real-time
scheduling algorithms on multicore platforms: A case study. In Proc. Real-Time Systems
Symposium (RTSS) (2008), IEEE, pp. 157–169.

6. CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W., WALLACH, D., BURROWS, M.,
CHANDRA, T., FIKES, A., AND GRUBER, R. Bigtable: a distributed storage system for
structured data. In Proc. Symposium on Operating Systems Design and Implementation
(OSDI) (2006), USENIX, pp. 205–218.

7. DICE, D., AND GARTHWAITE, A. Mostly lock-free malloc. In Proc. International Sympo-
sium on Memory Management (ISMM) (2002), ACM, pp. 163–174.

8. GRIBBLE, S., BREWER, E., HELLERSTEIN, J., AND CULLER, D. Scalable, distributed data
structures for internet service construction. In Proc. ymposium on Operating System Design
& Implementation (OSDI) (2000), USENIX, pp. 319–332.

9. HENDLER, D., SHAVIT, N., AND YERUSHALMI, L. A scalable lock-free stack algorithm.
In Proc. Symposium on Parallelism in algorithms and architectures (SPAA) (2004), ACM,
pp. 206–215.

10. HERLIHY, M., AND SHAVIT, N. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., 2008.

11. HERLIHY, M., AND WING, J. Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–
492.

12. HOFFMANN, M., SHALEV, O., AND SHAVIT, N. The basket queue. In Proc. Conference
On Principle Of Distributed Systems (OPODIS) (2007), Springer, pp. 401–414.

13. KIM, D., MISAILOVIC, S., AND RINARD, M. Automatic parallelization with statistical
accuracy bounds. Tech. Rep. 007, MIT CSAIL, 2010.

14. LOTAN, I., AND SHAVIT, N. Skiplist-based concurrent priority queues. In Proc. Interna-
tional Symposium on Parallel and Distributed Processing (IPDPS) (2000), IEEE, pp. 263–
568.

15. MCKENNEY, P., GUPTA, M., MICHAEL, M., HOWARD, P., TRIPLETT, J., AND WALPOLE,
J. Is parallel programming hard, and if so, why? Tech. Rep. 09-02, Portland State University,
2009.

16. MICHAEL, M., AND SCOTT, M. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proc. Symposium on Principles of Distributed Computing
(PODC) (1996), ACM, pp. 267–275.

17. PARK, S., AND MILLER, K. Random number generators: good ones are hard to find. Com-
munications of the ACM 31, 10 (1988), 1192–1201.

18. RUDOLPH, L., SLIVKIN-ALLALOUF, M., AND UPFAL, E. A simple load balancing scheme
for task allocation in parallel machines. In Proc. Symposium on Parallel Algorithms and
Architectures (SPAA) (1991), ACM, pp. 237–245.

19. SHAVIT, N., AND TOUITOU, D. Elimination trees and the construction of pools and stacks:
preliminary version. In Proc. Symposium on Parallel Algorithms and Architectures (SPAA)
(1995), ACM, pp. 54–63.

20. SHAVIT, N., AND TOUITOU, D. Software transactional memory. In Proc. Principles of
Distributed Computing (PODC) (1995), ACM, pp. 204–213.

21. TALWAR, K., AND WIEDER, U. Balanced allocations: the weighted case. In Proc. Sympo-
sium on Theory of computing (STOC) (2007), ACM, pp. 256–265.

22. TAMER, O., AND VALDURIEZ, P. Principles of distributed database systems (2nd ed.).
Prentice-Hall, 1999.

23. TREIBER, R. Systems programming: Coping with parallelism. Tech. Rep. RJ5118, IBM
Almaden Research Center, April 1986.

