
33

The Embedded Machine: Predictable,
Portable Real-Time Code

THOMAS A. HENZINGER and CHRISTOPH M. KIRSCH

University of California, Berkeley

The Embedded Machine is a virtual machine that mediates in real time the interaction between

software processes and physical processes. It separates the compilation of embedded programs

into two phases. The first phase, the platform-independent compiler phase, generates E code (code

executed by the Embedded Machine), which supervises the timing, not the scheduling of, application

tasks relative to external events such as clock ticks and sensor interrupts. E code is portable and,

given an input behavior, exhibits predictable (i.e., deterministic) timing and output behavior. The

second phase, the platform-dependent compiler phase, checks the time safety of the E code, that is,

whether platform performance (determined by the hardware) and platform utilization (determined

by the scheduler of the operating system) enable its timely execution. We have used the Embedded

Machine to compile and execute high-performance control applications written in Giotto, such as

the flight control system of an autonomous model helicopter.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-
time systems and embedded systems

General Terms: Languages

Additional Key Words and Phrases: Real time, virtual machine

ACM Reference Format:

Henzinger, T. A. and Kirsch, C. M. 2007. The embedded machine: Predictable, portable real-

time code. ACM Trans. Program. Lang. Syst. 29, 6, Article 33 (October 2007), 29 pages. DOI =
10.1145/1286821.1286824 http://doi.acm.org/10.1145/1286821.1286824

1. INTRODUCTION

We define a real-time execution model called the Embedded Machine (E ma-
chine, for short), which provides a portable target for the compilation of

A preliminary version of this paper appeared in the Proceedings of the 2002 ACM International

Conference on Programming Language Design and Implementation, 315–326.

This research was supported in part by the AFOSR MURI grant F49620-00-1-0327 and by the NSF

grants CCR-0208875 and CCR-0225610.

Authors’ address: T. A. Henzinger, EPFL, Switzerland; C. M. Kirsch, University of Salzburg,

Austria.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0164-0925/2007/10-ART33 $5.00 DOI 10.1145/1286821.1286824 http://doi.acm.org/

10.1145/1286821.1286824

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:2 • T. A. Henzinger and C. M. Kirsch

languages with hard real-time constraints such as Giotto [Henzinger et al.
2003]. E code (the code executed by the E machine) has strong theoretical
properties, in particular, its timing and behavior are predictable. These ben-
efits do not come at undue cost in performance. We have demonstrated this by
using E code to reimplement the flight control system of an autonomous model
helicopter [Kirsch et al. 2002], and to execute synthetic task sets of up to 100
tasks with a runtime overhead of less than 1% of the available CPU time [Kirsch
et al. 2005].

1.1 From Platform-Centric to Requirements-Centric Real-Time Programming

In embedded systems, there are two time lines. The interaction of software
processes with physical processes (sensors, actuators, clocks) happens in en-
vironment time. Application requirements are specified in environment time,
for example, the actuator is set within 2 clock ticks of a sensor interrupt. On
the other hand, the execution of software processes on a specific platform hap-
pens in platform time. By platform we mean the combination of hardware and
real-time operating systems (RTOSs). Issues of platform performance, such as
worst-case execution times (WCETs), and platform utilization, such as distri-
bution and scheduling, must be addressed in terms of platform time. The art of
embedded programming is to reconcile the two time lines.

The E machine proposes a paradigm shift in real-time programming: it per-
mits the programmer to think exclusively in terms of environment time (reac-
tivity), and shifts the burden of reconciliation with platform time to the compiler
(schedulability). This paradigm shift is in line with the steady move towards
higher-level programming abstractions. In fact, the E machine treats platform
time as a resource in the way in which most high-level languages treat memory:
the programmer assumes there is enough of it; the compiler makes sure there
is enough of it (or fails to compile); the runtime system throws an exception
in case the compiler is wrong (usually due to incorrect assumptions about the
platform and possible contingencies).

Programming in terms of environment time avoids the two central draw-
backs of conventional embedded code, nonportability and unpredictability. The
former is immediate: conventional embedded code is intrinsically platform-
dependent because it directly or indirectly (say, through priorities) refers to
platform time; E code is platform-independent because it refers only to envi-
ronment time. Predictability, both in timing and functionality, is a less imme-
diate but powerful consequence of programming in terms of environment time.
By task we mean a software process (or a fragment thereof) without internal
synchronization points [Wirth 1996]. Suppose that the inputs of a task t be-
come available at time x (e.g., through a sensor interrupt), and its outputs are
required at time y (e.g., as an actuator setting). The programmer and, in turn,
the E machine is concerned only with these two times. At environment time
x, the inputs are provided to t and the task is turned over to the platform,
namely, the RTOS; at environment time y , the outputs of t are read and given to
the actuator. The programmer may assume that the task has indeed completed
at time y , otherwise the compiler (or, as a last resort, the runtime system) will

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:3

complain. However, the programmer cannot know exactly when in the interval
[x, y] the task completes. In fact, she cannot even read the outputs of t as soon
as they become available as this would introduce an instant of platform time
into the program. The strict adherence to environment time allows us to design
E code without race conditions. For two concurrent tasks, it does not matter
which task completes first, as long as each task completes before its outputs
are read.

A computation of the E machine is time-safe if each task completes before its
outputs are read. Time safety depends, of course, on the platform (performance,
distribution, scheduling). A good compiler ensures time safety and, in addition,
the runtime system monitors time safety. For E code that refers only to envi-
ronment time, time safety implies environment determinacy. A computation of
the E machine is environment-determined if the inputs from the environment
processes (e.g., the sensor readings) uniquely determine the outputs of the soft-
ware processes (e.g., the actuator settings). While time safety ensures timing
predictability (the actuators are written at predictable times), environment de-
terminacy also ensures value predictability (the actuators are given predictable
values).

Based on these principles, we defined the language Giotto for high-
performance control applications [Henzinger et al. 2003]. Giotto supports high-
level structuring principles for modern control systems such as periodic task
invocation and multiple control modes. In compiling Giotto, we have found it
useful to have an intermediate language with none of the high-level concepts
but the same platform-independent semantics for mediating between the physi-
cal environment (typically, sensors and actuators) and software tasks (typically,
control law computations). This intermediate language, which has evolved into
E code, offers several benefits. First, it separates the platform-independent
from the platform-dependent parts of the Giotto compiler, thus enabling reuse.
The platform-independent part of the compiler generates E code from a Giotto
program; its main purpose is to specify the timing of all interactions among
software tasks and between software tasks and the environment. The platform-
dependent part of the compiler checks the time safety of the E code for a given
platform with known WCETs and known scheduling scheme (a more ambitious
compiler may attempt to synthesize a scheduling scheme that guarantees time
safety). Second, E code permits the dynamic implementation of Giotto. Code
can be patched at runtime, and, whenever the controller switches mode, new
code can be linked at runtime.

While E code has evolved from compiling Giotto, we have found it of consid-
erable independent interest as it illustrates the causalities between the under-
lying semantic principles and ways to generalize them. One limitation of Giotto
for some applications is its time-triggered nature: all Giotto time instants are
ticks of an external clock, which, in high-performance control applications, min-
imizes jitter. By contrast, E code may refer to environment events that are not
clock ticks such as sensor interrupts. Also, Giotto cannot refer to the comple-
tion time of tasks. For E code, it is a small and natural step to consider inputs
not only from the environment processes but inputs from both the environment
and the software processes. Then the completion of a software task becomes an

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:4 • T. A. Henzinger and C. M. Kirsch

input event which may influence the execution of E code. As this generalization
introduces E code references to platform time, environment determinacy is sac-
rificed and replaced by the weaker but symmetric notion of input determinacy:
the inputs from the environment processes (e.g., the sensor readings) and from
the software processes (e.g., the scheduling scheme) together uniquely deter-
mine the outputs of the software processes (e.g., the actuator settings). It is the
study of concepts such as time safety and environment/input determinacy that
elevates the E machine from an intermediate language for compiling embedded
code to a framework for evaluating embedded programming paradigms.

Let us summarize how the programming of control applications using Giotto
and the implementation using E code differs from conventional real-time soft-
ware design. All executions of E code happen at predefined instants of environ-
ment time as specified by a control model and, therefore, a Giotto program; for
example, a sensor is read every 10ms, the result of a control task is written to
an actuator port every 20ms, etc. The compiler, by checking time safety, ensures
that the program can be executed, that is, the compiler matches environment
time against platform time. If time safety holds, then deterministic timing and
output behavior is guaranteed. Otherwise, platform performance (WCETs) or
platform utilization (scheduling) must be improved. Recompilation supports
code reuse on upgraded and different platforms. Conventional real-time soft-
ware design proceeds in the opposite direction, that is, the programmer’s model
is the platform (e.g., priority-preemptive scheduling). For example, the actuator
ports are typically written whenever the control task completes which is an in-
stant of platform time. Then, code validation is necessary to gain confidence that
the application requirements are met (e.g., that the actuator port is updated
at least every 20ms) and that the output jitter is acceptable. Code validation,
however, is usually difficult, first, because the code exhibits nondeterministic
timing and output behavior and, second, because the application requirements
are, unlike time safety, nonuniform. If the application requirements are not
satisfied, platform performance or utilization needs to be improved. So pro-
gramming the platform does not necessarily guarantee a better success rate,
but it does make platform upgrades and code reuse cumbersome.

1.2 An Overview of the E Machine

The E machine is a mediator between physical processes and software pro-
cesses. It interpretes E code, which supervises the execution of software pro-
cesses (written in, e.g., C) in relation to physical events such as clock ticks, and
physical states such as sensor values. The E machine has two input interfaces
and one output interface.

—Environment inputs. The physical processes communicate information to
the E machine through environment ports such as clocks and sensors.

—Software inputs. The application software processes, called tasks, communi-
cate information to the E machine through task ports.

—Outputs. The E machine communicates information to the physical processes
and to the tasks by calling system processes, called drivers, which write to
driver ports.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:5

Logically, the E machine does not need to distinguish between environment
and task ports since they are both input ports, while driver ports are output
ports. A change of value at an input port is called an input event. Every input
event causes an interrupt that is observed by the E machine and may initiate
the execution of E code. E code, in turn, supervises the execution of both tasks
and drivers.

—Tasks. A task is a piece of application-level code which typically implements
a computation activity. When invoked with arguments, a task computes and
writes the results to task ports. The execution of a task requires a positive
amount of real time, that is, the results cannot be observed until at least one
input event happens (e.g., a clock tick or a signal that indicates the completion
of the task). A task can be preempted but has no internal synchronization
points.

—Drivers. A driver is a piece of system-level code which typically facilitates a
communication activity. A driver can provide sensor readings as arguments
to a task or load task results into actuators or provide task results as ar-
guments to other tasks. The execution of a driver satisfies the synchrony
assumption [Halbwachs 1993] that it can be performed in logical zero time,
that is, before the next input event can be observed. In other words, inter-
rupts that implement input events are disabled during the execution of a
driver.

To protect IP, both tasks and drivers may be given as binary executables.
E code refers to tasks and drivers only through symbolic references. E code is
interpreted system-level code that supervises the execution of a given set of
tasks and drivers relative to input events. For this purpose, E code has essen-
tially three instructions.

—Call driver. The call instruction initiates the execution of a driver. As the
driver is synchronous system-level code, the E machine waits until the driver
is finished before interpreting the next instruction of E code.

—Release task. The release instruction hands a task to the operating sys-
tem. Typically, the task is put into a ready queue from which the sched-
uler of the operating system chooses tasks for execution according to some
scheduling scheme. The scheduler is not under control of the E machine.
Like the physical environment and the underlying hardware, it is exter-
nal to the E machine and may or may not be able to satisfy the real-time
constraints of E code. Runtime real-time violations are due to a combina-
tion of fast physical environment, slow hardware, and inefficient scheduling;
they cannot be blamed on any single one of these factors. However, a com-
piler that checks time safety of the generated E code attempts to rule out
such timing violations (and those that remain due to inaccurate assump-
tions about environment, hardware, and scheduler are handled by runtime
exceptions).

—Future E code. The future instruction marks a block of E code for execution
at some future time. It has two parameters: a trigger, which is a predicate
that is evaluated with every input event, and the address of a block of E code,
which is executed as soon as the trigger evaluates to true. In order to handle

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:6 • T. A. Henzinger and C. M. Kirsch

multiple active triggers, the future instruction puts the trigger-address pair
into a trigger queue. With each input event, all triggers in the trigger queue
are evaluated, and the first one to evaluate to true determines the next actions
of the E machine.

The E machine is a virtual machine. In an actual implementation of the E ma-
chine, E code need not be interpreted but may be compiled into, for instance, C
code, or even silicon. The difference between E code and equivalent C code lies
in the programming discipline imposed by E code. In particular, the fact that
E code relates to time strictly through the trigger queue makes time-safety anal-
ysis possible. Moreover, the overhead incurred by E code, rather than optimized
C code, is minimal. For code that supervises the timing and interaction of tasks,
correctness (i.e., predictability) dwarfs performance as the critical design issue
even in high-performance control applications. For example, we have found that
in helicopter control, the entire program contains less than 400 instructions of
E code.

1.3 A Simple Example with Two Periodic Tasks

We present a highly simplified version of the control program for a model he-
licopter built at ETH Zürich [Sanvido 1999]. Consider the helicopter in hover
mode m. There are two tasks, both given in native code, possibly autogenerated
from Matlab/Simulink models, the control task t1, and the navigation task t2.
The navigation task processes GPS input every 10ms and provides the pro-
cessed data to the control task. The control task reads additional sensor data
(not modeled here), computes a control law, and writes the result to actuators
(reduced here to a single port). The control task is executed every 20ms. The
data communication requires three drivers: a sensor driver ds, which provides
the GPS data to the navigation task; a connection driver di, which provides the
result of the navigation task to the control task; and an actuator driver da, which
loads the result of the control task into the actuator. The drivers may process
the data in simple ways (such as type conversion) as long as their WCETs are
negligible. In general, since E code execution is synchronous and thus cannot
be interrupted by other E code, we say that the WCET of an E code block (i.e.,
the sum of the WCETs of all drivers as well as all E code instructions called
in that block) is negligible if it is shorter than the minimal time between any
two events that can trigger the execution of E code. In the case of the helicopter
software, the WCETs of all E code blocks are at least one order of magnitude
shorter than 10ms which is the time between two consecutive invocations of E
code in this example.

There are two environment ports, namely, a clock pc and the GPS sensor ps;
two task ports, one for the result of each task; and three driver ports—the
destinations of the three drivers—including the actuator pa. Figure 1 shows
the topology of the program. We denote ports by bullets, tasks by rectangles,
drivers by diamonds, and triggers by circles. Here is a Giotto description of the
program timing:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:7

pc
t1

t2

da
pa

ps
ds

di

g

Fig. 1. An example with two periodic tasks.

mode m() period 20 {
actfreq 1 do pa(da);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds);
}

The actfreq 1 statement causes the actuator to be updated once every 20ms;
the taskfreq 2 statement causes the navigation task to be invoked twice every
20ms; etc. Here is the E code generated by the Giotto compiler:

a1: call(da) a2: call(ds)
call(ds) release(t2)
call(di) future(g , a1)
release(t1)
release(t2)
future(g , a2)

The E code consists of two blocks. The block at address a1 is executed at
the beginning of a period, say, at 0ms. It calls the three drivers, which provide
data for the tasks and the actuator, then hands the two tasks to the scheduler,
and finally activates a trigger g with address a2. When the block finishes, the
trigger queue of the E machine contains the trigger g bound to address a2,
and the ready queue of the scheduler contains two tasks, t1 and t2. Now the
E machine relinquishes control only to wake up with the next input event that
causes the trigger g to evaluate to true. In the meantime, the scheduler takes
over and assigns CPU time to the tasks in the ready queue according to some
scheduling scheme. When a task completes, the scheduler removes it from the
ready queue.

There are two kinds of input events, one for each environment port, namely,
clock ticks and changes in the value of the sensor ps. The trigger g : p′

c = pc +10
specifies that the E code at address a2 will be executed after 10 clock ticks.
Logically, the E machine wakes up at every input event to evaluate the trigger,
finds it to be false until at 10ms, the trigger is true. An efficient implementation,
of course, wakes up the E machine only when necessary, in this case at 10ms.
The trigger g is now removed from the trigger queue, and the associated a2 block
is executed. It calls the sensor driver which updates a port read by task t2. There
are two possible scenarios. The earlier invocation of task t2 may already have
completed and is therefore no longer in the ready queue when the a2 block is
executed. In this case, the E code proceeds to put another invocation of t2 into

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:8 • T. A. Henzinger and C. M. Kirsch

the ready queue, and to trigger the a1 block in another 10ms, at 20ms. In this
way, the entire process repeats every 20ms. The other scenario at 10ms has
the earlier invocation of task t2 still incomplete, that is, in the ready queue.
In this case, the attempt by the sensor driver to overwrite a port read by t2

causes a runtime exception called time-safety violation. At 20ms, when ports
read by both tasks t1 and t2 are updated and ports written by both t1 and t2 are
read, a time-safety violation occurs unless both tasks have completed, that is,
the ready queue must be empty. In other words, an execution of the program is
time-safe if the scheduler ensures the following: (1) each invocation of task t1

at 20nms, for n ≥ 0 completes by 20n + 20ms; (2) each invocation of task t2 at
20nms completes by 20n+10ms; and (3) each invocation of task t2 at 20n+10ms
completes by 20n + 20ms. Therefore, a necessary requirement for time safety
is δ1 + 2δ2 ≤ 20, where δ1 is the WCET of task t1, and δ2 is the WCET of t2. If
this requirement is satisfied, then a scheduler that gives priority to t2 over t1

guarantees time safety.
The E code implements the Giotto program correctly only if it is time-safe.

During a time-safe execution, the navigation task is executed every 10ms, the
control task every 20ms, and the dataflow follows Figure 1. Thus the Giotto
compiler needs to ensure time safety when producing E code. In order to en-
sure this, the compiler needs to know the WCETs of all tasks and drivers (see
for example, Ferdinand et al. [2001]) as well as the scheduling scheme used by
the operating system. With this information, time safety for E code produced
from Giotto can be checked efficiently [Henzinger et al. 2002]. However, for ar-
bitrary E code and platforms, WCET analysis and time-safety checking may be
difficult, and the programmer may have to rely on runtime exception handling
(see Section 3 for more details). At the other extreme, if the compiler is given
control of the system scheduler, it may synthesize a scheduling scheme that
ensures time safety [Henzinger et al. 2003].

The time-safe executions of the E code example have an important property.
Assuming the two tasks compute deterministic results, for given sensor values
that are read at the input port ps at times 0, 10, 20, . . . ms, the actuator values
that are written at the output port pa at these times are determined, that is,
independent of the scheduling scheme. This is because each invocation of the
control task t1 at 20nms operates on an argument provided by the invocation
of the navigation task t2 at 20n − 10ms whether or not the subsequent invo-
cation of t2 at 20nms has completed before the control task obtains the CPU.
Time safety, therefore, ensures not only deterministic output timing, but also
deterministic output values; it guarantees predictable, reproducible real-time
code. This is made precise in Section 3.

The helicopter may change mode, from hover to descend and, in doing so,
apply a different control law. In this case, the control task t1 needs to be replaced
by another task t ′

1. In Section 4, we show how to implement different modes of
operation using E code with control-flow instructions and how E code can be
changed dynamically, at runtime, while still guaranteeing determinism if no
time-safety violations occur. This capability enables the real-time programming
of embedded devices that upload code on demand, of code that migrates between
hosts, and of code patches.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:9

Environment Ports

Driver Ports
writes

reads

updates

Task

Operation
Task Ports

reads

actuatesreads

Observation

Environment

Embedded Machine

Fig. 2. Ports in the embedded machine.

2. DEFINITION OF THE E MACHINE

The E machine mediates the timing and interaction between environment and
software processes. The software processes fall into three categories, drivers,
tasks, and triggers. The processes communicate via ports. Given a set P of
ports, a P state is a function that maps each port in P to a value. The set P is
partitioned into three disjoint sets: a set PE of environment ports, a set PT of
task ports, and a set PD of driver ports. The read/write access of processes to
ports is as follows.

Environment Task Driver
Ports Ports Ports

Environment RW – R
Tasks – RW R
Drivers R R RW

Triggers R R R
Input triggers R R –
Environment triggers R – –

The environment, task, and driver ports are updated by the physical envi-
ronment, by tasks, and by drivers, respectively. All information between the
environment and the tasks flows through drivers so environment ports cannot
be read by tasks, and task ports cannot be read by the environment. For exam-
ple, a driver may read an environment port, such as a sensor or a clock, and
load the value into a driver port that is read by a task; another driver may read
a task port and load the value into a driver port, such as an actuator, which is
read by the environment. An event is a change of value at a port, for instance, at
a sensor ps, which is observed by the E machine through an interrupt. Such an
event interrupt can be characterized by a predicate, namely, p′

s �= ps, where p′
s

refers to the current sensor reading, and ps refers to the most recent previous
sensor reading. Figure 2 shows the E machine as an interface between physical
environment and software tasks.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:10 • T. A. Henzinger and C. M. Kirsch

Definition 1. A program of the embedded machine consists of (1) a set P of
program ports, (2) a set of drivers, a set of tasks, and a set of triggers, and (3) a
set of addresses, and for each address, a finite sequence of instructions.

The instructions, discussed in the following, call drivers, apply scheduling
services of the operating system to tasks, and handle interrupts through trig-
gers. We do not prescribe any specific control-flow instructions, but rather view
part (3) the E code of a program abstractly as a set of blocks, each with an
address and a finite sequence of instructions. We use a function next(a) that re-
turns for an instruction at address a the address of the next instruction. If there
is no next instruction, then the function returns bottom. This convention is con-
sistent with any control-flow instructions, structured or unstructured, whose
choice is of practical importance but entirely orthogonal to the issues discussed
here. The instructions of E code do not manipulate data; all data is handled
by drivers, tasks, and triggers which can be implemented in an arbitrary pro-
gramming language such as C. Abstractly, drivers and tasks are functions from
port values to port values, and triggers are boolean functions (i.e., predicates)
on port values.

Definition 2. A driver d consists of (1) a set P [d] ⊆ PD of driver ports, and
a set I [d] ⊆ (PE ∪ PT) of read environment and task ports, and (2) a function
f [d] from the P [d] ∪ I [d] states to the P [d] states. A task t consists of (1) a
set P [t] ⊆ PT of task ports, and a set I [t] ⊆ PD of read driver ports, and (2) a
function f [t] from the P [t] ∪ I [t] states to the P [t] states.

A driver computes on (i.e., reads from and writes to) driver ports and can
read from environment and task ports; a task computes on task ports and can
read from driver ports. Communication to and from a task, like communication
to and from the environment, is only possible through drivers. There is a fun-
damental difference between drivers and tasks. A driver is nonpreemptable,
atomic, single-threaded code, while a task is single-threaded code that is op-
erationally preemptable but logically atomic without internal synchronization
points. Logically, a driver is assumed to execute instantaneously in zero time,
whereas the execution of a task takes time. Computation in zero time is called
synchronous computation; computation that takes time is called scheduled com-
putation. Operationally, synchronous computation is performed in kernel con-
text with event interrupts disabled. The WCET of synchronous computation
(i.e., drivers and E code instructions, including trigger evaluation) as well as
the overhead for context switching must be included in the administrative over-
head for an accurate schedulability analysis. Scheduled computation happens
in user context with event interrupts enabled. In order to validate the real-time
behavior of E code through schedulability analysis, it is necessary to know the
WCETs of scheduled computation (i.e., tasks).

Definition 3. A trigger g consists of (1) a set P [g] ⊆ P of monitored ports,
and (2) a predicate p[g] on pairs of P [g] states, which evaluates to true or false
over each pair (s, s′) of P [g] states s and s′. We require that p[g] evaluates to
false if s = s′. The trigger g is an input trigger if P [g] ⊆ (PE ∪ PT) and an
environment trigger if P [g] ⊆ PE .

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:11

In Definition 3, the state s is the state of the ports at the time instant when
the trigger is activated. The state s′ is the state of the ports at the time instant
when the trigger is evaluated. We assume that all active triggers are evalu-
ated at least at the rate of observed events. An active trigger that evaluates to
true may cause a reaction of the E machine. As drivers are executed in logical
zero time, a trigger that reads driver ports can evaluate to true at the same
logical time instant at which the trigger is activated. Such triggers make pos-
sible synchronous reactive communication between drivers [Halbwachs 1993].
Synchronous chain reactions of trigger evaluation and driver execution are not
possible with input triggers which read only environment and task ports, nor
with environment triggers which read only environment ports. A program is
input-triggered if all triggers are input triggers and environment-triggered if
all triggers are environment triggers. While input-triggered programs can re-
act to software events such as the completion of tasks, environment-triggered
programs can react only to environment events. An important special case of
environment-triggered programs are the time-triggered programs whose trig-
gers read only an external clock. For example, every program obtained from a
Giotto source is time-triggered.

A program configuration, besides the values of all ports, also tracks the active
triggers and the tasks in the ready queue of the operating system. The active
triggers are kept in a FIFO queue, called a trigger queue, according to their
activation order. An active trigger stays in the trigger queue until it evaluates
to true, at which point it is removed from the queue. The tasks under OS control
are kept in a set, called task set, as the organization of the ready queue (e.g.,
as a priority queue) is unknown to the E machine. A task enters the task set
when it is released (i.e., handed over to the OS) and leaves the task set when it
completes.

Definition 4. A program configuration consists of (1) a P state s′, called
program state; (2) a queue of trigger bindings (g , a, s), called trigger queue,
where g is a trigger, a is an address, and s is a P [g] state; and (3) a set of pairs
(t, s), called task set, where t is a task and s is a P [t] ∪ I [t] state. A trigger
binding (g , a, s) is enabled if the trigger predicate p[g] evaluates to true over
the pair (s, s′) of P [g] states. The configuration c is input-enabling if the trigger
queue contains no enabled trigger bindings; otherwise, c is input-disabling.

An E machine instruction is similar to a machine code instruction. It has a
unique opcode and a finite number of arguments, all of which can be represented
by integers. Using integers as arguments supports the portability of E code.
There are only three fundamental instructions of the E machine. The control-
flow effect of these three instructions is trivial. After executing any of the three
instructions, the E machine proceeds to the next instruction in the program.
Similar to the execution of drivers, E code interpretation happens logically in
zero time. E code interpretation is synchronous computation which takes place
in kernel context.

Definition 5. An E machine instruction is one of the following: call(d),
for a driver d ; release(t), for a task t; or future(g , a), for a trigger g and an
address a.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:12 • T. A. Henzinger and C. M. Kirsch

EDF

t1 t1

0 0 4 8 10 10 2014 1815 17

t2

t1

release(t1[20])

release(t2[10])

future(g, a2)

call(di)

call(ds)

future(g, a1)

release(t2[10])

t1

0ms 0ms

t2

t1

t2

t1

t2

Synchronous Scheduled Synchronous Scheduled

ms

a1 : call(da) a2 : call(ds)

Time-
Slice

Fig. 3. Earliest-deadline-first (EDF) vs. time-slice scheduling of the tasks from Figure 1.

The call(d) instruction invokes the binary code of the driver d . The E ma-
chine waits until the execution of d is finished, and then proceeds to the next
instruction. The release(t) instruction marks the binary code of the task t for
execution by inserting it into the task set. Then the E machine immediately
proceeds to the next instruction. The future(g , a) instruction marks the E code
at address a for (possible) execution at the future time when the trigger g next
evaluates to true. Operationally, the E machine appends the trigger binding
(g , a, s) to the trigger queue, where s is the current program state (this is nec-
essary for evaluating the trigger in the future), and then proceeds to the next
instruction. If there is no next instruction, then the E machine gives up control
of the CPU and wakes up with each event to evaluate all triggers in the trigger
queue. If a trigger binding (g , a, s) is enabled, then it is removed from the trig-
ger queue, and the E code at address a is executed. If several trigger bindings
are enabled, then the corresponding blocks of E code are executed consistent
with the order of the trigger queue. In other words, the future(g , a) instruction
is similar to binding an interrupt handler to an interrupt where the trigger g
defines the interrupt, and the E code at address a defines the interrupt handler.

2.1 The Two-Task Example Revisited

Consider Figure 3 which shows the execution of the E code and tasks from the
example in Section 1. The tasks are scheduled either by an earliest-deadline-
first (EDF) scheduler (upper half) or a time-slicing scheduler (lower half). The
purpose of this example is to demonstrate that the E machine is independent
of the scheduling scheme.

We assume that the initial configuration consists of a state s that sets the
clock pc to −10ms, a trigger queue with the single trigger binding (g , a1, s), and
an empty task set. When the clock pc reaches 0ms, the trigger g evaluates to
true, the enabled trigger binding is removed from the trigger queue, and the
E machine starts executing the E code at a1. The first three call instructions
execute drivers. The release(t1[20]) instruction releases task t1 to the scheduler

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:13

(either the EDF or the time-slicing scheduler) by inserting it into the task set.
The term [20] is an example of an E machine annotation which is handed to the
scheduler along with the task. E machine annotations describe information that
may be provided by the programmer or by the compiler of a high-level language
such as Giotto to the system scheduler. For the E machine, annotations have
no meaning, but the scheduler may interpret annotations. In particular, an
EDF scheduler interpretes the term [20] as the relative deadline of task t1 with
respect to the clock pc. The subsequent release(t2[10]) instruction inserts task
t2 into the task set. The last instruction, future(g , a2), ensures that the E code
at a2 will be executed at 10ms. The execution of the E code at a1 is now finished.
The result is a new configuration which consists of a state s′ with new values for
task and driver ports, the single trigger binding (g , a2, s′) in the trigger queue,
and tasks t1 and t2 in the task set. Finally, the E machine enables all interrupts
and leaves the kernel context.

Now the scheduler, which is independent of the E machine, takes over. The
upper half of Figure 3 shows the resulting timeline for the EDF scheduler which
invokes task t2 first at the 0ms instant because t2 has in this case the earliest
relative deadline of 10ms, and therefore a higher priority than task t1. Task
t2 executes in user context and completes after, say, 4ms, when it is removed
from the task set. Then task t1 executes. If task t1 executes, for example, 10ms,
it is preempted after 6ms by the trigger g . At 10ms, the E machine disables
event interrupts and executes the E code at a2 by first calling driver ds to
provide a new value from the sensor port ps to task t2. Calling the drivers da

or di at this time would result in a time-safety violation because both drivers
access ports that are read or written by task t1 which has not yet completed
(see Section 3). The release(t2[10]) instruction inserts task t2 into the task set.
Since the relative deadlines of both tasks in the task set are now equal, an
EDF scheduler may assign a priority to t2 which is lower or higher than the
priority of t1. In the figure, we assume the priority of t2 to be lower than the
priority of t1. The final future(g , a1) instruction marks the E code at a1 for
execution at 20ms. The new E machine configuration has the single trigger
binding (g , a1, s′′), where s′′ is the new state, and tasks t1 and t2 in the task
set. Now the scheduler resumes the execution of task t1 because it has a higher
priority than t2. Task t1 executes for another 4ms and completes. Then task t2

executes, for instance, this time only for 3ms. Then the system is idle for the
next 3ms. At 20ms, the E machine executes again the E code at a1, thus closing
an infinite loop of periodic invocations of both tasks.

Now consider the timeline of the scheduled computation in the lower half
of Figure 3. This shows the task execution according to a time-slicing sched-
uler instead of an EDF scheduler. The E code is executed exactly the same
way as before. The only difference is how the tasks are executed between the
synchronous blocks of E code. The time-slicing scheduler ignores the annota-
tions. Each task gets a time slice of 4ms, and tasks are executed in the order
of their insertion into the task set in a round-robin fashion. Note that the sec-
ond slice of task t1 is preempted by a trigger. Also note that for given sensor
readings at 0ms and 10ms, the value loaded by the actuator driver into pa

at 20ms is the same no matter which scheduler is used; that is, the output

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:14 • T. A. Henzinger and C. M. Kirsch

behavior of the program is deterministic. This is the main property of E code (see
Section 3).

2.2 Operational Semantics

We define the semantics of E code operationally using a pseudocode descrip-
tion of the E machine. Algorithm 1 shows the main loop of the machine as it
executes a given program. Initially, the trigger queue contains a single trigger
binding, and the task set is empty. After entering the main loop, the machine
waits for environment and task ports to change their values, that is, for the
occurrence of one or more events that may enable input triggers. While the ma-
chine waits for input events, scheduled computation may be performed, that
is, the scheduler has control of the CPU. Waiting for input events is imple-
mented using event interrupts. The occurrence of an input event wakes up the
machine which immediately disables all event interrupts (thus it is still pos-
sible for low-level interrupts to preempt the machine as long as they do not
interfere with the triggering mechanism of the machine). After the while loop,
before the machine loops back to wait for new input events, all event interrupts
are enabled again and the scheduler is invoked. The main loop is executed ad
infinitum.

The E machine runs through the while loop of Algorithm 1 as long as there
are enabled trigger bindings in the trigger queue, each time executing a block of
E code that is bound to an enabled trigger. The termination of the while loop is
guaranteed for input-triggered programs such as E code generated from Giotto.
In an input-triggered program, newly activated triggers are initially disabled
and can only be enabled by environment or task activity. In more general
programs with arbitrary triggers, it is possible that calling a driver enables a
trigger. In this case an explicit termination proof for the while loop is necessary.
Synchronous triggering of one E code block by another corresponds to the
signaling mechanism of Esterel [Berry 2000] or undelayed data dependency in
Lustre [Halbwachs et al. 1991]. For synchronous reactive languages such as
Esterel and Lustre, an explicit termination proof of synchronous computation
is necessary (typically by ensuring the existence of finite fixed points).

Algorithm 1. The Embedded Machine

loop
wait for input event
disable trigger-related interrupts
while there is an enabled trigger in TriggerQueue do

(g , a, s) := GetFirstEnabledTriggerBinding(TriggerQueue)
TriggerQueue := RemoveFirstEnabledTriggerBinding(TriggerQueue)
ProgramCounter := a
invoke Algorithm 2

end while
enable trigger-related interrupts
invoke system scheduler on TaskSet

end loop

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:15

Algorithm 2. The E Code Interpreter

while ProgramCounter �= ⊥
i := GetInstruction(ProgramCounter)
if call(d) = i then

ProgramState(P [d]) := f [d](ProgramState(P [d] ∪ I [d]))
else if release(t) = i

TaskSet := TaskSet ∪ {(t, ProgramState(P [t] ∪ I [t]))}
else if future(g , a) = i

TriggerQueue := TriggerQueue ◦ (g , a, ProgramState(P [g]))
end if
ProgramCounter := Next(ProgramCounter)

end while

Each block of E code is interpreted by Algorithm 2. In the while loop of Algo-
rithm 2, the machine fetches the current instruction from the program, decodes
and executes the instruction, and then determines the address of the next in-
struction. This loop terminates because every block of E code is required to
have only a finite number of instructions with sequential control flow. This is
true despite the fact that it is often convenient to use control-flow instructions
such as absolute or conditional jumps in E code, for example, in the gener-
ation of E code from Giotto programs with mode switching (see Section 4).
Later, we will also introduce additional instructions for manipulating the task
set (such as terminating a task) and trigger queue (such as removing a trig-
ger binding), but these have no fundamental impact on the operation of the
E machine.

The execution of an E machine program yields a trace. From one configura-
tion of a trace to the next, there is either an environment event or a software
event (i.e., the completion of a task) or the E machine executes one block of
E code. The third possibility—E code execution—has precedence as long as
there are blocks of E code with enabled triggers.

Definition 6. A program trace is an infinite sequence of configurations such
that, for all consecutive configurations c and c′, one of the following three con-
ditions holds:

—Environment event. The configuration c is input-enabling, and c′ differs from
c in the values of environment ports.

—Task completion. The configuration c is input-enabling, and c′ differs from c
in the values of the task ports P [t] for some task t and in the task set. The
task set of c contains a pair (t, s) for some P [t] ∪ I [t] state s; the task set of
c′ results from c by removing the pair (t, s); and the values of the task ports
P [t] in c′ result from applying the function f [t] to state s. In this case, we
say that the task t is completed at configuration c.

—E code execution. The configuration c is input-disabling, and c′ differs from
c in the values of driver ports, in the trigger queue, and in the task set. If
(g , a, s) is the first enabled trigger binding in the trigger queue of c, then c′

is obtained from c by first removing (g , a, s) from the trigger queue, and then

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:16 • T. A. Henzinger and C. M. Kirsch

executing Algorithm 2 with program counter a. In this case, we say that the
E code at address a is executed at configuration c.

The input part of a program trace is the projection of the trace to values for
environment and task ports, that is, the trace in which everything has been
removed from the program trace except for the values for the environment
and task ports; the output part is the projection to values for driver ports. The
environment part is the projection to values for environment ports.

3. PROPERTIES OF E CODE

The benefits of using E code are due to its strong theoretical properties. Time
safety is a condition which is satisfied if all real-time requirements are met on
a platform, and determinism is a consequence which ensures that the output
behavior of E code is predictable.

3.1 Time Safety

A compiler that generates E code is not satisfied by every trace that can re-
sult from interpreting the code using Algorithm 2. Rather the compiler expects
sufficient performance from the platform such that the computation of a task
always completes before drivers access (read or write) ports that are also ac-
cessed by the task, and before another invocation of the task is released. A trace
that satisfies these conditions is called time-safe because it meets all timing re-
quirements of the source (e.g., Giotto) program.

Definition 7. A program trace is time-safe if for every configuration c, if the
task set of c contains the pair (t, s), then E code that is executed at configuration
c must obey the following three conditions. (1) For each call(d) instruction,
P [d]∩ I [t] = ∅, that is, no driver updates the read driver ports of t. (2) For each
call(d) instruction, I [d]∩ P [t] = ∅, that is, no driver reads the task ports of t.
(3) For each release(t ′) instruction, P [t ′] ∩ P [t] = ∅, that is, no released task
accesses the task ports of t.

The E machine throws a runtime exception if any of the previous con-
ditions are violated; we will discuss the exception handling in the follow-
ing. In order to avoid runtime exceptions, it must be shown that the pro-
gram is time-safe for the environment and the platform, that is, that all
program traces that can occur on the target platform in the target environ-
ment are time-safe. Proving time safety requires a schedulability analysis
based on the WCETs of all drivers, tasks, and triggers, and, if the program
is not time-triggered, also it requires assumptions about the frequency of input
events.

As an example, recall the Giotto program from Section 1 which, like all Giotto
programs, is time-triggered. For single-CPU platforms with EDF scheduling,
the Giotto compiler shows time safety in two steps. First, given the WCETs of
all drivers and triggers, the compiler computes the WCETs of all E code blocks.
Suppose that the a1 and a2 blocks have a WCET of 1ms each, including the over-
head for context switching into the E machine. This leaves 18ms of CPU time
per 20ms real time for scheduled computation. Second, given the WCETs of all

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:17

tasks and having derived the relative deadlines for all task invocations from
the Giotto source (relative deadline 20 for each release(t1) instruction, and
relative deadline 10 for each release(t2)), the compiler uses an EDF schedu-
lability test to show that all task invocations complete on time. For instance,
assuming a WCET of 10ms for t1 and of 4ms for t2, including the overhead
for context switching two times from t2 to t1, the EDF schedule is feasible and
achieves a theoretical CPU utilization of 100%. Note that, since tasks released
by E code can be scheduled according to any scheduling strategy, we may also
use rate-monotonic scheduling for the program just presented. In this case,
we would achieve the same theoretical CPU utilization of 100% because the
task set is harmonic [Liu and Layland 1973]. For E code generated from arbi-
trary Giotto programs, however, the maximum utilization with rate-monotonic
scheduling may only reach 69% [Liu and Layland 1973]. On the other hand,
a rate-monotonic scheduler causes less administrative overhead than an EDF
scheduler, is easier to implement, and is therefore often preferred in safety-
critical applications.

Time-safety checking relies on WCETs. The WCET analysis is itself a dif-
ficult problem, but E code somewhat simplifies the analysis of a system by
separating functional code such as tasks from kernel code such as drivers
and E code instructions. In particular, tasks do not contain any system calls,
and thus have a context-free execution time except for the overhead due to
context switching. The execution time of each E code instruction is constant,
that is, independent of the number of triggers, drivers, tasks, and E code in-
structions of the program. For input-triggered programs without control-flow
instructions (such as for loops), the trigger queue can be evaluated in time
linear in the number of future instructions of the program. If the E code is
produced from Giotto according to Section 4, then the trigger queue can be
evaluated in constant time because the queue never contains more than one
trigger at any time during program execution. The overhead through E code in-
terpretation is therefore predictable provided the WCETs of the drivers are
known. The WCET analysis of drivers that convert and copy data is easy,
whereas device drivers that actually access hardware are difficult to ana-
lyze. This, however, is a challenge that is hard to avoid. The WCET anal-
ysis of a real-time program using more traditional kernel primitives such
as semaphores or signals is more difficult than that of an E code program
because of the context-sensitive and thus unpredictable demand for kernel
services.

As WCET assumptions may be wrong despite a thorough analysis, the Giotto
compiler (see Section 4) generates E code for handling time-safety violations.
Algorithm 3 shows the E code interpreter of Algorithm 2 enhanced with ex-
ception handling. For exception handling, a second argument is added to the
release instruction. Suppose that the task t is released by the instruction
release(t, e), where e is an E code address. The block of E code at address e
is the exception handler, and its address is recorded in the task set. If, before
t completes, the ports read by t are updated or the ports written by t are read
by a driver or another task, then the E machine discards the instruction that
causes the exception and jumps to address e. The task t is not terminated, but,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:18 • T. A. Henzinger and C. M. Kirsch

Algorithm 3. The E Code Interpreter with Exceptions

while ProgramCounter �= ⊥ do
i := GetInstruction(ProgramCounter); E := ∅
if call(d) = i then

E := {e | (t, , e) ∈ TaskSet : P [d] ∩ I [t] �= ∅ ∨ I [d] ∩ P [t] �= ∅}
if E = ∅ then

ProgramState(P [d]) := f [d](ProgramState(P [d] ∪ I [d]))
else if release(t, e) = i then

E := {e′ | (t ′, , e′) ∈ TaskSet : P [t] ∩ P [t ′] �= ∅}
if E = ∅ then

TaskSet := TaskSet ∪ {(t, ProgramState(P [t] ∪ I [t]), e)}
else if future(g , a) = i then

TriggerQueue := TriggerQueue ◦ (g , a,ProgramState(P [g]))
end if
while E �= ∅ do

(ProgramCounter, E) := ChooseException(E)
invoke Algorithm 3

end while
ProgramCounter := Next(ProgramCounter)

end while

for the case that termination is desired, we add an instruction terminate(t) to
the instruction set of the E machine which removes t from the task set. This may
be the first instruction of the exception handler. When the exception handler
finishes, control flow returns to the instruction that follows the instruction that
caused the exception. A single call or release instruction may cause multiple
exceptions, for example, because a driver may read ports from multiple tasks in
the task set. We do not specify how simultaneous exceptions are prioritized; this
is done by the function ChooseException. As runtime exceptions can occur inside
an exception handler, Algorithm 3 is invoked recursively, so as to implicitly
maintain a stack of return addresses.

In the case of Giotto, the compiler generates an exception handler for each
task. If a runtime exception is caused by an instruction that has a conflict with
task t in the task set, then the associated exception handler terminates t and re-
stores the most recent valid values to the task ports of t, that is, the values that
preceded the terminated invocation of the task. Note that the values in the task
ports of a terminated invocation of a task may be inconsistent because updating
task ports is not necessarily an atomic operation. We restore the most recent
valid values because they are easily available and typically a good approxi-
mation of the unknown current values in control applications. This approach
requires additional ports and drivers. In our example, the new driver d j , for
j = 1, 2, stores the result of task t j in a new driver port pj . In case of a runtime
exception involving task t j , the exception handler at address e j terminates t j

and calls the new driver d ′
j , which restores the value of pj to the task port of

t j before the program proceeds. The generated E code that follows produces ex-
actly the same output behavior for time-safe traces as the original E code from
Section 1.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:19

a1: call(d1) a2: call(d2)
call(d2) call(ds)
call(da) release(t2, e2)
call(ds) future(g , a1)
call(di)
release(t1, e1)
release(t2, e2)
future(g , a2)

e1: terminate(t1) e2: terminate(t2)
call(d ′

1) call(d ′
2)

However, if a time-safety violation occurs, then the new E code handles the
associated exception. Suppose that the a1 block is executed when task t1 has
not yet completed. The attempt to execute d1 throws a runtime exception that
invokes the E code at address e1. After t1 is terminated, the driver d ′

1 restores
the task port of t1 and execution proceeds with the call(d2) instruction of the
a1 block.

3.2 Determinism

Figure 3 gave an example where different scheduling schemes (EDF and time
slicing) lead to the same output behavior. For either scheduling scheme, the
program interacts with the environment at the same constant rate of 10ms
and produces the same actuator settings. We now show that this is a general
property of E machine programs as long as the platform maintains time safety
(i.e., there are no runtime exceptions). Recall that by input of the E machine,
we refer to both environment and task ports (e.g., input-triggered means trig-
gered by events on these ports); by environment we refer to the environment
portion of the input; and by output, to the driver ports (which includes the
actuators).

Definition 8. A program is input-determined if, whenever two time-safe
program traces agree on the initial configurations and input parts, then they
agree on the output parts as well. A program is environment-determined if,
whenever two time-safe traces agree on the initial configurations and environ-
ment parts, then they agree on the output parts.

It is easy to see that all E machine programs are input-determined. However,
input determinacy is a rather weak property. Input-determined programs are
deterministic only with respect to a given behavior of all environment and soft-
ware processes. In order to decouple environment and software, a program must
be environment-determined, that is, independent of the real-time behavior of
the software processes.

FACT. Every program is input-determined. Every environment-triggered pro-
gram is environment-determined.

For example, since the program of Figure 3 is environment-triggered, it
is environment-determined, that is, it produces the same actuator settings

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:20 • T. A. Henzinger and C. M. Kirsch

independently of the execution order of the tasks as long as the platform main-
tains time safety. In fact, as Giotto is time-triggered, all E code generated from
Giotto sources is environment-determined and so is E code generated from
more general sources whose triggers monitor arbitrary environment events.
On the other hand, an input-triggered program is in general not environment-
determined because it may trigger on the completion of a task execution. Thus,
depending on the detailed performance (WCETs) and scheduling of the plat-
form, such a program may exhibit very different output behaviors. In other
words, environment determinacy says that the software behavior depends only
on the environment behavior but not on the task execution times (as long as the
WCETs are met) and the task scheduling; input determinacy says that the soft-
ware behavior depends on the environment behavior, the task execution times,
and the task scheduling, but there are no nondeterministic choices intrinsic to
the execution of the E code itself.

Environment determinacy crucially depends on the task model of the E ma-
chine. Suppose that tasks were allowed to communicate with each other directly,
without going through drivers. In our example, this would mean that task t1

reads the task port of t2 instead of calling the connection driver di. Now con-
sider the resulting timelines. In the case of EDF, the first invocation of t1 would
read the result of the invocation of t2 that completes at 4ms. By contrast, in
the case of time slicing, t1 would start first, and thus read the initial value of
the task port of t2. As a consequence, the result of the first invocation of t1,
which determines the actuator setting at 20ms, would be different for the two
scheduling schemes.

Environment determinacy also depends on the instruction set of the E ma-
chine. For example, instead of having a compiler ensure time safety based
on schedulability analysis, we could obtain time safety trivially by using the
terminate(t) instruction to terminate any task t before we interact with t. All
traces of a program written in this way are time safe, but the program, even
if environment-triggered, would not be environment-determined because the
result of a terminated task depends on how long the task has executed. This
technique is used in practice with anytime algorithms [Dean and Boddy 1988],
which give a usable result when terminated at any time (of course, more CPU
time usually means a better quality result). To accommodate anytime tasks by
the E machine and achieve a form of environment determinacy nonetheless,
the concept of time safety can be generalized: instead of checking that a task
completes before its results are read, one may check that a task gets enough
CPU time to obtain the desired quality of the result.

3.3 Time Liveness

Time safety means that all finite trace prefixes satisfy the intended real-time
constraints of E code. There still may be undesirable infinite traces, however,
where the E machine is infinitely faster than the physical environment, for
instance, if the E machine executes an infinite loop within an E code block.
Yet, even in the absence of infinite loops inside individual blocks of E code,
two different blocks of E code may activate and enable each other infinitely

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:21

often without intervening input events. A trace without such infinite zero-time
behavior is called time-live.

Definition 9. A program trace is time-live if for every configuration c, if
c is input-disabling, then it is followed by some later configuration c′ that is
input-enabling.

FACT. Every trace of an input-triggered program is time-live.

Time liveness, therefore, is not an issue for E code generated from Giotto
whose triggers monitor only clocks, nor for E code generated from any other
source whose triggers do not look at driver ports. However, E code generation
from a synchronous reactive language such as Esterel may, like any Esterel
compilation, require nontrivial proofs of time liveness.

The execution of a time-live program, that is, a program whose traces are all
time-live, may require a trigger queue of unbounded size which is not desirable
in practice. (By contrast, during time-safe program executions, the size of the
task set is always bounded by the number of tasks.) For example, two consecu-
tive future instructions to the same block of E code may set off a process that
doubles the size of the trigger queue with each input event. A similar problem
may arise in the presence of control-flow instructions such as for loops. While
always finite, the execution of a single block of E code may take more time
with each new input event because the block may consist of an ever increasing
number of instructions.

Definition 10. A program trace is bounded time-live if there exists an in-
teger k such that for every configuration c, if c is input-disabling, then (1) c is
followed by at most k input-disabling configurations, and (2) the trigger queue
of c contains at most k entries.

Note that bounded time liveness implies time liveness. From Giotto pro-
grams, one can always generate E code that is bounded time-live. For E code
generation from, for example, Esterel, proving bounded time liveness is neces-
sary to ensure that the delay of executing any synchronous reaction is shorter
than the time between any two events that can trigger a synchronous reaction.
For a fixed bound k, bounded time liveness can be enforced at runtime by ex-
ception handling similar to the handling of time-safety violations. For example,
a future instruction may cause a runtime exception if it attempts to create a
new trigger binding when the trigger queue already contains k entries.

4. E CODE GENERATION AND LINKING

Generating code from standard high-level programming languages is an opti-
mization problem to reduce the time and space requirements of the code. Gen-
erating E code is different in the sense that the time and space requirements
of E code are usually negligible compared to the efficiency requirements of the
task code. For example, the timing requirements of a set of 100 tasks divided
into four groups with different nonharmonic frequencies can be described by
around 300 E code instructions, and the execution overhead of the E machine
is less than 1% of the total available CPU time [Kirsch et al. 2005]. However,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:22 • T. A. Henzinger and C. M. Kirsch

it is essential to guarantee the correct integration of synchronous and sched-
uled computation, that is, time safety, and to ensure bounded E code execution,
that is, bounded time liveness. When generating E code from Giotto, bounded
time liveness is guaranteed by construction but ensuring time safety requires
explicit proof. By contrast, when generating E code from synchronous reactive
languages such as Esterel or Lustre, we need only the call and future instruc-
tions but not the release instruction because these languages do not explicitly
support scheduled computation.1 Therefore, time safety is trivial but achiev-
ing bounded time liveness may require proof [Halbwachs 1993]. Also, for code
generation from synchronous reactive languages, more flexibility in the manip-
ulation of the trigger queue may be necessary than is offered by the presented
minimal definition of the E machine. Useful additions to the instruction set
of the E machine include the cancel(a) instruction, which removes all trigger
bindings with the address a from the trigger queue, and the future(true,a) in-
struction, which marks the E code at address a for execution after all currently
enabled trigger bindings have been processed.

4.1 Compiling Giotto

A Giotto program consists of a functionality part and a timing part. The func-
tionality part contains port, driver, and task declarations, which interface
the Giotto program to a functionality implementation typically written in C.
The Giotto compiler generates so-called functionality wrappers—parameterless
procedures—for each driver and task implementation, and stores the wrappers
in a table similar to a symbol table. A wrapper calls the corresponding im-
plementation with the proper arguments. The E code, however, refers to the
wrapper using only its table index, a portable integer value. From the timing
part of the Giotto program, the compiler generates annotated E code where each
release instruction is annotated with the relative deadline of the released task.

The E code generation from multimode Giotto programs illustrates the use of
conditional jumps. Consider the following timing part of a Giotto program with
two modes, ma (representing the helicopter in hover mode) and mb (descend
mode).

start ma {
mode ma() period 20 {

actfreq 1 do pa(da);
exitfreq 1 do mb(cb);
taskfreq 1 do t1(di);
taskfreq 2 do t2(ds); }

mode mb() period 20 {
actfreq 1 do pa(da);
exitfreq 1 do ma(ca);
taskfreq 1 do t ′

1(di);
taskfreq 2 do t2(ds); }}

1An exception is the exec statement of Esterel, which resembles scheduled computation in input-

determined (but not environment-determined) E machine programs.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:23

The program begins by executing mode ma, which is equivalent to the (single)
mode m of the Giotto program from Section 1 except for the mode switch to
mode mb. A mode switch in Giotto has a frequency that determines at which
rate an exit condition is evaluated. The exit condition cb of mode ma is evaluated
once every 20ms. If cb evaluates to true, then the program switches to mode mb

which is similar to mode ma except that task t ′
1 replaces task t1. Task t ′

1 computes
a different control law on the same ports as t1. The mode switch back to ma

evaluates the exit condition ca also once every 20ms. In order to express mode
switching in E code, we use a conditional branch instruction if(c, a). The first
argument c is a condition, which is a predicate on some ports. The second
argument a is an E code address. The if(c, a) instruction evaluates the condition
c synchronously (i.e., in logical zero time), similar to driver calls, and then either
jumps to the E code at address a (if c evaluates to true) or proceeds to the
next instruction (if c evaluates to false). The following E code implements the
preceding Giotto program.

a1: call(da) a3: call(da)
call(ds) call(ds)
call(di) call(di)
release(t2[10], e2) release(t2[10], e2)
if(cb, a′

3) if(ca, a′
1)

a′
1: release(t1[20], e1) a′

3: release(t ′
1[20], e′

1)
future(g , a2) future(g , a4)

a2: call(ds) a4: call(ds)
release(t2[10], e2) release(t2[10], e2)
future(g , a1) future(g , a3)

The two E code blocks in the left column implement mode ma; the two blocks
on the right implement mb. The exception handlers for the three tasks (e1,
e′

1, and e2) are omitted. Note that, no matter which conditional branches are
taken, the execution of any block terminates within a finite number of E code
instructions. This concludes the first, platform-independent phase of the Giotto
compiler.

The second, platform-dependent phase of the Giotto compiler performs a
time-safety check for the generated E code and a given platform. For single-
CPU platforms with WCET information and an EDF-based scheduling scheme
and for the simple code generation strategy illustrated in the example, the
time-safety check is straightforward [Henzinger et al. 2002]. For distributed
platforms, complex scheduling schemes, or complex code generation strategies,
this, of course, may not be the case. The code generation strategy has to find the
right balance between E code and E machine annotations. An extreme choice is
to generate E code that at all times maintains a singleton task set, which makes
the scheduler’s job trivial but E code generation difficult. The other extreme is
to release tasks as early as possible with precedence annotations that allow
the scheduler to order task execution correctly. This moves all control over
the timing of software events from the code generator to the scheduler. In other
words, the compiler faces a trade-off between static (E machine) scheduling and

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:24 • T. A. Henzinger and C. M. Kirsch

dynamic (RTOS) scheduling. Our strategy, which releases tasks and computes
deadlines according to the logical semantics of the Giotto source, chooses a
compromise that suggests itself for control applications. To achieve controller
stability and maximal performance, it is often necessary to minimize the jitter
on sensor readings and actuator updates. This is accomplished by generating
separate, time-triggered blocks of E code for calling drivers that interact with
the physical environment. In this way, the time-sensitive parts of a program are
executed separately [Wirth 1977], and for these parts, platform time is statically
matched to environment time as closely as possible at the E code level. On the
other hand, for the time-insensitive parts of a program, the scheduler is given
maximal flexibility.

4.2 Dynamic Linking

Software modularization is an important concept in the non-real-time world
for improving software reusability and reducing software complexity. Soft-
ware modularization requires the use of symbolic references in executable code
rather than direct references. Resolving symbolic references at compile time
and runtime is called linking and dynamic linking, respectively. Since E code
uses only symbolic references, E code (and tasks, drivers) can be linked stati-
cally as well as dynamically.

For an example of static linking, the two columns of E code that are gen-
erated for the two modes of the Giotto program above can be compiled sepa-
rately and then linked to a complete E code executable. For dynamic linking,
we leverage the dynamic nature of the trigger queue by maintaining trigger
bindings to unloaded E code in the queue. This approach requires control over
the queue as provided by the cancel(a) instruction which removes all trigger
bindings with the address a from the trigger queue. Hence a cancel instruction
may negate the effect of several future instructions. Consider the following
program (annotations and exception handling are omitted) which implements
the dynamic loading and linking of the two Giotto modes ma and mb during
helicopter flight.

a1: cancel(a3) a3: cancel(a1)
call(da) call(da)
call(ds) call(ds)
call(di) call(di)
release(t1) release(t ′

1)
release(t2) release(t2)
future(g , a2) future(g , a4)
future(hb, a3) future(ha, a1)

a2: call(ds) a4: call(ds)
release(t2) release(t2)
future(g , a1) future(g , a3)

Suppose that only the E code in the left column is currently loaded in the
E machine. We begin by executing the a1 block with an empty trigger queue

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:25

and an empty task set. Thus the initial cancel(a3) instruction has no effect.
The final future(hb, a3) instruction activates a new trigger hb and binds it to
the still unknown address a3. The trigger predicate of hb is (p′

c = pc + 20) ∧ cb,
that is, hb becomes enabled at 20ms if the condition cb evaluates to true (ha is
defined analogously using condition ca). At 10ms, the E machine executes the
a2 block. The future(g , a1) instruction appends the trigger g to the trigger
queue after the trigger hb, which is still in the queue. At 20ms, if cb is not true,
then hb is not enabled and thus skipped, but g is enabled, which causes the
a1 block to be executed again. Now the first cancel(a3) instruction removes the
hb trigger from the queue. On the other hand, if cb is true, then the E machine
attempts to execute instead the a3 block. As the a3 block is not available, the
E machine starts the loader and linker to retrieve it. This overhead needs to
be taken into account by time-safety analysis. Once the E code is available, the
E machine begins by executing the cancel(a1) instruction which removes the
g trigger from the queue. The rest of the E code at a3 and a4 is analogous to
the E code at a1 and a2 except that task t ′

1 (whose code can also be loaded and
linked dynamically) replaces task t1.

From the perspective of the RTOS, dynamic linking of E code means chang-
ing the interrupt and task schedules at runtime, which is standard practice.
Before accepting a new interrupt or task schedule, the scheduler typically ap-
plies a schedulability test and rejects the request if the test fails. If the test
succeeds, then the new interrupt and task schedules are feasible, but we have
no assurances about determinism properties of the system. On the other hand,
a successful schedulability test of the task set in dynamically linked E code
establishes time safety, and thus provides the same strong determinism prop-
erties as static E code.

4.3 E Machine Implementations

There are several implementations of the E machine. The simplest one is writ-
ten in C for Lego Mindstorms robots using the open-source LegOS operating
system. The interesting aspect of this implementation is that it is a kernel
patch, which makes the E machine part of the kernel, rather than the highest-
priority thread outside the kernel. The E machine implementation for the ETH
helicopter [Kirsch et al. 2002] is written in Oberon using a custom-designed
RTOS on a StrongARM embedded processor. The interesting feature of this
implementation, besides high performance, is that tasks are implemented as
subroutines rather than as coroutines [Wirth 1996]. In this case, the E ma-
chine is an interrupt handler bound to a real-time clock. Preemption works
through reentrant interrupts. We have also used a revised version of this im-
plementation to benchmark the E machine on synthetic task sets of up to 100
tasks [Kirsch et al. 2005].

The third implementation of the E machine is in C under Linux using
POSIX threads and semaphores. The E machine and each task runs in its
own thread. Each task thread runs at a lower priority than the E machine
thread and uses a unique semaphore on which it waits until the E machine sig-
nals the semaphore. For example, upon executing a release(t) instruction, the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:26 • T. A. Henzinger and C. M. Kirsch

E machine signals the semaphore of the thread that implements task t. When
t completes, the thread loops back and waits on the semaphore for the next
release(t) instruction. The goal of the Linux implementation is to port it to the
RTOS VxWorks, which also features POSIX threads, however, with real-time
guarantees. The Linux version also includes a dynamic loader and linker for
the binary format of E code. Moreover, it features a distributed E machine im-
plementation that runs interacting E machines on each host of a distributed
system. The hosts communicate using the UDP protocol on BSD sockets. The
distributed version is also supported by the Giotto compiler which can gen-
erate E code separately for each E machine. The goal is to port the imple-
mentation to a network with real-time guarantees such as a time-triggered
bus.

5. CONCLUSION

E code is predictable, portable, hard real-time code. E code is hard real-time
because it relates to environment (physical) time, rather than platform (CPU)
time; this simplifies code validation at the expense of code generation. E code
is predictable because the timing and behavior of a program depends only on
the external inputs; there are no internal race conditions. E code is portable
because it is independent of the platform, in particular, of the scheduler. The
combination of these attributes is made possible through the notion of time
safety. E code is time-safe if its timing requirements are met on the chosen
platform. In some cases, such as Giotto source programs, time safety can
be guaranteed statically by the compiler [Henzinger et al. 2002]. In other
cases, time-safety violations must be handled dynamically by the runtime
system.

5.1 Related Work

The problem of real-time programming is to define abstractions that capture
the interaction between physical processes and software processes. Two major
research communities have approached this problem from different directions:
the synchronous reactive language community has studied zero-delay syn-
chronous computation [Halbwachs 1993], and the real-time systems commu-
nity has focused on the theory of scheduled computation [Buttazzo 1997] and
corresponding programming languages [Burns and Wellings 1997]. Both fields
have had a big impact on the design of the E machine which attempts to bring
together the concepts of synchronous and scheduled computation. Synchronous
computation relates software processes to physical processes by modeling soft-
ware processes as instantaneous reactions to physical stimuli. The main chal-
lenge is to prove the analogue of time liveness, that is, the existence of finite
reactions [Berry 2000]. However, large blocks of synchronous computation nat-
urally exhibit delayed reactivity which may deteriorate the determinism of the
synchronous model. Real-time scheduling theory, on the other hand, relates
software processes to physical processes by imposing a constraint system of re-
lease times and deadlines on the software processes. The main challenge is to
prove the analogue of time safety, that is, the existence of a feasible schedule.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:27

However, the arrangement of computation according to a schedule that depends
on the behavior of both physical and software processes leads to an inherently
nondeterministic model.

From the E machine perspective, the synchronous reactive language commu-
nity deals with organizing a time-live trigger queue, and the real-time systems
community worries about scheduling a time-safe task set. This can be seen
more clearly from various intermediate languages that have been proposed for
synchronous and for scheduled computation. Examples from the synchronous
domain include the automata-based portable object code [Plaice and Saint 1998]
for Esterel and Lustre, and halt point graphs [Weil et al. 2000] for Esterel.
Examples from the scheduled domain include the abstract machines JAM and
BEAM for code generation from the functional real-time language Erlang [Arm-
strong 1997]. Each of these formalisms is richer than the E machine in some
respects as they permit more general manipulations of the trigger queue or
of the task set, or more general control flow and data handling. The E ma-
chine attempts to exploit and at the same time restrict the possibilities in both
the synchronous and the scheduled domains by identifying a set of primitives
that (1) guarantee strong determinism properties of the code and (2) are suf-
ficiently rich to be useful in practice. An important practical question raised
by the E machine asks which parts of embedded software are best modeled by
synchronous computation and which by scheduled computation. For example,
E code generated from Giotto uses synchronous computation to implement the
data transport (I/O) from and to the physical system and between software
processes, while time-consuming data computation is implemented as sched-
uled computation. (In a distributed Giotto system, data communication across
networks with nonnegligible latency is also implemented as scheduled compu-
tation.)

It should be noted that Wirth already emphasized in 1977 the value of sep-
arating logical programs from physical platforms to obtain a discipline of real-
time programming [Wirth 1977]. He suggested that the time-dependent pro-
gram parts, that is, the blocks of synchronous computation, are “few, simply
structured, and without loops with an unknown number of repetitions” in or-
der to maintain correctness independently from the execution time of the non-
real-time code, that is, the units of scheduled computation. In particular, he
proposed a “ban on the notion of interrupt” unless “interrupts can be ignored
in considerations about a system’s computational state and can be confined to
timing considerations only.”

5.2 Recent Work

In this article, the E machine made use of a system scheduler given by the
RTOS, which is taken into account by the compiler during time-safety analy-
sis. A more radical approach replaces the system scheduler with a compiler-
generated scheduler. Such an approach is pursued in Henzinger et al. [2003]
where the system scheduler is replaced by a second virtual machine called
the Scheduling Machine (or S machine), which interprets scheduling instruc-
tions. In this setting, the compiler produces code for both the E machine, which

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

33:28 • T. A. Henzinger and C. M. Kirsch

reacts to input events (such as environment events and task completions) by
calling drivers and releasing tasks, and the S machine, which takes over be-
tween these reactions by dispatching released tasks to the CPU. This scheme
affords maximum flexibility for synthesizing time-safe schedules. A distributed
implementation of the E and S machines, together with a compiler for gener-
ating distributed code from Giotto programs, is presented in Henzinger et al.
[2005].

ACKNOWLEDGMENTS

We thank Marco Sanvido for help with the helicopter implementation, Arkadeb
Ghosal and Slobodan Matic for help with the Giotto compiler, and Edward Lee
and Jie Liu for many valuable discussions.

REFERENCES

ARMSTRONG, J. 1997. The development of Erlang. In Proceedings of the ACM International Con-
ference on Functional Programming. 196–203.

BERRY, G. 2000. The foundations of Esterel. In Proof, Language, and Interaction: Essays in Honour
of Robin Milner, G. Plotkin, C. Stirling, and M. Tofte, Eds. MIT Press.

BURNS, A. AND WELLINGS, A. 1997. Real-Time Systems and Programming Languages. Addison-

Wesley.

BUTTAZZO, G. 1997. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications. Kluwer.

DEAN, T. AND BODDY, M. 1988. An analysis of time-dependent planning. In Proceedings of the
National Conference on Artificial Intelligence. 49–54.

FERDINAND, C., HECKMANN, R., LANGENBACH, M., MARTIN, F., SCHMIDT, M., THEILING, H., THESING, S.,

AND WILHELM, R. 2001. Reliable and precise WCET determination for a real-life processor. In

Proceedings of the International Workshop on Embedded Software. Lecture Notes in Computer

Science, Vol. 2211, Springer, 469–485.

HALBWACHS, N. 1993. Synchronous Programming of Reactive Systems. Kluwer.

HALBWACHS, N., CASPI, P., RAYMOND, P., AND PILAUD, D. 1991. The synchronous dataflow program-

ming language Lustre. In Proceedings of the IEEE 79, 1305–1320.

HENZINGER, T., HOROWITZ, B., AND KIRSCH, C. 2003. Giotto: A time-triggered language for embedded

programming. In Proceedings of the IEEE 91, 84–99.

HENZINGER, T., KIRSCH, C., MAJUMDAR, R., AND MATIC, S. 2002. Time-safety checking for embedded

programs. In Proceedings of the International Workshop on Embedded Software. Lecture Notes

in Computer Science, Vol. 2491, Springer, 76–92.

HENZINGER, T., KIRSCH, C., AND MATIC, S. 2003. Schedule-carrying code. In Proceedings of the In-
ternational Workshop on Embedded Software. Lecture Notes in Computer Science, Vol. 2855,

Springer, 241–256.

HENZINGER, T., KIRSCH, C., AND MATIC, S. 2005. Composable code generation for distributed Giotto.

In Proceedings of the ACM Conference on Languages, Compilers, and Tools for Embedded Systems.

21–30.

KIRSCH, C., SANVIDO, M., AND HENZINGER, T. 2005. A programmable microkernel for real-time sys-

tems. In Proceedings of the ACM International Conference on Virtual Execution Environments.

35–45.

KIRSCH, C., SANVIDO, M., HENZINGER, T., AND PREE, W. 2002. A Giotto-based helicopter control sys-

tem. In Proceedings of the International Workshop on Embedded Software. Lecture Notes in

Computer Science, Vol. 2491, Springer, 46–60.

LIU, C. AND LAYLAND, J. 1973. Scheduling algorithms for multiprogramming in a hard-real-time

environment. J. ACM 20, 46–61.

PLAICE, J. AND SAINT, J.-B. 1998. The Lustre-Esterel portable format. Tech. rep. INRIA Sophia

Antipolis.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

The Embedded Machine: Predictable, Portable Real-Time Code • 33:29

SANVIDO, M. 1999. A computer system for model helicopter flight control; Technical memo Nr. 3:

The software core. Tech. rep. 317, ETH Zurich.

WEIL, D., BERTIN, V., CLOSSE, E., POIZE, M., VENIER, P., AND PULOU, J. 2000. Efficient compilation of

Esterel for real-time embedded systems. In Proceedings of the ACM International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems. 2–8.

WIRTH, N. 1977. Toward a discipline of real-time programming. Comm. ACM 20, 577–583.

WIRTH, N. 1996. Tasks versus threads: An alternative multiprocessing paradigm. Software: Con-
cepts Tools 17, 6–12.

Received August 2003; revised July 2005; August 2006; accepted May 2007

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 6, Article 33, Publication date: October 2007.

