
15

Low-Latency Time-Portable Real-Time
Programming with Exotasks

JOSHUA AUERBACH, DAVID F. BACON, DANIEL IERCAN, CHRISTOPH M.
KIRSCH, V. T. RAJAN, HARALD RÖCK, and RAINER TRUMMER

Exotasks are a novel Java programming construct that achieve three important goals. They achieve

low latency while allowing the fullest use of Java language features, compared to previous attempts

to restrict the Java language for use in the submillisecond domain. They support pluggable sched-

ulers, allowing easy implementation of new scheduling paradigms in a real-time Java system. They

can achieve deterministic timing, even in the presence of other Java threads, and across changes of

hardware and software platform. To achieve these goals, the program is divided into tasks with pri-

vate heaps. Tasks may be strongly isolated, communicating only with each other and guaranteeing

determinism, or weakly isolated, allowing some communication with the rest of the Java applica-

tion. Scheduling of the tasks’ execution, garbage collection, and value passing is accomplished by

the pluggable scheduler. Schedulers that we have written employ logical execution time (LET) in

association with strong isolation to achieve time portability. We have also built a quad-rotor model

helicopter, the JAviator, which we use to evaluate our implementation of Exotasks in an experi-

mental embedded version of IBM’s J9 real-time virtual machine. Our experiments show that we

are able to maintain very low scheduling jitter and deterministic behavior in the face of variations

in both software load and hardware platform. We also show that Exotasks perform nearly as well

as Eventrons on a benchmark audio application.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:

Real-time and Embedded Systems; D.3.2 [Programming Languages]: Java; D.3.4 [Program-
ming Languages]: Processors—Memory management (garbage collection)

General Terms: Algorithms, Languages, Measurement, Performance

Additional Key Words and Phrases: Real-time scheduling, UAVs, time portability, virtual machine

ACM Reference Format:
Auerbach, J., Bacon, D. F., Iercan, D., Kirsch, C. M., Rajan, V. T., Röck, H., and Trummer,

R. 2009. Low-latency time-portable real-time programming with exotasks. ACM Trans. Em-

bedd. Comput. Syst. 8, 2, Article 15 (January 2009), 48 pages. DOI = 10.1145/1457255.1457262

http://doi.acm.org/10.1145/1457255.1457262

This work is based on an earlier work “Java Takes Flight: Time-portable Real-time Programming

with Exotasks” published in Proceedings of LCTES 2007. It includes new work to unify Exotasks

and Eventrons via a weak isolation model, revised and expanded programming examples, new

empirical data, and more detail about the HTL Scheduler and the mapping between the HTL

language and Exotasks.

Authors’ addresses: email: josh@us.ibm.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1539-9087/2009/01-ART15 $5.00 DOI 10.1145/1457255.1457262 http://doi.acm.org/

10.1145/1457255.1457262

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:2 • J. Auerbach et al.

1. INTRODUCTION

Real-time applications need low and predictable scheduling latencies. This has
caused them to be written with specialized methodologies in low-level lan-
guages. However, this practice is changing. Recent innovations in real-time
garbage collection (RTGC) for Java [Bacon et al. 2003; Siebert 2004; Henderson
2002] have made Java suitable for writing real-time applications whose latency
requirements are in the millisecond range. The Real Time Specification for Java
(RTSJ) [Bollella et al. 2000] provides standard interfaces for creating real-time
threads and mandates a fixed priority scheduler, while allowing for a JVM ven-
dor to provide alternative schedulers. Problems remain, however. First, below
some minimum latency, RTGC suffers from cache evacuation effects, through-
put compromises, and work granularity limits. Thus, other ways of operating
at very low latencies in Java are needed. Second, RTSJ does not standardize
an interface between the scheduler and the threads and tasks to be scheduled,
so only vendors are in a position to experiment with alternative schedulers.
Third, real-time programs in the “portable” Java language are not time-portable
because current technologies encourage the use of platform-dependent charac-
teristics in reasoning about the application’s real-time properties. We will con-
sider each of the issues (low latency, pluggable scheduling, and time portability)
in turn.

1.1 Low Latency with Fewer Restrictions

Restricted subsets of Java, used in portions of a larger application, are currently
being used to achieve lower latencies than what can be achieved with RTGC.
These restricted models include the NoHeapRealtimeThread (NHRT) construct
of the RTSJ, Eventrons [Spoonhower et al. 2006], Reflexes [Spring et al. 2007],
and StreamFlex [Spring et al. 2007]. However, each of these restricted program-
ming models entails problems for the application writer.

Exotasks provide a less restrictive capability for programming at low la-
tencies, compared with the previously mentioned solutions. The key relax-
ation in restrictiveness is Exotasks’ ability to allocate objects in the knowl-
edge that they will be garbage-collected only when unreachable. As a result,
Exotasks are compatible with a larger (although still reduced) set of Java li-
braries compared to other approaches. This capability is important because so
much programming in Java uses objects and most operations in Java end up
allocating objects. For example, to iterate over a standard Java Collection, the
program requests an Iterator object from the collection object. Since the iterator
is stateful, the collection invariably allocates a fresh iterator to satisfy each
request.

Reflexes [Spring et al. 2007] permitted at least temporary objects to be al-
located in a transient region, which helps with objects that are almost always
temporary, such as iterators. However, Reflexes require a bifurcation statically
by class of all objects into stable and transient, and the stable area is not recov-
ered until program termination. Thus, if some type (say, String) is sometimes al-
located freshly, and sometimes stored on a nontransient basis, the programmer

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:3

must label String as a stable class, which results in a long-term storage leak.
With Exotasks, none of these problems arise. Each Exotask has a private heap
that is garbage-collected on a scheduled basis so that it does not interfere with
task execution.

Like the other language restrictions with the exception of NHRTs, Exotasks
rely primarily on program analysis (validation) for enforcement. A validated
Exotask (as with Eventrons, Reflexes, or StreamFlex) will run without the need
for expensive checks whenever object references are loaded or stored (as hap-
pens with NHRTs). Runtime checks consist only of the standard Java language
checks (e.g., class casts, null pointers, array bounds) plus an added check on JNI
callbacks to enforce certain Exotask restrictions for native methods. Like Even-
trons, but in contrast to Reflexes and StreamFlex, validation is done at program
initialization time when more information is available than is available at com-
pile time. The Exotask model is a functional superset of Eventrons, allowing
flexible communication with the rest of the Java application (a strength of Even-
trons and Reflexes) to be traded-off against determinism and time portability
(a strength of Exotasks).

Exotask restrictions consist of the following:

(1) Exotasks may not observe or alter mutable state in static fields or in objects
reachable from them in a way that would require synchronization with the
garbage collector. At a minimum, they may not mutate references found in
these fields and objects, but an even stronger condition may be enforced in
the interest of determinism (as we discuss later).

(2) Exotasks may not create new threads or use operations like wait, notify, and
sleep that affect thread scheduling.

(3) Exotasks may not use finalization or soft or weak references (which would
introduce time variability into the private heap implementation).

(4) Native code in Exotasks may not use those parts of JNI that would render
the code validation meaningless (this is enforced dynamically since the code
validator cannot examine native methods).

1.2 Pluggable Scheduling

In the Exotask system, it is possible to provide new timing grammars that define
the rules for specifying timing constraints, and new schedulers that interpret
those timing constraints (along with WCET information) to produce correct
runtime behavior. Application writers will not typically create new schedulers,
but we believe that there are scheduling experts who could do so and make the
results available to application writers. While the RTSJ standard allows for
alternative schedulers, there are no formal interfaces for installing schedulers
while giving them access to the privileged VM and OS interfaces that they
need to do their work. The Exotask system provides a privileged interface that
schedulers can use to control all Exotask execution details, as will be described.
Exotask schedulers can be written by third parties without knowledge of system
internals.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:4 • J. Auerbach et al.

1.3 Time Portability

Java provides functional portability across platforms, and it is naturally desir-
able for observable real-time behavior, also to be the same on all platforms. Of
course, this requires adequate resources on each platform. However, if sufficient
resources exist, it should not require rewriting or retuning the application. To-
day, this is not the case since platform-dependent characteristics are used to
determine scheduling parameters when tuning the application.

Exotasks are able to solve the timing portability problem through a combi-
nation of essential features. First, they enforce a computational model in which
tasks (the Exotasks) communicate via explicitly declared channels and are oth-
erwise isolated (logically in time and physically in space) from each other and
from the rest of the Java application. Isolation makes use of the fact that each
task has a private heap (which, as mentioned, is also useful in enabling the
fullest use of Java). The actual isolation takes one of two possible forms, strong
or weak. Strong isolation is “complete” in a sense to be described. Weak isolation
allows for some nondeterminism in return for increased convenience in commu-
nicating with the rest of the Java application. Then, an appropriately designed
scheduler achieves portable timing characteristics by scheduling Exotasks us-
ing Logical Execution Time (LET) [Henzinger et al. 2003]. In the LET model,
events involving I/O are executed at precise points in real time while other
events are executed based on data dependencies between tasks. The current
schedulers used with the Exotask system are inspired by Giotto [Henzinger
et al. 2003] and its successor hierarchical timing language (HTL) [Ghosal et al.
2006], but Exotasks represent a complete rethinking of the syntax of programs
and the development cycle so as to fit naturally into the Java programming
model.

1.4 Elements of the Exotask System

Exotasks comprise a programming model defined entirely within the Java lan-
guage, a supporting tool suite built on the Eclipse framework [Eclipse Founda-
tion 2007], and runtime support in a cooperating Java virtual machine. Like
the other restricted models, Exotasks run on special threads that are exempted
from preemption by system threads, such as those used to accomplish garbage
collection or JIT compilation.

Garbage collection of the private heaps is generally scheduled on a heap-by-
heap basis, at times when it will not interfere. Garbage collection of the public
global heap occurs completely in parallel with Exotask execution. Exotask pri-
vate heaps can also be collected “on demand,” but this increases variability
in execution time and worst-case execution time. A discussion of the tradeoffs
involved is presented in Section 3.7. We do not explore on-demand collections
empirically in this paper.

The Exotask system requires a modified Java virtual machine (JVM) that is
capable of enforcing Exotask memory isolation and provides the private heap
mechanics and deep cloning support between private heaps. We have imple-
mented such a modified Java virtual machine using IBM’s Websphere Real
Time VM [Auerbach et al. 2007] as a base. The modifications are packaged as

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:5

an add-on to the product VM and can be obtained from IBM alphaWorks [IBM
Corporation 2007].

The Exotask system supports pluggable system behavior, not only for
scheduling, but for other facilities such as tracing and distribution across ma-
chine boundaries. Investigation of distributed Exotask programs is for future
work, and distributers are discussed only briefly in this report. Pluggable trac-
ing was used to collect the measurements in this report, but is not described.
However, pluggable scheduling will be explored in that we will describe two dif-
ferent schedulers and their associated timing grammars in various examples
to follow.

We first use a simple programming example to explain Exotasks basics. Then,
we describe the Exotask programming model in full. Next, we present several
versions of a control program for controlling a quadrotor helicopter called the
JAviator that was built by members of our team. These more realistic examples
complete our illustration of how Exotask programming proceeds in practice.
Subsequent sections present some notes about the system extension mecha-
nism and the implementation. In the measurements section, we present results
from many of the Exotask programs presented earlier, as well as an Exotask
realization of the audio example that was used in both the Eventrons [Spoon-
hower et al. 2006] and Reflexes [Spring et al. 2007] papers as a benchmark.

2. EXOTASK BASICS

In this section, we introduce the basic features of the Exotask programming
model using a simple example of a controller for an inverse pendulum with one
degree of freedom [Ogata 1997]. A more comprehensive exposition is then given
in Section 3, after which, we explore the use of the Exotask system to build real
control programs for the JAviator helicopter in Sections 4 and 5.

Although the inverse-pendulum example is well known, we describe it briefly.
The device is a cart riding freely on a track. It has a pendulum rotating freely
on one side through a 360-degree arc, but subject to gravity. A sensor reads the
angular position and velocity of the pendulum, and another sensor reads the
position and velocity of the cart on the track. A motor is capable of driving the
cart in either direction with a specified force. The pendulum is started in a near-
vertical position, and the controller must cause it to reach the exact vertical and
track that position (to the extent feasible) while the cart is subject to perturbing
forces that push it one direction or the other along the track. In this study, the
inverse pendulum itself was simulated, not implemented in hardware, but the
program is fully realized, and we present data from it in Section 8.

An Exotask program consists of a specification graph and user code, in the
form of Java classes, for some graph nodes (in this example, all of the graph
nodes). We discuss these elements in turn.

2.1 The Specification Graph

The Exotask specification graph for the inverse-pendulum controller is shown
in Figure 1, which depicts a partial screenshot from our Eclipse-based Exotask
programming environment.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:6 • J. Auerbach et al.

Fig. 1. An exotask controller for an inverse pendulum.

The nodes of a graph specify Exotasks and the edges specify strongly typed
connections between the ports of those Exotasks. A single distinguished node
(with the clock icon) selects a timing grammar (informally, a notation for ex-
pressing time, to be elaborated later). Timing annotations expressed in the
selected grammar may be applied to any node or connection. In Figure 1, the
timing annotations and connection data types are overlaid on the screenshot
for clarity.

Exotasks may perform computation, I/O, or both. However, because the Exo-
task is the unit of scheduling, Exotasks are typically specialized as sensors and
actuators (which have precise timing requirements) and compute tasks (which
do not). That was done in this example.

The example employs the simplest timing grammar (the “time triggered sin-
gle mode” grammar), which just assigns a period of execution (10ms), and then
says when time-critical events should occur within the period. We have im-
plemented two other timing grammars, which are discussed in Section 3.1.1.
Note that the AngleSensor task is executed at time 0, and the PositionSensor at
300μs. The Motor actuator task is executed at 1000μs (1ms). The times for these
events were chosen to be realistic, and they will be used in Section 8 to demon-
strate that determinism has been achieved. The Control Exotask and all of the
data transfers between tasks will execute any time that is convenient based
on data dependencies and execution time requirements. The strict isolation of
this graph ensures that the scheduling of these activities does not matter as
long as it does not interfere with the precise times assigned to externally visible
events.

2.1.1 Connections and Ports. Communication between Exotasks is via di-
rected edges (connections), which are strongly typed and are constrained to
connect ports of matching type. The type assigned to ports and connections can
be any Java class that is otherwise legal for use in an Exotask. Sharing be-
tween Exotasks is precluded because the operation of moving an object across
a connection is semantically a deep copy of the referenced data structure.

Ports are not shown in the graphical view. By default, the number of input
and output ports for each Exotask is implied by the number of distinct incom-
ing and outgoing data types. For instance, in the inverse-pendulum example,
the Compute task has two input ports and one output port. It is possible to
have multiple input (or output) ports of the same type, though that case must
be explicitly disambiguated by the programmer. An Exotask with no ports or
connections is also perfectly legal and results in simple periodic execution (as
in Eventrons [Spoonhower et al. 2006] or Reflexes [Spring et al. 2007]).

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:7

Connections are themselves stateless, but each port (input or output) can
store a value. Thus, the connection and the ports at each end act as a one-stage
buffer, allowing the value written by the sending task to its output port to differ
from the value available to the receiving task via its input port. The deep copy
is made at some time after the execution of the sending task in a given period
and before the execution of the receiving task. The scheduler is responsible
for determining when this copy is made, and ensuring that the data move-
ment does not overlap with the executions of the Exotasks at either end of the
connection.

2.1.2 Sensors, Actuators, and Compute Tasks. When an application is par-
titioned into sensors, actuators, and compute tasks, the compute tasks are sim-
ply those Exotasks that do not perform I/O and have both input and output
ports. Sensors are Exotasks that only have output ports and perform hardware
input. Actuators are Exotasks that only have input ports and perform hardware
output. Since adding direct hardware support to Java was beyond the scope of
our effort, sensors and actuators typically invoke native (JNI) code to interface
with device drivers. We will discuss this further in Section 2.2.

In the inverse-pendulum example, the AngleSensor Exotask provides its out-
put port with an application-defined AngleData instance, containing both angu-
lar position and angular velocity. The PositionData type sent by the PositionSen-
sor task is also application-defined, containing both position and velocity. Since
the Motor actuator only needs a single double to determine the motor force, it
uses the standard java.lang.Double type. Note that for generality, ports take
Java objects rather than primitive types, so that scalars, like double, must be
passed in their boxed form (boxing is automated in Java 5). Of course, the low-
level hardware requires integers rather than double-precision floating-point
numbers. But, since the sensors and actuators in the Exotask model are tasks
with user-written code, the values seen by the rest of the program logic can be
expressed in types and units convenient for the algorithm.

2.2 User Code

Obviously, what we have seen so far is not a complete program. Once the speci-
fication graph is complete, the remainder of the Exotask program is written in
Java (plus, typically, a small amount of native code to reach the actual device
drivers). Eight Java classes were written to complete the inverse-pendulum ex-
ample. Two (AngleData and PositionData) are the data classes transmitted from
the sensors to the compute task, as already discussed. Four others provide the
implementations for the four Exotasks in the specification. One class defines
a parameter (described in Section 2.2.1), and one is the main program that
causes the Exotask graph to be instantiated and executed (described in Section
2.2.3).

Each class that implements an Exotask must have a zero-argument con-
structor. The class must also implement the Exotask interface, which defines
a one-time initialize method and a periodic execute method. When the system
instantiates this class, it will already have a private heap, so anything it creates
in its constructor or initialize method will go there. The execute method will be

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:8 • J. Auerbach et al.

Fig. 2. Exotask code for the Compute node in Figure 1 .

called by the scheduler in each period of execution and must return (it is not
like the run method of a Thread: in fact, there is no necessary mapping between
threads and Exotasks).

2.2.1 Compute-Task Details. Exotasks used for computation will have both
input and output ports and user-written code bodies. In Figure 1, the task
labeled Compute is a task implementing the pendulum control algorithm. Its
code is shown in Figure 2.

If the Exotask program is developed using the Eclipse environment, a but-
ton click will create, for each Exotask, a partial implementation based on the
specification. This consists of port instance variable declarations, a partially
completed initialize method, and an empty execute method. The rest of the code
is written by the user (as shown in Figure 2).

The initialize method’s first few statements just assign arguments to instance
variables to provide the running Exotask with its ports (which are created for
it by the system). However, the parameter argument is up to the programmer
to use as he sees fit. In this example, the parameter is expected to be of the
application-defined type ControlParameters (one of the two additional classes

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:9

mentioned above). This is basically a data class whose four fields are shown in
the third statement of the execute method. There are a variety of places that
the parameter can come from, as we discuss more fully in Section 3.6. In this
example, a definition of the parameter was provided as part of the specification
graph (not shown).

2.2.2 Sensor and Actuator Details. The code of the three other Exotasks is
not shown, but two observations can be made about these sensors and actuators:
they are very simple (simpler than the compute task), and they have native
code in order to communicate with the real hardware. Although we employed
a simulation for this study, we still used native code to communicate with the
simulation, for greater realism.

Native code in Exotasks must observe certain rules.

(1) JNI methods may not call back into the JVM by invoking Java methods.

(2) JNI methods may not modify reference-valued fields of objects (even not of
objects they create), although they may modify fields of any primitive type.

(3) If a JNI method returns a reference type, it must return that type exactly,
not a subclass.

As a consequence of rule (1), JNI code cannot invalidate the reachability as-
sumptions made by the validator. As a consequence of rule (2), JNI code can
introduce new objects only by creating them, filling in their scalar fields, and
returning them. As a consequence of rule (3), the types of all objects, thus in-
troduced, are known. These rules guarantee that code validation will still be
meaningful in the presence of nonmalicious native code that is free of memory
usage bugs.

2.2.3 Startup. A conventional Java main program is needed to run an Ex-
otask program. The key statements in the main program are the following.

ExotaskGraphSpecification spec = GraphGenerator.generateGraph();
ExotaskGraph graph = spec.validate("TTScheduler");
graph.getRunner().start();

The GraphGenerator class was completely generated by the development en-
vironment from the graphical form of the specification. It constructs an object
that is the runtime representation of the specification graph. Section 3.8 dis-
cusses other ways of getting this object (including ones that do not use the
graphical representation at all).

The validate method of the specification object actually does three distinct
operations.

(1) Validation determines whether all Exotask rules are followed by the graph
and all of its code.

(2) Scheduling analyzes the timing annotations and determines a schedule for
executing the tasks, garbage-collecting the tasks, and moving data across
connections.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:10 • J. Auerbach et al.

(3) Instantiation creates the graph and returns an object to represent it. This
object has some methods of its own, and will return a subsidiary object (an
ExotaskRunner) to perform other operations like start. This separation into
two objects helps to support pluggable scheduling, as discussed later in this
section.

Validation enforces the basic rules mentioned in the introduction and are
considered in more detail in Sections 3.4 and 3.5. JNI methods are not validated
since that is impractical; instead, we rely on dynamic enforcement in the JNI
layer of the VM.

The scheduling step is performed by a scheduler that is fully pluggable and
can (in principle) be written by any knowledgeable expert without detailed
knowledge of Exotask system internals. Multiple schedulers can be configured
to the Exotask runtime and are selected by name (the “time-triggered” or
TTScheduler in this case). The scheduler can reject a specification graph
whose timing annotations render it infeasible. The scheduler also provides the
ExotaskRunner object mentioned above, to which it may add more methods de-
pending on the semantics of the scheduler. Typically, the choice of timing gram-
mar at development time constrains the choice of scheduler since the scheduler
must understand the timing annotations.

In this example, no WCET information is passed to the scheduler, hence,
scheduling is done without regard to WCETs. This is perfectly reasonable
when there is an expectation of ample slack. An alternative form of the vali-
date method (discussed in Section 3.6) accepts an additional parameter of type
ExotaskSchedulingData to convey WCETs for the target platform. By convey-
ing WCETs separately from the specification graph, we let the specification
be platform-independent. It can be fully developed in terms of platform-
independent requirements and WCETs need only be considered once a platform
is selected. The specification graph can then be reused on other platforms by
recomputing the WCETs.

The ExotaskSchedulingData parameter is also used to convey worst-case allo-
cation (WCA) information used to schedule garbage collections and determine
heap sizes. In the absence of provided WCA information, the scheduler uses a
default heap size and makes a default assumption about allocation rate (both
assumptions are reasonably conservative, but this clearly does not mean they
will always be met). Having a default behavior allows an Exotask program to
be put into test quickly. WCET and WCA information can be added later. In
fact, the schedulers used in this paper do not make use of WCET information
and only use WCA information in a fairly limited way to control resource con-
sumption. Section 3.6.1 provides more details.

3. THE EXOTASK MODEL IN FULL

The initial example explained a number of things, but omitted others in the
interest of getting through a complete example. In this section, we present the
Exotask programming model in more detail, but without reexplaining termi-
nology and semantics presented as part of the example.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:11

3.1 Elements of the Model

The basic model establishes that programs are expressed as graphs, consist-
ing of Exotasks, written in Java, and connections between them. In the ab-
sence of anything else, the graphs express only data-flow information, which
is strongly typed. Timing annotations add information about when tasks exe-
cute and when data move across connections (concretely, the annotations at-
tach to Exotasks, connections, or the graph as a whole). This information is
intended to be platform-independent. Schedulers translate the data flow in-
formation plus the platform-independent timing annotations into potentially
platform-sensitive schedules using optional WCET and WCA information. Tim-
ing annotations on a given graph conform to a timing grammar, which must be
understood by the selected scheduler. Intuitively, a timing grammar is a set of
syntactic well-formedness rules for attaching timing annotations to elements
of the specification graph.

There are very few universal constraints on the topology of graphs, although
there may be constraints imposed by timing grammars in order to ensure that
graphs can be scheduled. An output port may be the source of any number
of connections to different input ports. An input port may, in general, be the
target of any number of connections from different output ports, but schedulers
must ensure that there are no data races. Consequently, timing grammars will
typically constrain multiple incoming connections to cases that make sense.
Cycles are permitted, but each timing grammar will impose rules on how cycles
must be annotated to ensure schedulability.

There is no prohibition in the basic model against graphs that are not fully
connected, including ones with multiple isolated subgraphs, or a collection of
tasks with no connections. A timing grammar may prohibit some of these cases
in the interest of schedulability. When the graph has no connections, allocation
by the Exotasks of the graph may optionally be forbidden by the programmer,
except for Throwable objects. In programs that only throw exceptions for ter-
mination, this allows all garbage collections to be avoided. The allocation pro-
hibition option is unavailable when there are connections, since the deep copy
semantics of a connection requires allocation to occur in the target Exotask’s
heap.

Although the Exotask system assumes it is running exactly one graph, we
provide a graph composition operator that is capable of composing both related
and unrelated graphs to form the executable graph. It is always the composed
graph that is given to the scheduler. Composition is discussed in Section 3.3.

We discuss timing grammars in the next section. Scheduler responsibilities,
and their plugin interface, are discussed in Section 6.1. Of our two existing
schedulers, the specifics of the one scheduler have already been sketched. The
alignment of our two schedulers with our three timing grammars is described
in the next section. The HTL scheduler will be further described in Section 5.

3.1.1 Timing Grammar Details. This aspect of the system was made plug-
gable for two reasons. First, there are a number of different possible ways
of specifying timing constraints. Second, we wanted to support pluggable
schedulers since scheduling is an active research domain. Constraining the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:12 • J. Auerbach et al.

semantics of timing annotations would inevitably constrain the schedulers as
well. A consequence is that the Exotask programming model is parameter-
ized by timing grammars, and consequently not limited to a particular timing
semantics.

We have, so far, concentrated on timing grammars in the spirit of the logical
execution time (LET) model introduced in Giotto [Henzinger et al. 2003]. LET
specifies time for external events, but does not specify any timings for internal
tasks. We believe the framework can also be used to provide radically different
(non-LET) timing semantics but this category of usage has not been explored
in depth.

We have, in fact, developed three timing grammars and two schedulers (all
in the spirit of LET). Two of the grammars work with a time-triggered (TT)
scheduler and so are called TT grammars. Both have the concept of a period
of execution, which applies to the entire program during its current phase of
execution. Within that period, tasks and connections are assigned timing off-
sets. A task or connection can have multiple timing offsets and so execute more
than once in the period. In the TT single-mode grammar, used in the example
already presented, one period declaration is in force during the entire execution
of the program.

In the TT multimode grammar, the program’s execution may be divided into
modes. Each mode can have a different period, if desired. Tasks and connections
belong to one or more modes, and only execute when those modes are active.
At the end of each period, the scheduler may switch modes, causing a different
subset of tasks and connections to execute thereafter (with perhaps a different
period) until the next mode switch. The TT multimode grammar will be used
in the JAviator controller.

Finally, we have a timing grammar which consists of a full injection of the
HTL language [Ghosal et al. 2006] into Exotask timing annotations. This gram-
mar (along with a JAviator controller that uses it) is presented in Section 5. A
key improvement in the HTL grammar compared to the TT grammars is that it
supports parallel composition and hierarchical refinement in addition to modes
(which provide only sequential composition). The fact that these additional se-
mantics can be supported in a straightforward fashion on top of the Exotask
basic model shows the flexibility of that model in practice. The details of the
HTL injection are discussed in Section 5.

3.2 Special Exotask Types

To support the inverse-pendulum example using the TT single-mode grammar,
it was sufficient to have one homogeneous kind of Exotask. However, to support
more sophisticated timing grammars, we introduce two special kinds of Exo-
task, called communicators and conditions. These will be used in the several
JAviator control programs presented later.

3.2.1 Communicators. A communicator is a system-provided Exotask that
has a single input port and a single output port of the same type and an execute
method that copies its input to its output. One specifies a communicator in the
specification graph by simply naming its type, and the system takes care of the
rest.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:13

At first glance, this feature (a buffer task that can be obtained without writ-
ing code) seems like a minor convenience. However, such tasks are frequently
needed as the program becomes more complex and employs the more sophisti-
cated timing grammars. For example, if the program will switch modes, then it
is valuable to keep some state at the end of every period in a place that will be
accessible to the tasks in the next mode (which may, in general, be an arbitrarily
different set of tasks). Also, in grammars like the HTL grammar that support
parallel composition, the reconciliation of simultaneously executing subgraphs
with different and potentially inharmonic periods becomes impossible with-
out buffering. The term “communicator” comes from HTL and communicators
are used in a specialized fashion by the HTL grammar as will be described in
Section 5.

3.2.2 Conditions. A condition is a user-written Exotask with an extra
method that can be invoked by the scheduler, returning a boolean value. Con-
ditions have a role assigned by the timing grammar in letting the program
affect the schedule. The TT single-mode grammar does not use conditions but
the other two grammars use them to let the program determine when a mode
switch should occur.

3.3 Graph Composition

Just prior to submitting a graph to validation, a series of separate specification
graphs can be combined to form a single one. Syntactically, the method

ExotaskGraphSpecification.composeWith(ExotaskGraphSpecification
other);

is executed any number of times. Each execution produces a composed graph
without mutating either of the original graphs. The semantics of composition
is straightforward: if the graphs are unrelated, this should be expressed by not
using the same names for any Exotasks in either of the two graphs. If they are
related, then the same name is used in both for one or more Exotasks: these
are equated to each other in the resulting graph (only one task of that name
will exist). If the specification of the same task in two composing graphs differs,
the composition fails. The connections of the composed graph are the union
of those in the original graphs, except that connections from different source
graphs that connect like-named ports of like-named tasks (the same ports and
tasks after composition) become a single connection.

As each of the graphs will have its own timing annotations, all graphs being
composed must use the same timing grammar and the timing grammar im-
plementation participates in the composition. We will see examples of graph
composition in Sections 4 and 5.

3.4 Exotask Memory Isolation

We provide both a strong- and a weak-isolation model for Exotasks. These have
advantages and disadvantages, as will be described in the subsequent sections.
First, we state properties that are true in both models.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:14 • J. Auerbach et al.

—The ports of an Exotask, which are system-generated, are passed to its ini-
tialize method. The Exotask gets no constructor arguments, and its initialize
arguments are controlled by the system. Thus, it begins with no references
at all, except to its ports, to its parameter, and to any objects it creates in its
constructor.

—The Exotask has a private heap: all objects that it creates go there. It itself
resides there, as do its ports. Whether or not its parameter resides there
depends on the isolation model.

—When an Exotask reads a value from an input port, it gets a deep copy of the
value that was placed there by code outside the Exotask. When an Exotask
writes a value to an output port, any code outside the Exotask that reads this
value will get a deep copy thereof.

—No application code outside the Exotask retains any reference to the Exotask
or to any object in the Exotask heap. This property is ensured by the Exotask
system when the specification graph is turned into an instantiated graph.
Every item that makes up the instantiated graph is created by the Exotask
system, and no references are leaked to any non-Exotask code.

—An Exotask may not break the chosen isolation model through accessing static
fields. This is enforced by the validator as was briefly discussed in Section 2;
details on the treatment of static fields is given in Section 3.4.3 and differ
between the two models. Once an Exotask is validated, it is allowed to execute
without dynamic checks (except for JNI callbacks which are checked to make
sure they do not violate the special rules for JNI methods).

3.4.1 Strong Isolation. In a strongly isolated Exotask graph, there is no
possibility of intercommunication between the Exotask graph and any other
part of the Java program in which it lives. Furthermore, there is no communi-
cation between the individual tasks in the graph except by their explicit con-
nections. This is accomplished by adding these additional restrictions to what
was listed as common to both models.

—The parameter passed to each Exotask is deep-copied into the Exotask heap.
Therefore, the Exotask starts with no references to anything outside itself
(recall that, in both models, there are no pointers from outside to inside). The
values that are visible to the Exotask reside only in its private heap.

—No static field may be written and, if a static field is read, the value that
is read must be (recursively) immutable in a sense described in more de-
tail in Section 3.4.3. Logically, the Exotask program receives a deep copy
(physically, the deep copy is avoided as discussed in Section 3.4.3), so even
synchronization on this object will not interlock with anything outside the
Exotask graph.

The strong model guarantees time portability (given adequate resources, i.e.,
assuming the system is time-safe [Henzinger and Kirsch 2007]). More formally,
strongly isolated graphs are environment-determined [Henzinger and Kirsch
2007]: their behavior is entirely determined by the values and timings of sensor
values read in native code in Exotasks.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:15

However, we have mentioned that an Exotask program exists within a larger
Java main program that starts it up. The guarantees of the strong model come
at the expense of this larger program not being able to communicate with the
Exotask program (other than to pause it, shut it down, or diagnose it if it fails). If
the program was developed entirely from scratch using Exotasks (or a modeling
system like Simulink [Simulink 2007], that is conceptually compatible), this
restriction may be no problem, as the Exotask program can do everything that
is required. The inverse-pendulum example of the previous section uses strong
isolation, and we will use it in Section 8 to show complete repeatability of
behavior.

3.4.2 Weak Isolation. In some realistic scenarios, the larger Java pro-
gram may be performing non-time-critical work but needs to interact with the
Exotask program. In that case, weak isolation provides the required mecha-
nism. Under weak isolation, some objects are accessible both to the Exotask
program and to the rest of the Java program. Both parties may freely modify
scalar fields (including elements of primitive arrays) in these objects and hence
communicate with each other. However, they cannot change any reference fields
in the shared objects; hence, the membership and connectivity of the shared set
cannot change. The objects are pinned in the global heap so that they cannot
move. Consequently, this object sharing cannot affect the independence of the
Exotasks from the main heap garbage collector.

The insight that a pinned object set with unchanging connectivity can be
safely shared between independently garbage-collected threads originated with
Eventrons [Spoonhower et al. 2006], and was also exploited by Reflexes [Spring
et al. 2007], which gave the name reference immutability to the property of un-
changing connectivity (we will use that term here). By “reference-immutable”
we mean that the pointers between objects cannot change even though scalar
values stored in the objects may change. The JAviator control program de-
scribed in Section 4 uses weak isolation to accomplish certain goals that would
have been difficult to accomplish otherwise. In an earlier publication on this
work [Auerbach et al. 2007], weak isolation was not available, but we got
around the problem by exploiting the distributer interface (see Section 6.2).
Distributers can bridge the isolation boundary but are hard to write (and im-
possible to completely verify) and so are really system-level components. The
addition of weak isolation was needed to make the programming model com-
plete without requiring the dangerous use of system interfaces for application
purposes.

Mechanically, the enforcement of weak isolation differs from strong isolation
as follows. To make the operation clear, we distinguish between a weakly iso-
lated (individual) Exotask and a weakly isolated Exotask graph (or program).
The presence of any weakly isolated Exotask in a graph makes the entire graph
weakly isolated.

—The parameter passed to each weakly isolated Exotask is checked for refer-
ence immutability. If it is not reference-immutable, validation fails. If it is,
the Exotask receives a reference to it (not a copy). Thus, a weakly isolated

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:16 • J. Auerbach et al.

Exotask does have references to objects outside itself. However, there are
still no references in the opposite direction and no unanticipated references
in either direction can be created once execution begins. Also, deep copying
continues to preclude the introduction of any additional aliases.

—On the other hand, there can also be strongly isolated Exotasks in the same
graph that are treated just as in strong isolation (parameters are cloned).
This permits control over the handling of parameters on a task-by-task basis
as needed.

—Although no static reference field may be written, a static scalar field
may be written. If a static field is read, the value that is read must be
(recursively) reference-immutable (not necessarily fully immutable). And,
an actual reference to a shared object is read, not a logical copy as with
strong isolation. The details of static-field handling are covered more fully in
Section 3.4.3.

In gaining these communication advantages, a weakly isolated Exotask pro-
gram is no longer environment-determined and so we cannot guarantee that it
is time-portable. Three sources of possible variation are problematic.

(1) If synchronization occurs on a shared object, the timing of the Exotask
program may be delayed. Synchronization may be optionally forbidden at
validation time as described in Section 3.4.3.

(2) Under the Java memory model, if synchronization is not used, then it is
often not determined when a modification by one thread becomes visible to
another. In practice, weakly isolated programs should be constructed on the
assumption that such values eventually become visible and are not relied
on for anything time-critical.

(3) If the program makes extensive use of library code, then it may not know
what static fields are actually read. Therefore, execution may depend on
things that are not strictly controlled. In practice, all Exotask programs
need to be cautious about the code they use in proportion to how badly they
require deterministic execution.

When these three factors are considered and carefully controlled, we believe
that weakly isolated Exotask graphs are still adequately time-portable in prac-
tice for many purposes. When a stricter model is needed, the strong model is
available.

3.4.3 Use of Static Fields by Exotasks. One of the trickiest aspects of de-
signing Exotasks, or, indeed, any of the modified Java programming models for
real time (Eventrons, Reflexes, NHRTs), is how to balance the desire for ex-
pressiveness and the ability to reuse a maximal amount of preexisting library
code, against the desire to make the model simple, efficient, and exception-free.

In our initial implementation, Exotasks were only allowed to read static fi-
nal fields of the primitive types. This made it possible to use a reasonable
amount of library code, but there were a number of gaps. Without modifi-
cation to our JDK, we could use ArrayList and Iterator, but not Integer and
HashSet.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:17

In Auerbach et al. [2007], we greatly expanded the amount of usable library
code with a two-pronged solution. First, we added a more powerful analysis
which was able to detect that many objects were either recursively immutable
or not accessible to mutating code. Second, in the case of objects that are, in
fact, never mutated but for which the analysis is still not sufficiently powerful
to discover the fact, the Exotask system (but not the user!) can specify some
classes as “known to be immutable.”

The automated part of this solution requires a practical recursive definition
of immutability. We first define a field as effectively final if it is either declared
final or it is both declared private and not mutated by any nonconstructor method
of the class. We then define a recursively immutable field as an effectively final
field that is of a primitive type or null, or contains a recursively immutable
object. A recursively immutable object is defined as one that has only recursively
immutable fields.

In the present work, we add sensitivity to whether the Exotask graph is only
weakly isolated. For that case, we define reference immutability in a similarly
recursive fashion. A reference-immutable field is any field of a primitive type
or an effectively final reference field that is either null or contains a reference-
immutable object. A reference-immutable object is defined as one that has only
reference-immutable fields.

We can then state the rule to be checked simply: a strongly isolated Exotask
program may read only recursively immutable static fields and may not write
any static fields. A weakly isolated program may read only reference-immutable
static fields and may write only static fields of a primitive type.

Once an object in the global heap is allowed to be accessed by an Exotask,
the runtime system must do two additional things. First, the object must be
pinned so that the global garbage collector (if it performs compaction) does not
move the object, since this would create a race condition between field access
by the Exotask and object relocation by the collector.

Second, the appropriate degree of isolation must be preserved in the face
of synchronization operations on the object. In the strong-isolation model,
the runtime system simply ignores locking operations by the Exotask as if
the Exotask had a private copy. This is both safe and semantically invisible
because the object is necessarily immutable, the Exotask is single-threaded,
and any Exotask code which invokes wait or notify is rejected by the validator.
The result is just as if these objects were copied at the moment of access by the
Exotask.

In the weak-isolation model, synchronization on pinned heap objects is al-
lowed, unless the user requests that synchronization be checked for at valida-
tion time and explicitly disallowed. Because code analysis does not have precise
object identity information, this check is necessarily conservative.

3.5 Validation Details

When the Exotask validator runs, it uses rapid type analysis (RTA) [Bacon and
Sweeney 1996] to build a summarized call graph rooted in the constructors, the
initialize methods, and the execute methods of the Exotasks in the graph. This

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:18 • J. Auerbach et al.

results in a conservative closure of the reachable methods. It examines every
bytecode of every reachable method.

As in the Eventron analysis, the validator also maintains the set F of field
signatures (static or instance) found to be referenced (for reading or writing) in
any method, and the set O of objects residing on the global heap but accessible
to Exotask code. Initially, the set O consists of objects passed as parameters
to weakly isolated Exotasks (it is initially empty if all Exotasks are strongly
isolated). Whenever a field signature is added to F , the validator considers
objects in O that contain a matching field. The referents of such fields are added
to O. Whenever an object is added to O, it is inspected for fields that match F .
Thus, an addition to either set can increment both sets up to a fixpoint.

As each bytecode is examined the following actions are taken. Note that some
actions depend on whether isolation is strong or weak, and whether the user
has elected to make allocation illegal or synchronization illegal.

— invoke operations: the summarized call graph is expanded as called for by
RTA. In addition, if the invoked method is native, its return type is added to
the live classes used to inform RTA in its search for live methods. Finally,
methods from the JDK whose behavior is known, and that are manifestly
illegal (e.g., Object.wait()), cause immediate validation failure. Methods are
manifestly illegal when they violate one of the rules, according to the chosen
isolation model and the optional prohibitions against allocation and synchro-
nization.

—getfield or putfield: the set F is augmented as described above (this can cause
the set O to be augmented as well, since all objects already in O that imple-
ment F will have their referents added to O).

—putstatic: checked for legality according to the isolation model (illegal if
strongly isolated or if the target is a reference field).

—getstatic: checked for legality according to the isolation model (must be a
recursively immutable field for strong isolation or a reference-immutable
field for weak isolation). In addition, the object read (which can be determined
since this analysis is performed after all class initialization is complete) is
added to the set O and then processed as described above.

—monitorenter: examined only if synchronization is forbidden at the user’s re-
quest, in which case it causes an exception.

—new: if allocation is forbidden at the user’s request, this causes an exception
unless the object being allocated is a Throwable. Otherwise, validation fails
only if the class is in the forbidden set (classes that inherit from Thread or
Reference or having a nonempty finalize method). In any case, the set of live
classes is augmented as called for by RTA.

—newarray and variants: if allocation is forbidden, an exception is raised.

As objects are added to O (regardless of whether this was the direct effect of
a getstatic or the indirect effect of examining objects made reachable by a get-
field or putfield), they are tested for conformance to the isolation rule (recursive
immutability for strong isolation, reference immutability for weak isolation).

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:19

Violations cause exceptions. Because of the recursive definitions, this might
sound like an expensive operation. In practice, however, objects need only be
examined “shallowly” as they are entered into O; objects that cannot possi-
bly be accessed need not be examined. Although determining that a field is
effectively final requires examining all of the methods, this only needs to be
done on class basis (since all objects of the same class share the same meth-
ods), so, in practice, this cost is saved when many objects in O are of the same
class.

At the end of the validation, all objects in O are pinned. The set of objects in
O are linked by effectively final reference fields. For strongly isolated Exotask
graphs, this set of objects does not contain any mutable fields whatsoever. Thus,
the requirements of either isolation model are met.

This analysis is powerful enough to admit Exotask usage of most classes
in java.util. For example, it successfully validates the HashSet class for use by
strongly isolated Exotasks. The only static object in HashSet is a dummy value
of type Object called PRESENT. This object is used because the HashSet is
actually implemented with HashMap, with all objects in the set mapping to the
value PRESENT.

3.5.1 Immutability Declarations. There are some cases where the data-
sensitive analysis is still not powerful enough to determine that a static object
is in fact immutable or reference-immutable. This occurs with the class Integer,
which caches boxed versions of integers smaller than 256 bytes in an array.
The analysis is unable to prove that the data structure is immutable. However,
simple manual inspection shows that, in fact, it is immutable and, therefore,
safe to use from any Exotask.

To handle this case, the Exotask runtime system maintains a table of fields
(class names and the names of fields therein) that are to be treated as im-
mutable without requiring analysis. Note that a field may not be declared
effectively immutable unless it really is immutable: this is an augmentation
for analysis but not for cases where a runtime mutation is “unlikely.” Thus,
the table is maintained as a resource in the boot classpath, where it can
be edited by a responsible system maintainer but not modified casually by
applications.

The current Exotask prototype, running on the IBM virtual machine, so
far requires 30 immutability declarations applying to 11 classes in the JDK.
Note that the Java 5.0 JDK contains over 4,000 classes, of which at least
400 are loaded by any application that makes serious use of JDK facili-
ties. Our prototype’s immutability declarations mostly apply to classes that
do math or number-to-string conversion using tables. The list is not nec-
essarily exhaustive, since we may not have exercised all code paths in the
Java class libraries, but it has remained stable over a considerable period of
experimentation.

3.5.2 Impact of Exotask Restrictions. Other than the restrictions explicitly
checked by the validator, an Exotask can use the entire Java language. The
restrictions on using static fields still inhibits the use of library code, but that

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:20 • J. Auerbach et al.

effect is greatly reduced by the data-sensitive analysis, and in practice, we
find we are able to use a sufficiently large set of library classes such that the
restrictions are not burdensome.

Furthermore, for control programming the code will generally comprise new
Java classes, which will naturally avoid the use of static since they are developed
as Exotask code to begin with. This is what was done for the JAviator control,
in which the data types flowing between Exotasks were designed for the project
using primitive types, incorporation by reference, and whatever methods were
needed for convenience.

Most of the classes in java.util that do not pass the validator could be rewrit-
ten quite easily, in such a way that they did. Generally, the price paid for
this is a more restricted use of caching techniques, which results in some ad-
ditional space overhead. However, the benefits of locality and isolation are
useful not only for Exotasks but for other aspects of the JVM implementa-
tion, and such rewriting is in fact being contemplated for the IBM J9 class
libraries.

Exotask programming will still be subject to some limitations, which will
probably be most onerous in the case of third-party libraries. However, we be-
lieve we have reached a level of permissiveness where the limitations are minor,
and well-offset by the increase in functionality and real-time behavior.

3.6 Validation Time Inputs

The abbreviated syntax validate(String schedulerName) used in the inverse-
pendulum example is just one of several short forms of the full validator syn-
tax, which takes four inputs. One is the scheduler name. One optional input
(already mentioned) is the ExotaskSchedulingData with platform-dependent in-
formation: this is further elaborated in Section 3.6.1. Another optional input is
a map from Exotask names to objects that are to be passed to them as parame-
ters. This provides a more dynamic alternative to storing Exotask parameters
in the specification graph (as we did in the inverse-pendulum example). Run-
time specification of Exotask parameters is needed in practice when parameters
are to be passed by reference (instead of by copy) to weakly isolated Exotasks.
The final input relates to the distributer facility which is briefly described in
Section 6.2.

3.6.1 Platform-Dependent Scheduling Data. The ExotaskSchedulingData
class encapsulates the following information items (schedulers may also sub-
class this class to add more scheduler-specific information).

—An initial storage limit applying to the entire program. The sum of the heaps
assigned to individual Exotasks may not exceed this size.

—A maximum storage limit. If this is greater than the initial value, heap ex-
pansion is allowed in increments that pragmatically partition the headroom
between the initial and maximum size.

—For each Exotask,
—the WCET of the Exotask’s execute method;
—the WCA of the Exotask’s execute method (in bytes);

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:21

—the WCET of the garbage collection of this Exotask’s heap;
—the maximum live objects aggregate size of the Exotask (in bytes) while

its execute method is running;
—the maximum live objects aggregate size of the Exotask (in bytes) while

its execute method is not running.

—For each connection, the WCET of the deep-copy operation over that connec-
tion.

It should be emphasized that not all of these items need to be filled in, and,
in fact, no ExotaskSchedulingData need to be provided at all (it was, for ex-
ample, omitted in the inverse-pendulum example). Developing a program with
Exotasks can be done in a very disciplined fashion, with WCET and WCA in-
formation gleaned analytically, when the individual Exotasks are sufficiently
simple (tools to support such an analytic approach are beyond the scope of our
project). On the other hand, one of our purposes in supporting real-time pro-
gramming in Java is to support more complex programs, which are necessarily
harder (or impossible) to bound analytically, and which may require somewhat
more capable computing hardware. Fortunately, embedded computers are be-
coming more capable, and so it is feasible to do quite a bit of development using
assumptions of ample slack and generous defaults built-in to the system. Later,
observations of the program’s actual behavior, along with some analysis, can
produce probabilistically firm WCET and WCA values that work for practical
purposes in all but the most safety-critical programs.

In our current TT scheduler, the storage-related information is used to com-
pute heap sizes and garbage collection frequencies for individual Exotask heaps.
At present, this is always done in a way that avoids the need for on-demand
garbage collection (see Section 3.7), and no meaningful use is made of heap
expansion (which will involve still other tradeoffs). Empirical investigation of
these possibilities is subject to future work.

None of our current schedulers use WCETs in computing schedules, so, in
a sense, more sophisticated scheduling is also future work. However, what we
believe we have contributed is a well-founded framework for experimenting
with scheduling. The public availability of this framework [IBM Corporation
2007] is expected to stimulate research by others as well as ourselves in this
area.

The Exotask system also does not guarantee that a task cannot exceed its
WCET or its WCA: it simply trusts these values. If the WCA is exceeded, then
an on-demand garbage collection will happen even though this was not an-
ticipated. This may in turn cause a WCET violation. A WCET violation will
generally cause subsequent task executions to be delayed (although the details
are ultimately up to the scheduler). We currently do not offer to schedulers the
ability to abort tasks that have exceeded their WCET.

3.7 Exotask Garbage Collection

Garbage collection of the private heaps belonging to Exotasks may either be
scheduled or on-demand. Scheduled garbage collections are considered as ad-
ditional tasks by the scheduler, with their own WCET and period. The period

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:22 • J. Auerbach et al.

of the task garbage collection need not be the same as the period of the task
whose heap it collects.

As was discussed in Section 3.6.1, an Exotask has storage-related parameters
like WCA as well as WCETs. Like WCET, WCA may be subject to platform-
specific variation, due to changes in object representation, pointer sizes, and
alignment. However, these variations will be generally smaller than for WCETs,
and for a given JVM and broad system architecture (e.g., x86 32 bit) may not
vary at all.

Exotasks allow a time/space trade-off since a larger Exotask heap will reduce
the required garbage collection frequency. When there are multiple Exotasks
and sufficient memory, heaps that are multiples of the WCA can be used and
the garbage collections of different Exotasks can be scheduled in a staggered
(pipelined) fashion at the corresponding multiple of the underlying period. We
use the term slop for such extra memory available to the scheduler.

In a system without slop but where slack is available, an Exotask can be run
in a heap smaller than its WCA. It may then be collected one or more times by
on-demand collections during its execution, thereby increasing its WCET but
reducing its memory consumption. This time/space trade-off is analogous to the
time/power trade-offs employed in real-time systems that use dynamic voltage
scaling [Pillai and Shin 2001].

While on-demand collections may seem risky to programmers used to older
methodologies based on static memory allocation, from a scheduling perspec-
tive they are not different from scheduled garbage collections: the WCA of the
Exotask and its heap size must be used to determine the overall WCETs for
the scheduler. The sliding compacting collector used for Exotasks is highly
predictable both in its execution time and in its effects on memory con-
sumption (since it incurs no fragmentation), and instrumentation provided
by the Exotask runtime system makes it easy to obtain practical WCET
bounds.

3.8 Alternate Ways to Obtain the Specification Graph at Runtime

In the previous section, we showed the runtime specification graph being pro-
duced by a GraphGenerator class. The development environment indeed has a
utility which produces generator classes as in the example. Under the covers,
the generator class employs a runtime API that is capable of constructing any
valid (and many invalid) Exotask specification graphs programmatically. This
API may be used directly, an option that is quite suitable for small programs,
although it is tedious for large ones. We do not describe it in detail here, but
details are available in [IBM Corporation 2007].

In addition, the development time environment will save a graph as a par-
ticular form of XML document and there is a runtime parser that will read
this document from a variety of media to reconstruct the specification graph at
runtime. This means that, even for complex programs, it is possible for tools
other than our development time environment to produce a convenient and
somewhat human-readable expression of the specification graph. The details
of this format are also available in IBM Corporation [2007].

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:23

Fig. 3. The JAviator: a custom-built quadrotor helicopter used for experiments in this article

(javiator.cs.uni-salzburg.at).

3.9 JIT Interference

A JIT compiler can indeed interfere with deterministic execution, both by al-
tering the execution times of methods and by taking up processor cycles do-
ing the compilation. The strongest means we have of combating this problem
is to use the ahead-of-time compiler [Fulton and Stoodley 2007] that comes with
the IBM VM. Unfortunately, this only works on the Linux x86 platform and so
is not suitable for all embedded applications. Another technique is to run the
Exotask program in a “warm-up” mode for a while after which the JIT is dis-
abled from further compilation. This is feasible for many control programs but
is application-specific. In the case of the JAviator control program, which runs
on an XScale PXA270 processor, there is no JIT in our port of the VM to that
architecture. Thus, although execution is slowed thereby, determinism is not
compromised. Finally, it is easy in principle to force early JIT compilation of all
the methods in the Exotask call graph because the complete call graph is known
at instantiation time. We have not attempted to do this since the problem is
solved for us in other ways on both x86 and XScale.

4. ADVANCED EXOTASKS: THE JAVIATOR

Now that the full Exotask model has been explained, we can look at how the con-
trol program for the JAviator is constructed. For explanatory purposes (some-
what following the actual evolution of the program but not precisely), we will
start with a very simple version and then move from it to the actual program
that we use.

The JAviator, shown in Figure 3, is a battery-powered helicopter built from
custom-machined carbon fiber, aircraft aluminum, and titanium. Sensor data
comes from a gyroscope providing roll, pitch, and yaw data, and a sonar range-
finder for altitude measurements. These are read by a microcontroller, which
forwards the data values to the processor on which the Exotask-enhanced Java
virtual machine is running. All computation is performed there and, upon com-
pletion, the values are sent to the microcontroller, which uses them to produce
the PWM signals for the motors.

Currently, the processor is an XScale PXA270 on board the JAviator, which
runs a scaled-down Linux with some real-time patches. The medium of trans-
mission is an RS-232 connection between a UART on the XScale and one on

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:24 • J. Auerbach et al.

Fig. 4. A (Too) simple control program for the JAviator.

the microcontroller. The microcontroller does no significant computation. It is
needed because the XScale processor cannot directly produce PWM signals.

The Exotask-based control also communicates via a UDP socket with the
ground station running a Java program that relays high-level joystick controls
to the JAviator and displays an instrument cluster of data from the JAviator.
By design, the medium of transmission is WiFi, so that the JAviator will have
no wires attached. Currently, problems with power distribution for the WiFi
within the JAviator cause us to use an Ethernet cable in practice. This perturbs
the flight somewhat and so we still fly the JAviator in a confinement cage for
safety.

Figure 4 is the simplest possible control program for this hardware. It is
presented in the same style as our first example and looks very similar. Four
custom data classes encapsulate information that must flow from the JAvia-
tor’s flight sensors to the controller (SensorData), from the controller to the
motor actuators (MotorData), from the joystick of the ground station to the
JAviator (NavigationData), and from the controller to the instrument panel of
the ground station DisplayData. There is a period of 20ms, during which the
reading of the flight sensors takes place at time 0 and the sending of motor
signals at time 6ms. No other task is precisely timed: even the sensor and ac-
tuator for communication with the ground station are not timed: information
to and from the ground station travels over a network connection and hence
arrives asynchronously: it is impractical to wait for it in any case, so the con-
troller relies on the fact that usually a ‘fairly up-to-date’ navigation command is
available.

An adequate controller could be written to populate the single Controller task
in Figure 4, but the code of the Controller would be quite complex. We noted
that the code actually divides into four distinct tasks that use somewhat differ-
ent algorithms: (1) resting on the ground, revving up the motors and waiting
for take-off (or revving down the motors if landing), (2) changing altitude once
airborne, (3) hovering, and (4) responding efficiently to loss of control by at-
tempting an emergency landing. The periods that make sense for these tasks
might be different (although, in practice, we are currently running them at the
same period) and, in any case, the controller logic is really quite distinct. Con-
sequently, we decided to divide the JAviator controller into four modes, and use

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:25

Fig. 5. The Hover Mode (One of four modes).

the TT multimode timing grammar. The graph for the hovering mode is shown
in Figure 5. In Auerbach et al. [2007], the four modes were shown already com-
posed, which gives a sense of the program’s full complexity but does not aid
understanding and so we omit that view here. To avoid clutter, the timing an-
notations and data types are not overlaid in this figure; they are the same as
in Figure 4 except as noted.

Note that the same four I/O tasks exist and the central compute task (now
called HoverTask) is still connected to them in the same way. However, in a
multimode program, it is no longer possible to keep all the states related to the
ongoing control problem in a single Exotask, because the mode may switch at
any period boundary. Consequently, the HoverTask writes out the current state
at the end of each execution and reads it back in for the next. A communicator
called controlState is used for this purpose (see Section 3.2.1). The new form of
the program also introduces conditions (Section 3.2.2), one for each of the modes
that this mode can switch to. These are evaluated at the boundaries between pe-
riods and the appropriate switch becomes true when the conditions of the new
mode are met. When programming in this way, it is important that the con-
ditions be mutually exclusive and that at most one of them be true (we have
chosen a style in which even staying in the same mode is reflected by a positive
condition: this is a useful programming discipline but not strictly necessary).
As can be seen, communicators and conditions are visually distinguished by
different icons.

The data types flowing on the links between the I/O tasks and the compute
task are the same as in Figure 4 and the timing annotations are nearly the
same. Instead of executing the FlightSensor at time 0 and the MotorActuator at
time 6 ms, we use 5 ms and 11 ms (the external behavior is the same since no
external process actually observes the period boundaries). This offsetting of the
time allows ample time for the mode switches to be computed so that we can get
the fairest possible measurements of the system’s performance (some further
improvements to the TT scheduler would obviate the need for this adjustment).
The data type flowing to and from the controlState communicator is of type
JControlAlgorithm and contains data and methods relating to the overall control
state.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:26 • J. Auerbach et al.

The graphs for the other three modes are similar: all four modes have a
central compute task, four I/O tasks, the controlState communicator, and the
conditions necessary to switch to other modes. All four have the same global
timing annotations specifying that there are four modes and giving their peri-
ods. When the four graphs are composed, the result has only one instance of
each I/O task (since all are identically named), one instance of the controlState
communicator (thus accomplishing communication of state across modes), and
one instance of each condition. However, it has all four compute tasks, one for
each mode. This program will accomplish the same goal as the one shown in
Figure 4 but with key differences. First, the code specific to individual Exotasks
is substantially simpler, making reasoning about WCETs much easier. Second,
although we do not currently exploit this fact, different periods could be easily
assigned to different modes. Third, as the specific algorithms for each mode di-
verge in detail, there are no nonobvious interactions within the program logic
that need to be understood.

Not shown explicitly in Figure 5 is that this version of the control program
also relies on weak isolation. For safety, the shouldShutdown condition, which
is evaluated in every mode, must learn as soon as possible of a shutdown signal
caused either by a message from the ground station or by various loss of connec-
tivity conditions that are detected outside the Exotask program. Consequently,
that predicate and the CommandSensor task both receive a pointer to an object
on the public heap that contains the latest information aggregated from the
ground station and from various other watchdogs in the program. This area
always contains the latest command when needed by the CommandSensor and
the latest state of the shutdown flag.

5. HTL AND EXOTASKS

In this section, we describe how the semantics of the HTL language [Ghosal
et al. 2006] is effectively injected into the Exotask system by virtue of imple-
menting a timing grammar and scheduler that reflects those semantics. We also
present an alternative form of the control program for the JAviator written first
in HTL and then translated to Exotasks, using the features of the HTL timing
grammar and scheduler.

The HTL scheduler and its supporting grammar contrast with the TT
grammars and scheduler in its support of higher-level real-time programming
abstractions, in particular, (multithreaded) parallel task composition and hi-
erarchical task refinement. We thus demonstrate that the Exotask system is
sufficiently general to support more advanced semantics such as HTL’s seman-
tics. Nevertheless, much is left to the scheduler and the timing grammar in
such a system. However, when, as in the present case, the timing grammar and
scheduler are drawn from previous research and proven techniques, the result
is to marry such results with the full power of the Java language, which was
one of our goals.

HTL has two key features: tasks can be composed in parallel without chang-
ing their individual I/O timing behavior (logical execution time) and abstract
tasks can be refined by concrete tasks without losing schedulability. An abstract

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:27

Fig. 6. The HTL program structure of a JAviator flight controller.

task is a placeholder for concrete tasks that refine the abstract task, that is,
have less stringent timing requirements than the abstract task (less WCET,
later deadline, earlier release, fewer precedence constraints). If an abstract
HTL program is schedulable, then any concrete HTL program that refines the
abstract HTL program is also schedulable [Ghosal et al. 2006]. In general,
checking refinement and schedulability of abstract HTL programs is exponen-
tially faster than checking schedulability of concrete HTL programs. Note that
concrete HTL programs may contain mode switches that select different sets
of concrete tasks, which may describe exponentially many combinations of con-
currently executing concrete tasks, as long as the tasks in each combination
uniquely refine abstract tasks. The schedulability test on abstract HTL pro-
grams is a sufficient but not a necessary condition since there might be un-
schedulable abstract HTL programs that are refined by schedulable concrete
HTL programs.

5.1 HTL Grammar Annotations

In the following, we give an overview of how HTL programming primitives are
specified in an Exotask graph by means of an example program, which im-
plements the altitude and attitude (i.e., roll, pitch, and yaw) control for the
JAviator. The inputs of the four controllers are the altitude, roll, pitch, and
yaw sensed and target values, respectively, and the output is the thrust that
has to be produced by each of the rotors. The control program implemented
in this example can be seen as the low-level part of a two-level control struc-
ture, the high-level part being a position controller (i.e., control of the x- and
y-dimension). So far we have only implemented the low-level part, the high-
level part is future work.

Figure 6 depicts, in visual syntax, the HTL program that implements the
above low-level control. The program consists of running in parallel func-
tionality that implements the low-level control as well as functionality that

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:28 • J. Auerbach et al.

implements the communication with the JAviator and with the ground station.
In HTL, parallelism can be specified through parallel HTL modules, which con-
sist of HTL modes, which are sets of periodic, abstract and concrete HTL tasks
and some mode-switching logic. In each module, exactly one mode can be ac-
tive at any time. A module also specifies a unique start mode. All tasks in a
mode have the same period, and all modes in a module, except top-level mod-
ules, have the same period. An HTL mode may be refined by an HTL program,
which may then only contain modes with the same period as the refined mode.
In an Exotask graph the hierarchical structure of an HTL program (i.e., all the
subprograms, modules, and modes and all relations between them) are specified
as global timing annotations.

In the JAviator low-level control example, the top-level program contains
three modules, namely, MLLControl, MJAviatorComm, and MGroundComm.
The MJAviatorComm module specifies the timing of tasks that implement
communication with the JAviator. It also computes the next state for the al-
titude and attitude controllers. The module consists of a single mode, which
has a period of 20ms. The mode invokes the ReadFromJAviator, WriteToJAvia-
tor, and ComputeState tasks. The MGroundComm module specifies the timing
of tasks that implement communication with the ground station. This mod-
ule also contains only one mode that has a period of 100ms and invokes the
ReadFromGround and WriteToGround tasks. Module MLLControl contains the
mController and mShutdown modes, which both have a period of 20ms. The
mShutdown mode specifies the timing of the emergency shutdown, while the
mController mode specifies the timing of the altitude and attitude controllers.
The mController mode invokes the Controller task, which implements the al-
titude, roll, pitch, and yaw controllers.

The Controller task is refined by two tasks in the HTL program PLLCon-
troller of which one task is a concrete task that is invoked in the mOnGround
mode and the other one is an abstract task that is invoked in the mAirborne
mode. The abstract task is further refined in the HTL program PAirborne by
three other concrete tasks, one for each of the three possible states of a fly-
ing helicopter (i.e., take-off, hover, and land). In an Exotask graph that uses
the HTL timing grammar, HTL tasks are mapped directly to Exotasks, which
are annotated by the mode name to which the original HTL task belongs, and
by the name of the parent task if the task is a refinement of another task.
The mode switching logic of an HTL program is mapped to conditions (see
Section 3.2.2), which are evaluated through the standard scheduler interface.
The annotation of a condition specifies the modes in which the condition is
defined, and the mode to which the condition switches when it evaluates to
true.

Figure 7 shows the data flow between tasks within and across modules
in the top-level program. In the example, the data-flow structure on the top
level is maintained by the refinements in the rest of the program. HTL tasks
in the same mode can communicate with each other through HTL ports.
HTL ports, therefore, potentially induce precedence constraints on task exe-
cution in the same mode. Although there is no direct counterpart for an HTL
port in an Exotask graph, dependency relations can still be specified through

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:29

Fig. 7. Data-flow view of the top-level HTL program in Figure 6.

Fig. 8. Timing view of the HTL program in Figure 6.

connections between Exotask output and input ports. Tasks in different mod-
ules possibly running at different frequencies can also communicate but only
through HTL communicators, which need to be declared in HTL programs. For
example, PJAviator declares the communicator fromGround, which is used to
communicate data between the ReadFromGround task in the MGroundComm
module and the Controller task in the MLLControl module. HTL communi-
cators are mapped directly to Exotask communicators, which are annotated
by the program name to which the original HTL communicator belongs, and
its period. Communication between tasks and communicators are mapped to
connections between Exotask ports. Connections that connect Exotasks corre-
sponding to HTL tasks to communicators are annotated by an instance number,
which determines the communicator period (harmonic to the task mode’s pe-
riod) at which communication to or from the communicator is done.

Figure 8 depicts the timing of the HTL program. Tasks invoked in the MLL-
Control and MJAviatorComm modules are executed once every 20ms, while
tasks in the MGroundComm module are executed once every 100ms. HTL
communicators also have periods and can only be read and written at the

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:30 • J. Auerbach et al.

beginning (end) of their periods similar to Exotask communicators. For ex-
ample, the fromJAviator communicator has a period of 4ms and is updated by
the ReadFromJAviator task at the time instant that corresponds to the second
instance of fromJAviator with respect to the 20ms period of the task. The same
instance will then be read by the Controller task. Writes are always done before
any reads. Multiple writes to the same instance are not permitted to avoid race
conditions. The choice of communicator instance must be done at compile time,
and requires, in this example, that the ReadFromJAviator task must complete
execution before the second instance of fromJAviator, while the Controller task
must not start executing before this instance. Note that the time instant that
corresponds to the communicator instance may be chosen by a scheduler within
an adequate range (less than 20ms here) without changing the logical semantics
of the program, unless the involved communicator is connected to an external
device for which real-time updates matter. The fromJAviator communicator is
also used to communicate between tasks in different modules that run at dif-
ferent frequencies (e.g., the ReadFromJAviator task) which runs every 20ms
and writes the second instance of the fromJAviator communicator, while the
WriteToGround task runs every 100ms and reads the twentieth instance of the
same communicator.

In order to check schedulability of the overall HTL program, it is sufficient
to show that the PJAviator program is schedulable and properly refined by the
other lower-level programs. The example presented in Figure 6 has been imple-
mented in the Exotask system using the HTL grammar. However, so far we have
only been able to test the implementation against a simulated JAviator plant.
Real JAviator flights with this implementation are future work. Nevertheless,
note that we have implemented full HTL support in the Exotask system: for ev-
ery HTL program, there is an equivalent Exotask specification graph annotated
using the HTL grammar which, when instantiated, is semantically equivalent
to that original HTL program.

One important drawback of implementing real-time applications using Ex-
otask graphs with the HTL grammar is the fact that currently there is no view
to show the Exotask graph so that the hierarchical structure can be easily
understood (e.g., as in Figure 6). Nevertheless, for complex real-time appli-
cations that require complex Exotask graphs, one can divide such a complex
graph into smaller graphs. This is possible because both Exotask graphs and
HTL programs are composable. Some elements of the complex Exotask graph
will be replicated in multiple smaller graphs, but the number of elements
that have to be replicated is acceptable (e.g., only portions of the hierarchi-
cal structure and some communicators used in multiple modules/modes will be
replicated).

5.2 HTL Scheduler Implementation

HTL programs are compiled into E code [Henzinger and Kirsch 2007], which is
virtual-machine code that specifies the timing and interaction of hard real-time
tasks. E code is interpreted in real time by the Embedded Machine (or E ma-
chine). E code generated from HTL programs is time-portable to all platforms

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:31

on which the programs are schedulable and for which an E machine implemen-
tation exists. Time portability means that the code’s functional and temporal
behavior, in particular its I/O timing, does not change across platforms.

In the Exotask system, we have implemented a Java E machine and an HTL
compiler that translates the HTL annotations on an Exotask graph specification
into a form of E code that is designed to work with the corresponding instanti-
ated Exotask graph. The compiler and the E machine together play the formal
role of a pluggable Exotask scheduler. E code instructions that release tasks
cause those tasks to be assigned exclusively to a scheduler thread responsible
for running it once (in general, the binding of tasks to threads is temporary and
dynamic, but the compiler has determined the maximum concurrency level and
the scheduler then requests enough scheduler threads to ensure that there will
always be a thread available to run each released task). E code instructions
whose purpose is to copy values between ports, or between ports and commu-
nicators, use the Exotask system interface made available to schedulers for
performing the deep copying between Exotask heaps. E code instructions that
perform mode switches interrogate condition nodes in the graph, just like any
other scheduler.

The latest HTL compiler supports two compilation strategies: flattening the
hierarchy of an HTL program before compiling it, and directly compiling the
original program into a hierarchical extension of E code called HE code [Ghosal
et al. 2007], which has instructions for maintaining the original program hier-
archy at runtime.

Flattening the hierarchy first results in E code, which is efficient if there
is no parallelism in any refinements. However, the generated E code may be
exponentially larger than the original program, and can introduce exponential
runtime overhead, specifically as parallelism increases in refinements. Sepa-
rate compilation in the flattening compiler is currently not supported and may
be difficult to do. Directly compiling HTL programs into HE code results in code
sizes that are linear in the sizes of the original programs [Ghosal et al. 2007].
Separate compilation of any subprogram in any order is possible and already
implemented. The drawback of HE code is its increased runtime overhead on
programs without parallelism in any refinements. However, HE code pays off
on programs with parallelism in refinements, since its runtime overhead only
grows linearly in the degree of that form of parallelism. In the Exotask ver-
sion of the HTL compiler, we have only implemented the hierarchy-preserving
compilation strategy targeting HE code.

In adapting the latest HTL compiler to work with the Exotask system, com-
pilation is always done “on demand” at the point where the Exotask system
invokes the HTL scheduler. That is, despite the opportunity for separate com-
pilation when using the hierarchical strategy, there is no ability to save code
artifacts across successive runs. In fact, the time taken to compile the complete
hierarchical JAviator controller to E code is not a serious problem, as will be
shown in Section 8.1, where the compilation time is included in the schedul-
ing time for the example. However, a framework allowing schedulers to save
and reuse intermediate results across runs (assuming the annotated Exotask
specification graph has not changed) is a candidate for future work.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:32 • J. Auerbach et al.

6. EXTENDING THE SYSTEM

We have already covered pluggable timing grammars and have described one of
our two schedulers (the HTL scheduler) in detail. This section describes the sys-
tem extension interface for plugging in schedulers, and also briefly covers the
distributer interface, another pluggable extension point for constructing dis-
tributed Exotask programs. Construction and evaluation of actual distributed
Exotask programs is for future work.

6.1 Exotask Schedulers

An Exotask scheduler is responsible for deciding when every Exotask and every
connection should execute. Executing a connection means deep-copying a value
from an output port of one Exotask to an input port of another. The scheduler
also decides when every Exotask should be garbage-collected (between execu-
tions) to prevent on-demand collections that could perturb execution timings.
The scheduler is obligated to obey both timing annotations and data dependen-
cies, and to observe the rule that adjacent entities (e.g., a connection and the
two Exotasks that it connects) may not execute concurrently. This requirement
guarantees race freedom in the access to ports without requiring synchroniza-
tions that could make the timing of executions less predictable.

Exotasks and connections are presented to the scheduler as Runnable ob-
jects, designed to be called repeatedly on threads belonging to the scheduler (as
opposed to normal Runnables, which are permanently inhabited by a thread).
Exotasks are presented as implementations of ExotaskController, which extends
Runnable to add a garbageCollect method. The run method of ExotaskController
wraps the call to the user-written execute method with logic to switch from the
scheduler’s heap to the private heap of the Exotask. Thus, all allocations done
in the Exotask will allocate to the private heap and not be directly visible, not
even to the scheduler.

The scheduler creates its own metadata from the specification graph and its
timing annotations after validation and instantiation of the graph but before the
surrounding application is given access to the instantiated graph. To guide the
creation of a schedule, the scheduler receives an additional object that encodes
the WCET information for all Exotasks on the current platform. WCETs may
be provided for connections as well, if the deep-cloning for those connections
may consume nontrivial time.

The scheduler is given its own heap, distinct from the private heap of any Ex-
otask and also distinct from the global heap, so that scheduler threads are not
subject to interference from global allocation and garbage collection behavior,
even while manipulating scheduler metadata. All scheduler threads share the
same heap, however, since otherwise, coordination of scheduling across multi-
ple threads would be difficult. To avoid nondeterminism due to scheduler heap
garbage collections, existing schedulers do no allocations into their heaps once
the graph begins execution. System extenders writing new schedulers are re-
quired to do the same. If the scheduler heap required garbage collection, it would
be difficult to schedule that collection in a nondisruptive fashion, especially if
there are multiple scheduler threads.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:33

A scheduler can have as many or as few threads as it requires, all such
threads being supplied by the Exotask system. The TT scheduler is single-
threaded. The HTL scheduler uses as many threads as is required by the con-
currency level of the program.

How the scheduler deals with tasks that violate their WCETs is up to the
scheduler. A scheduler may have an “overseer” thread that is not used to run
tasks but that observes execution and cancels tasks that have exceeded their
limit. Exploring this option is future work, as we have made no special provision
for restoring invariants after task cancellation.

6.2 Exotask Distributers

Distributers are used to connect Exotasks across machine boundaries. The two
duties of a distributer are (1) to “replicate” the contents of communicators and
(2) optionally, to provide a distributed clock. Replication is the most powerful
model since it allows an arbitration based on coordinated time. However, simple
message passing can be used as a degenerate form of this model.

In a distributed graph, the graph is first partitioned into portions that run on
different machines. We do not yet have an automated tool to do this, so, in devel-
oping and testing this facility we used manual partitioning. After partitioning,
the graphs running on different machines will have communicators sharing the
same name. These are considered to be replicas of each other. The distributer
component then attaches itself to each such replicated communicator in each
machine-specific subgraph within the distributed graph. The schedulers on the
individual machines then run independently, relying on the distributer to repli-
cate the communicators and distribute a common clock (the latter is optional:
asynchronous execution is also permitted).

Distributers are written by using the weak-isolation model: that is, commu-
nicators to which distributers are attached are treated as weakly isolated by the
validator, with an object provided by the distributer (called a channel) provided
to them as their parameter. This allows much of the logic of the distributer to
be written with off-the-shelf components, such as socket libraries, which need
to execute outside the Exotask graph.

We have so far implemented only very simple distributers and presenting a
serious empirical evaluation of this interface is thus future work. In an earlier
publication of this article [Auerbach et al. 2007], the JAviator control program
used a JAviator-specific distributer to overcome the absence of weak isolation in
the general programming model. We later decided that this was not a good idea:
distributers are system components and should not be application-specific. But,
the facility exists as a serious design awaiting empirical evaluation.

7. JVM IMPLEMENTATION

Our implementation is packaged as a modular addition to the IBM WebSphere
Real Time (WRT) product JVM [IBM Corp. 2006], which includes RTSJ [Bollella
et al. 2000], the Metronome real-time garbage collector [Bacon et al. 2003], and
an ahead-of-time (AOT) compiler. AOT compilation can be used to eliminate
nondeterminism due to JIT compilation [Fulton and Stoodley 2007].

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:34 • J. Auerbach et al.

The internal JVM data structure for a thread includes a set of flag bits, two
of which are used to indicate that a thread is exempt from being preempted by
the global garbage collector. One of the bits causes the thread to behave as an
NHRT (which is subject to runtime restrictions that are checked dynamically),
while the other bit, originally added to support Eventrons, does not engender
those restrictions. In the Exotask add-on, the Eventron bit was simply reused
with a different set of supporting facilities. WRT also has a high-performance
native method (one that does not use JNI) that invokes the Linux nanosleep
function as required by both Eventrons and Exotasks for precise scheduling.

The Exotask add-on provides additional native methods that examine byte-
codes of already loaded classes, perform deep cloning, and implement private
heaps.

The Exotask add-on for IBM WebSphere Real Time, along with the Exotask
development system described in this paper, is available for download [IBM
Corporation 2007]. The HTL timing grammar and scheduler plugin is available
separately [University of Salzburg 2007].

7.1 Exotask Garbage Collection

In WRT, heaps are constructed from multiple memory spaces, which are collec-
tions of physical areas along with lower-level logic for managing them. Exotask
private heaps are just memory spaces that are detached from the main heap
and that use the sliding compacting collector described in Bacon et al. [2004].

The collector’s root scan uses the Exotask’s ExotaskController as the sole root
in a scheduled collection (because no thread is running in the Exotask space). In
an on-demand collection, the thread that caused the collection is also scanned
to find roots. Only the stack frame representing the Exotask execute method
and any newer stack frames are scanned, because only those frames can have
pointers into the private heap.

7.2 Deep Cloning

In order to support RTSJ (scopes and immortal memory), the WRT VM has sup-
port for for dynamically changing the active memory space of a thread and for
switching memory spaces. This support was exploited in our implementation
of the deep cloning required when objects are sent across ports. The imple-
mentation first temporarily switches the target memory space of the scheduler
thread doing the deep clone to be the target heap. The standard (shallow) clone
method of Java is then used (at a low level, bypassing the Java language check-
ing for Cloneable) to copy objects; the internal allocation done by clone will
automatically go to the target heap. To make the clone “deep” (i.e., recursive),
the implementation uses “object shape” information that the VM stores on a
per-class basis to aid the garbage collector in marking. This information iden-
tifies every reference field of every object type. A work queue is maintained to
avoid stressing stack space through excessive recursion. As nonnull reference
fields are found, objects are put on the queue (or found on the queue if they
were previously cloned). Objects on the queue that have not yet been cloned
will then be cloned until the operation reaches a fixpoint.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:35

8. MEASUREMENTS

This section presents performance measurements from three of the program-
ming examples used in the paper. These are (1) the inverse pendulum presented
in Section 2, (2) our production JAviator control using the TT schedule (the mul-
timode version) presented in Section 4 (hereafter TTJAvControl), and (3) the
still-evolving hierarchical JAviator control using the HTL grammar, presented
in Section 5 (hereafter HTLJAvControl). We also measure a microbenchmark to
shed light on the scheduling precision and freedom from garbage collection in-
terference that is attainable at various periods, with and without Exotasks, on
different machines. This should help to put other results in perspective. Finally,
we present results from an Exotask reimplementation of the audio example that
is used in the Eventrons [Spoonhower et al. 2006] and Reflexes [Spring et al.
2007] papers.

Measurements of TTJAvControl were done on the actual JAviator, which was
airborne and hovering during the test (though confined in a cage for safety). The
other two programming examples were run only as simulations. In the case of
the inverse pendulum, we did not possess the necessary hardware and we also
wanted to make the inputs deterministic and thereby test the repeatability of
behavior across platforms, which was only possible using a simulation. In the
case of the HTLJAvControl, controlling the airborne JAviator is future work,
(for reasons discussed in Section 8.5).

Wherever possible, all tests, including simulations, were run on the same
XScale PXA270 processor that is used in the JAviator, running on the same VM
and the same kernel. In some cases, data were also collected using an AMD64
four-way 2.4GHz machine. There were two motivations for using the AMD64.
First, this machine contrasts sharply in capability with the XScale and so sheds
light both on time portability and on the behavior of Exotasks when given very
different resources. Second, the RT Linux kernel on the AMD64 machine (based
on RHEL5-RT, kernel version 2.6.21.4), stands out among general-purpose op-
erating systems in providing good real-time behavior. In contrast, the XScale
processor’s kernel suffers from problems in scheduling precision (as the mi-
crobenchmarks will show). Of course, because the larger machine is so much
more powerful, it is indeed likely that a schedule that is feasible on the XScale
is trivially feasible on the AMD64. However, part of the issue in time portabil-
ity is to ensure that time-critical events happen exactly on time (neither too
late nor too early). This aspect is still meaningfully exercised by a comparison
with a much more powerful processor, where there is a possibility of results
being delivered too early due to faster processing. Admittedly, another class of
problems could arise in porting between processors of similar power, especially
when only modest slack exists in the schedule. Evaluation of this case is future
work.

8.1 Exotask Fixed Costs

Figure 9 shows the times taken by one-time activities that occurred during
initialization of the JAviator Exotask program. These are (1) the time taken
to validate the specification graph and the program’s Java code, (2) the time

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:36 • J. Auerbach et al.

Fig. 9. One-time costs in the JAviator program (ms).

taken to create the instantiated graph from the specification graph, and (3) the
time taken by the scheduler to compute its metadata and create its threads.
The times are from single runs (not averages) but the variance from run to run
is extremely low.

As shown in the figure, these times are small relative to the typical dura-
tion of program execution. On the AMD64 processor, which loads classes from
a conventional hard disk, all times are well under a second, even for the 21-
task HTLJAvControl. The XScale uses compact flash in lieu of disk and data
must be decompressed as well, which causes validation times to rise consid-
erably (up to 22 seconds for the HTLJAvControl). Note that all classes used
by an application are loaded as part of validation, so this cost is counted. A
positive corollary is that these slowdowns do not affect the execution of the
program.

Otherwise, validation time depends on code complexity. Instantiation time
includes the time taken to construct private heaps, but also includes Exotask
constructor execution and copying of parameter information into the Exotask
heaps. Thus, this overhead is the least obviously related to the number of tasks.
Scheduling time varies according to the scheduler chosen and the complexity
of the timing annotations that must be processed.

8.2 Achievable Period Frequencies in the Presence of Garbage Collection

This section presents results from a microbenchmark aimed at determining
the scheduling precision available for Exotasks on different platforms in the
presence of garbage collection. It demonstrates that Exotasks achieve low la-
tency despite the challenges of running in a full-function Java VM. It pro-
vides some sense of the relative jitter at different frequencies. Clearly, these
benchmarks are very sensitive to the timing and scheduling precision of the
underlying kernel. We present them partly to make clear the degree to which
Exotasks may or may not overcome inherent problems in the underlying plat-
form, and also to set some expectation bounds for the other more “real-world”
measurements.

In the benchmark, a single, empty Exotask was scheduled using various
periods on both of the hardware platforms. The runs were done both in an
Exotask-enabled version of the target VM, and in the identical VM without
using Exotasks (the code was the same but the Exotask scheduler thread was
running as an ordinary thread). The runs were done both with and without
a concurrent ordinary thread (the interference thread) running on the main

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:37

Fig. 10. Global garbage collection parameters and times.

heap. This thread was present to simulate the effect of significant other ac-
tivity within the VM, including activity that would cause global-heap garbage
collections.

The global-heap garbage collector (GC) in both systems was Metronome, a
real-time GC using time-based scheduling [Bacon et al. 2003; Auerbach et al.
2007]. Metronome divides its GC cycles into short quanta, so that GC activities
are interleaved at a fine time scale with application activities. Metronome starts
a GC when the amount of used memory reaches half the heap size. Cycles may
take quite a bit longer than would be the case if the application were paused
throughout, but real-time goals of the application are preserved.

Architectural realities required use of a different VM version on the XScale
versus the AMD64, and some GC-related parameters are set differently to ac-
commodate the coarse-grained timing of the XScale. We also chose heap sizes
and allocation rates that were aimed at rough parity in the frequency of GCs.
The quantum size, heap size, and allocation rate values for the two systems
are shown in Figure 10. In both cases, the interference thread achieved its al-
location rate using 48-byte objects and keeping the most recent 40,000 of those
objects live. The actual GC quantum durations, the GC cycle durations, and the
intervals between GC cycles are also shown in Figure 10.

Figure 11 shows the results of this microbenchmark. The first thing to note
is that periods below 500μs are infeasible on the XScale. We show the one best
result we have at that rate (for Exotasks without GC interference), and the
minimum time is well above the period time, indicating that the processor is
essentially saturated. Note that not only is this processor limited to 600MHz
but the VM that we run there has no JIT compiler. The next thing we note
is that, across all periods, and regardless of platform, the jitter (as measured
either by the standard deviation or by the worst-case values) is far better when
using Exotasks compared to ordinary Java threads, even with a real-time GC
to help out.

The microbenchmark also shows that the presence of global-heap GC activity
makes the non-Exotask measurements degrade sharply while the Exotask mea-
surements are much less affected. The Exotask measurements do show some
GC interference, which is fairly negligible on the AMD64 but more noticeable
on the XScale. The reason that there is any interference at all stems from two
factors. First, the extra thread is executing quite a bit of the time, affecting the
OS scheduler’s behavior. Second, while our design guarantees that Exotasks

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:38 • J. Auerbach et al.

Fig. 11. Scheduling precision with and without exotasks (microseconds).

are not paused by the global-heap GC, there is still some residual interference
from locking of low-level data structures. Both effects are worse on the XScale,
which is a uniprocessor with a less advanced kernel, and the VM technology
there represents fewer man hours of intensive testing and development (an
experimental VM versus an IBM product).

Finally, the results on the AMD64 show that very low jitter is achievable
down to the 100’s of microseconds range, and even the tens of microseconds, if
an occasionally rare outlier can be tolerated.

8.3 Time Portability

To measure time portability across platforms, we used the inverse-pendulum
example. The example was started with the pendulum vertical, and the cart
was subjected to (simulated) random perturbing forces of ±1, 200 Newtons at
intervals ranging from 25μs to 25ms. Each random force decayed after first
being applied, such that its value declined by half every 25μs. The controller
was deemed successful if, within a minute, the pendulum never destabilized by
going below the horizontal plane. All random distributions were uniform over
the stated ranges.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:39

Fig. 12. Time portability statistics: Inverted pendulum (times in μs).

Since this example employs strong isolation, this example should be com-
pletely time-portable, which in effect means that the behavior should be
environment-determined [Henzinger and Kirsch 2007]. That is, if identical sen-
sor measurements are presented at identical times (relative to a starting point),
the control program should produce exactly the same cart motor force values
at exactly the same relative times.

Because the hardware was simulated, we have the capacity to produce iden-
tical sensor inputs but we needed a methodology to produce a time-sensitive
replay. If we simply replayed the same values independent of the relative time
at which control program read them, the test would be meaningless. But, to
produce accurate values based on the time of reading, using “live” simulation,
the simulator would be obligated to simulate continuously or to do so instan-
taneously on demand. When the simulator and controller are run on the same
processor, live simulation would be highly perturbing. If they are run on dif-
ferent processors, communication latency would affect the result substantially.
Therefore, we used a table-driven approach. The simulation and controller were
first run in virtual time with the simulation determining and recording all the
sensor values at 25μs intervals and the controller running at its designed pe-
riod of 10ms. For the experiments, tables from various “training” runs are read
into memory. Then, the controller was run along with a version of the simu-
lator that used table lookup rather than live simulation to replay values in
a time-sensitive fashion (25μs granularity). The overhead of the table lookups
was negligible and we were able therefore to evaluate repeatability directly. We
captured the sequence of motor values (outputs) issued by each run. We were
then in a position to compute the correlations between the outputs of different
runs, either with the same inputs or different inputs, on the same platform, or
on different platforms.

Figure 12 shows the results of the time portability experiment run on both
the XScale and the AMD64 with the simulator’s table derived from the same
training runs (same inputs) and from different training runs (different inputs).
Correlations (Pearson’s ρ) are extremely high when the same inputs are re-
played and negligible when different inputs are used. Replays of the same in-
puts on the same platform, while not the goal of the experiment, are shown

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:40 • J. Auerbach et al.

to provide a baseline of repeatability that one might expect from this exper-
imental technique. When results on the same input are compared across the
two different platforms, we get a ρ value that is only slightly lower (0.9396),
indicating that the environment-determinedness goal is effectively met, lim-
ited by the available timing precision. As the algorithm itself is deterministic,
the drop in correlation compared to same-platform cases is due to the greater
timing variability on the XScale. Indeed, the remaining columns in Figure 12
show that this is the case. The interval between successive executions of the
ReadAngle Exotask and that between successive executions of the WriteMotor
Exotask should each be exactly 10ms. The variations (especially in the WriteMo-
tor task, which is subject to more perturbation if the longer-executing compute
task that precedes it violates its time limit) are negligible on the AMD64 but no-
ticeable on the XScale. The fact that the XScale runs self-correlated at a higher
level suggests that there is determinism in these perturbations (they happen
at approximately the same point in each run). We are, therefore, confident that
improvements in the technological underpinnings on the XScale will improve
the repeatability achieved in the future.

8.4 Flying the JAviator

This section presents measurements of the JAviator in flight using the TTJAv-
Control program (as presented in Section 4). The JAviator was airborne for
about 5 minutes, during which time it was hovering most of the time with occa-
sional adjustments of attitude and altitude to keep it oriented. For safety, the
JAviator was confined in a cage. A single Ethernet cable connected the JAviator
to a separate computer running the joystick and console display. Communica-
tion between the two was via UDP, and a TCP connection was also present
for collecting data. As previously explained, the XScale processor on which the
Java VM was running, and the separate microcontroller for generating PWM
signals, were both on board the JAviator.

Figure 13 shows the distribution of times between executions of the fromJAvi-
ator Exotask (see Section 4) when the controller was run alone in the JVM as is
typically the case during flights. Figure 14 shows distribution of times for the
same Exotask when a separate thread is allocating memory concurrently, us-
ing the same algorithm as in Section 8.2. As can be seen by comparing both the
histograms and the accompanying statistics, the TTJAvControl behaves quite
well in both cases. The histograms make explicit that the worst-case outliers
tend to be rare, as reflected in the low standard deviation. This is consistent
with microbenchmark results at longer periods (at the 20ms period the XScale
handles the load comfortably).

The fact that the pattern of outliers is different between the two histograms
(a larger number of smaller outliers when there are concurrent global heap
garbage collections) is consistent with earlier results we have reported in simi-
lar [Auerbach et al. 2007] and not-so-similar [Spoonhower et al. 2006] systems.
We cannot claim to fully understand why this pattern tends to occur, but at
least it is consistent.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:41

Fig. 13. TTJAvControl: Interarrival times of the fromJAviator task, when no concurrent allocation

is done.

Fig. 14. Interarrival times of the fromJAviator task, when concurrently allocating 256KB per

second.

8.5 The Hierarchical (HTL) Version of the JAviator Control

Section 5 describes the HTLJAvControl, a hierarchical controller for the JAviator
which is still being tuned for actual use in flight. This controller cannot be
directly compared to the TTJAvControl results from the previous section because
those were done on the XScale processor with the JAviator in flight. We could not

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:42 • J. Auerbach et al.

Fig. 15. Interarrival times of the ReadFromJAviator task on the AMD64 machine, when no con-

current allocation is done (times in μs).

Fig. 16. Interarrival times of the ReadFromJAviator task on the AMD64 machine, when concur-

rently allocating 2MB per second (times in μs).

even run the HTLJAvControl on the XScale processor because the interpretive
E machine currently used by the HTL scheduler had too high an overhead and
left too little time left for running the Exotasks. This problem is being addressed
by further compiling the E code to a more efficient representation, as is done in
the original HTL language. Meanwhile, both controllers run well on the AMD64
processor, controlling a simulated JAviator, and that is what we report on in
this section.

Figure 15 depicts the interarrival times of the ReadFromJAviator task in the
HTLJAvControl. Figure 16 depicts the interarrival times of the same task in the
same controller when the interference thread described in Section 8.2 is used
(with the AMD64 parameters shown in Figure 11). For comparison, times for
the TTJAvControl running under the identical circumstances are also shown. As
can be seen, both controls perform quite adequately on this platform, and both
controls are reasonably unaffected by the concurrent global heap garbage col-
lection activity, but the HTL version does have noticibly more jitter in absolute
terms. Of course, the jitter of the HTLJAvControl on the AMD64 is actually
less than that of the TTJAvControl on the XScale, but we know that more work
will be needed before the HTLJAvControl can run adequately on the XScale.
We do not believe this represents an inherent limitation of this approach, but
simply represents a need to further improve the efficiency of our E machine
implementation.

8.6 The Audio Example Revisited

Both Spoonhower et al. [2006] and Spring et al. [2007] employed an example
of an audio tone generator running at sample-size buffering directly against a
hardware audio card. For CD-quality sound (22.05KHz), this requires a period
of only 45μs. The audio example also uses a less time-critical “low-frequency”
task to do audio synthesis. The synthesis task communicates with the audio
frequency generator using whatever mechanism is called for by the program-
ming model. Both Eventrons and Reflexes reported good results for this exam-
ple, with over 99% of periods starting “on time,” defined as within 5μs of the
target.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:43

Fig. 17. Eventrons and exotasks running the audio example (times in μs).

The audio example is readily reimplemented as an Exotask, with the com-
munication mechanism being the exchange of scalar values via weak isolation.
A “channel” abstraction was used in the Eventrons research to hide the com-
plexity of unsynchronized scalar value sharing. The same abstraction is readily
implemented on top of the Exotask weak-isolation model.

For purposes of comparison, we were able to run the Eventron and Exotask
versions of the program on the same hardware and kernel, using the original
Eventron software and the current Exotask software. We were not in a position
to run the Reflex version (it requires a different VM). For technical reasons,
we could not deploy the Eventron software on the XScale processor and so
measurements were taken only on the AMD64 (this is similar to the class of
hardware used in the original Eventron and Reflex papers).

Figure 17 shows the results of this study. The Eventron implementation has
less distant outliers and a marginally higher percentage of intervals falling
within 5μs of the target. However, the percentage of such intervals for the Exo-
task implementation is nearly as high and so Exotasks are clearly in the same
league running the identical application. It should be clear both from these
results and from those presented in the Reflex paper that there is little or no
necessary loss of performance or precision when going from a less expressive
programming model to a more expressive one, provided the code is using only
capabilities that were present in the simpler model. In fact, our reimplemen-
tation of the audio example makes no use of features that were not present
in Eventrons beyond the ability to allocate exception objects when failing (the
program does not allocate anything in its main loop). What a richer program-
ming model provides, however, is the ability to exploit additional capabilities at
modest cost. Both JAviator examples and the inverse-pendulum example made
use of Exotask features not present in any earlier model, such as the ability to
allocate objects and have them collected on a scheduled basis and the ability to
communicate objects of arbitrary type to other tasks. As can be seen, those re-
sults, although not employing the aggressively short period of this one, exhibit
low jitter and high repeatability.

9. RELATED WORK

Time-portable real-time programming in a modern high-level language such
as Java requires combining two already established real-time technologies: de-
terministic real-time scheduling and deterministic real-time memory manage-
ment. Scheduling in the Exotask system is done in two stages. First, events
involving I/O are executed at precise points in real time. Second, all remaining
events are executed based on data dependencies between tasks. Deterministic

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:44 • J. Auerbach et al.

I/O timing is the key to time portability but often not available in concurrency
models of other real-time languages such as Ada [Burns and Wellings 1997]
and Erlang [Armstrong et al. 1996]. Synchronous reactive programming [Halb-
wachs 1993] is an early approach to deterministic I/O timing in which compu-
tation is assumed to take zero time, which results in deterministic input (i.e.,
sensor update timing), but not necessarily in deterministic output timing. A
more recent, less abstract approach is the notion of Logical Execution Time
(LET) [Henzinger et al. 2003]. The LET of a task is the time from the instant
when the task reads its inputs to the instant when the task writes its outputs,
but not the time when the task actually computes. A LET task’s I/O timing is
thus user-determined, not system-determined, provided sufficient CPU time is
available for the task. Both timing grammars that we developed here are based
on the LET concept. However, other potentially non-LET grammars are also
possible and subjects for future work.

Real-time memory management (in the context of Java) is a currently active
research area. One approach is to improve the garbage collector. The Metronome
collector [Bacon et al. 2003], incorporated in the IBM WebSphere Real Time
VM [IBM Corp. 2006], is one of several recent examples (others are [Siebert
2004] and [Henderson 2002]). However, this approach is limited by caching and
context-switching effects to some lower bound on achievable latencies. And, it
does nothing to achieve time portability.

One approach which shares with Exotasks the idea of partitioning the heap
is the hierarchical real-time garbage collection [Pizlo et al. 2007]. This approach
splits the heap into disjoint partitions, called heaplets, which are collected inde-
pendently by different garbage collectors. Each garbage collector can be tuned
to match the requirements of the set of tasks running in the respective heaplet.
The approach differs from Exotasks in that hierarchical RTGC allows cross
heap pointers but assesses a performance penalty, so some determinism is sac-
rificed in order to achieve an even less restrictive programming model (no re-
strictions at all). Exotasks disallow such pointers (for the most part) in order
to stress greater determinism. Also, garbage collection in hierarchical RTGC is
not scheduled, and so its impact on performance is less predictable.

Another approach is to avoid collisions with the garbage collector by avoiding
heap allocations entirely, which is the approach taken by NHRTs [Bollella et al.
2000], Eventrons [Spoonhower et al. 2006], Reflexes [Spring et al. 2007], and
StreamFlex [Spring et al. 2007]. Eventrons disallow allocation at the program-
ming level (the new keyword is illegal), whereas NHRTs and Reflexes allow
allocations while directing those allocations to special memory areas that do
not have heap-like semantics. Exotasks are similar to the latter two, except that
allocations are directed to a true heap (just not the public one). This is an im-
provement in programming convenience, and it may prove just as effective if the
collections of these private heaps can be made very efficient and scheduled in
a way that guarantees no interference with time-critical deadlines. Eventrons
and Reflexes achieve a degree of time portability when there are adequate re-
sources, because the Eventron or Reflex executes at regular intervals. Exotasks
provide a powerful generalization of this capability by computing with arbi-
trary graphs of interconnected nodes and pluggable ways of expressing timing

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:45

constraints. Similar to Eventrons, Exotasks use program analysis at initial-
ization time to check conformance to a set of restrictions, rather than with
annotations at compile time (as with Reflexes) or continuously during runtime
(as with NHRTs, which can throw unexpected exceptions as a result).

StreamFlex shares with Exotasks the property that computing is done by
a graph of communicating tasks, not just a single task. The emphasis is on
“streaming” (data-driven rather than time-driven processing) but the system
achieves very low latency by exploiting a real-time environment (the Stream-
Flex system is built on Reflexes). The channels in a StreamFlex graph carry
capsules, which is a much more restricted data type than those allowed by Exo-
tasks. However, capsules, because of this restriction, can be copied by reference
and do not require deep cloning.

One rather heavyweight way of implementing private heaps is the isolates
construct [Java Community Process] that is now part of Java. Exotasks are
not as isolated as isolates: they share classes with the global heap, can read
their static final fields, and have explicit connections with other Exotasks. In
addition, their isolation is achieved in a more streamlined fashion, without the
use of memory protection, copy-on-write or separate processes. Isolates, on the
other hand, are fully transparent (almost any Java program can be run as an
isolate) while Exotasks require observing programming restrictions.

In addition to the WebSphere Real Time VM used as our implementation
base, there are a number of others now available [Purdue; Bollella et al. 2005;
AICAS]. For example, OVM [Purdue] was used to implement the Reflex and
StreamFlex systems.

The Exotask system provides a visual, concurrent, and real-time program-
ming environment related to other model-driven development (MDD) envi-
ronments such as, for instance, MathWorks’ Simulink [Simulink 2007] and
Ptolemy [Lee 2003]. The key difference to MDD environments is that the Exo-
task system is firstly and foremost a programming and only secondly a modeling
environment. Simulink and Ptolemy have originally been designed as modeling
environments for simulation of the models’ concurrent and real-time behavior.
Subsequently, code generators such as the Real-Time Workshop [Real-Time-
Workshop 2007] in Simulink have been added to support real-time execution
of the models. However, automatic generation of efficient code from models is
difficult and often results in insufficient performance. The Exotask system does
not generate code but instantiates user-written Exotask specifications and code
bodies, which typically involves much smaller differences in levels of abstrac-
tion. The Exotask development environment does some simulation in order to
find major errors (e.g., it runs the same Exotask validator that will be used at
runtime). A fuller subset of the behavior of the instantiated code, similar to
the generated code in MDD environments, may eventually be simulated in the
Exotask system, but that remains as future work.

The Exotask programming model is designed to optimize code efficiency,
portability, and determinism. Code generated from Simulink and Ptolemy is
usually memory-static and not time-portable. Nonetheless, the timing behavior
of Exotask models is parameterized by the notion of timing grammars and sup-
porting schedulers, which is somewhat related to the notion of abstract syntax

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:46 • J. Auerbach et al.

and directors, respectively, in Ptolemy. In the Exotask system, time portability
is a paramount objective.

There are indeed many systems in which computation is done by a graph
of nodes connected by directed edges. The terms “input port” and “out-
put port” are in widespread use. For example, port-based objects (PBOs)
[Stewart et al. 1997] also have input and output ports similar to Exotasks. How-
ever, the Exotask system guarantees memory isolation properties and enables
time portability while PBOs rely on using coding conventions (in C) and real-
time scheduling techniques, which are not semantics-preserving, and therefore,
not portable.

Finally, we note that the JAviator example is a real application and that
papers concerning real applications are important contributions to the field.
Other reports on applications written in Java using real-time Java VMs or
similar technology include ones in avionics [Armbuster et al. 2006], shipboard
computing [IBM 2007], audio processing [Auerbach et al. 2007; Juillerat et al.
2007], and industrial control [Gestegard Robertz et al. 2007].

10. CONCLUSION

We have introduced Exotasks, a novel Java programming construct that
achieves low latency with the fewest to-date restrictions on the use of Java
features. The Exotasks system supports pluggable schedulers, and the sched-
ulers we have written, in conjunction with the isolation properties of Exo-
tasks, achieve deterministic timing, even in the presence of other Java threads,
and across changes of hardware and software platform. Exotasks achieve time
portability by enforcing a deterministic computational model in which Exotasks
communicate via explicitly declared channels and are otherwise isolated. Exo-
tasks are logically isolated in time by executing I/O-relevant portions at precise,
deterministic points in real time. Exotasks are physically isolated in space by
allocating objects in private, individually garbage-collected heaps.

We have implemented a virtual machine that supports Exotasks and an
Eclipse-based development environment to support it. We have recently ex-
tended this virtual machine and the Exotask model so that all the capabilities
of Eventrons are also provided. We have used Exotasks to fly a quadrotor model
helicopter, the JAviator. Our experiments show that Exotasks are adequately
efficient and achieve freedom of interference from other Java code and the
garbage collector. Comparisons of runs on different hardware show that time
portability has been achieved, at least for the example investigated. In the fu-
ture, we intend to use Exotasks for more difficult control problems involving
tasks with different periods executing in parallel. We believe that the same
time portability can be achieved, because the scheduling problem has already
been explored in the context of HTL.

REFERENCES

AICAS. The Jamaica virtual machine. http://www.aicas.com.

ARMBUSTER, A., BAKER, J., CUNEI, A., HOLMES, D., FLACK, C., PIZLO, F., PLA, E., PROCHAZKA, M., AND

VITEK, J. 2006. A Real-time Java virtual machine with applications in avionics. ACM Trans.
Embed. Comput. Syst. (TECS).

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

Low-Latency Time-portable Real-time Programming with Exotasks • 15:47

ARMSTRONG, J., VIRDING, R., WIKSTRM, C., AND WILLIAMS, M. 1996. Concurrent Programming in
Erlang, 2nd Ed. Prentice-Hall.

AUERBACH, J., BACON, D. F., BLAINEY, B., CHENG, P., DAWSON, M., FULTON, M., GROVE, D., HART, D.,

AND STOODLEY, M. 2007. Design and implementation of a comprehensive real-time Java virtual

machine. In Proceedings of The 7th ACM/IEEE International Conference on Embedded Software.
ACM, New York, 249–258.

AUERBACH, J., BACON, D. F., BO MERS, F., AND CHENG, P. 2007. Real-time music synthesis in Java

using the Metronome garbage collector. In Proceedings of the International Computer Music
Conference.

AUERBACH, J., BACON, D. F., IERCAN, D. T., KIRSCH, C. M., RAJAN, V. T., ROECK, H., AND TRUMMER, R.

2007. Java takes flight: time-portable real-time programming with exotasks. In Proceedings of
the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools (LCTES’07). ACM,

New York, 51–62.

BACON, D. F., CHENG, P., AND GROVE, D. 2004. Garbage collection for embedded systems. In Proceed-
ings of the 4th ACM International Conference on Embedded Software. ACM, New York, 125–136.

BACON, D. F., CHENG, P., AND RAJAN, V. T. 2003. A real-time garbage collector with low overhead

and consistent utilization. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, New York, 285–298.

BACON, D. F. AND SWEENEY, P. F. 1996. Fast static analysis of C++ virtual function calls. In Pro-
ceedings of the 11th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications. ACM, New York, 324–341.

BOLLELLA, G., DELSART, B., GUIDER, R., LIZZI, C., AND PARAIN, F. 2005. Mackinac: Making hotspot

realtime. In Proceedings of the Eighth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC’05). IEEE, Los Alamitos, CA, 45–54.

BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P., FURR, S., HARDIN, D., AND TURNBULL, M. 2000.

The Real-Time Specification for Java. The Java Series. Addison-Wesley, Boston, MA.

BURNS, A. AND WELLINGS, A. 1997. Concurrency in ADA 2nd Ed. Cambridge University Press,

Cambridge, UK.

ECLIPSE FOUNDATION. 2007. The Eclipse open development platform. http://www.eclipse.

org.

FULTON, M. AND STOODLEY, M. 2007. Compilation techniques for real-time Java programs. In Pro-
ceedings of the International Symposium on Code Generation and Optimization. ACM, New York,

221–231.

GESTEGARD ROBERTZ, S., HENRIKSSON, R., NILSSON, K., BLOMDELL, A., AND TARASOV, I. 2007. Using

real-time Java for industrial robot control. In Proceedings of the 5th International Workshop on
Java Technologies for Real-time and Embedded Systems (JTRES). ACM, New York, 104–110.

GHOSAL, A., HENZINGER, T., IERCAN, D., KIRSCH, C., AND SANGIOVANNI-VINCENTELLI, A. 2006. A hierar-

chical coordination language for interacting real-time tasks. In Proceedings of the 6th ACM/IEEE
International Conference on Embedded Software. ACM, New York, 132–141.

GHOSAL, A., IERCAN, D., KIRSCH, C., HENZINGER, T., AND SANGIOVANNI-VINCENTELLI, A. 2007. Separate

compilation of hierarchical real-time programs into linear-bounded embedded machine code. In

Proceedings of the APGES Workshop.

HALBWACHS, N. 1993. Synchronous Programming of Reactive Systems. Kluwer, Norwell, MA.

HENDERSON, F. 2002. Accurate garbage collection in an uncooperative environment. SIGPLAN
Notices 38, 2, 256–263.

HENZINGER, T. AND KIRSCH, C. 2007. The embedded machine: Predictable, portable real-time code.

ACM Trans. Prog. Lang. Syst. 29, 6.

HENZINGER, T., KIRSCH, C., AND HOROWITZ, B. 2003. Giotto: A time-triggered language for embedded

programming. Proc. IEEE 91, 1, 84–99.

IBM. 2007. DDG1000 next generation Navy destroyers.

http://www.ibm.com/press/us/en/pressrelease/21033.wss.

IBM CORP. 2006. WebSphere Real-Time User’s Guide, 1st Ed.

IBM CORPORATION. 2007. IBM expedited real time task graphs.

www.alphaworks.ibm.com/tech/xrtgs.

JAVA COMMUNITY PROCESS. JSR-121 application isolation API.

http://www.jcp.org/aboutJava/communityprocess/final/jsr121.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

15:48 • J. Auerbach et al.

JUILLERAT, N., MÜLLER ARISONA, S., AND SCHUBIGER-BANZ, S. 2007. Real-time, low latency audio

processing in java. In Proceedings of the International Computer Music Conference.

LEE, E. 2003. Overview of the Ptolemy project. Tech. rep. UCB/ERL M03/25, EECS Department,

University of California, Berkeley.

OGATA, K. 1997. Modern Control Engineering. Prentice Hall, Upper Saddle River, NJ.

PILLAI, P. AND SHIN, K. G. 2001. Real-time dynamic voltage scaling for low-power embedded

operating systems. In Proceedings of the 18th ACM Symposium on Operating Systems Principles.

ACM, New York, 89–102.

PIZLO, F., HOSKING, A. L., AND VITEK, J. 2007. Hierarchical real-time garbage collection. In Proceed-
ings of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools (LCTES’07).
ACM, New York, 123–133.

PURDUE. The OVM virtual machine. http://www.ovmj.org.

REAL-TIME-WORKSHOP. 2007. http://www.mathworks.com/products/rtw.

SIEBERT, F. 2004. The impact of realtime garbage collection on realtime Java programming. In

Proceedings of the 7th Annual IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’04). IEEE, Los Alamitos, CA, 33–40.

SIMULINK. 2007. http://www.mathworks.com/products/simulink.

SPOONHOWER, D., AUERBACH, J., BACON, D. F., CHENG, P., AND GROVE, D. 2006. Eventrons: a safe

programming construct for high-frequency hard real-time applications. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, New

York, 283–294.

SPRING, J. H., PIZLO, F., GUERRAOUI, R., AND VITEK, J. 2007. Programming abstractions for highly

responsive systems. In Proceedings of the 3rd International Conference on Virtual Execution
Environments. ACM, New York, 191–201.

SPRING, J. H., PRIVAT, J., GUERRAOUI, R., AND VITEK, J. 2007. StreamFlex: High-throughput stream

programming in Java. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA). ACM, New York, 211–228.

STEWART, D. B., VOLPE, R. A., AND KHOSLA, P. K. 1997. Design of dynamically reconfigurable real-

time software using port-based objects. IEEE Trans. Softw. Engin. 23, 12, 759–776.

UNIVERSITY OF SALZBURG. 2007. Exotask htl scheduler. htl.cs.uni-salzburg.at/exotask-htl.

Received October 2007; revised March 2008; accepted July 2008

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 2, Article 15, Publication date: January 2009.

