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Abstract
Data center cloud computing distinguishes computa-
tional services such as database transactions and data
storage from computational resources such as server
farms and disk arrays. Cloud computing enables a
software-as-a-service business model where clients may
only pay for the service they really need and providers
may fully utilize the resources they actually have. The
key enabling technology for cloud computing is vir-
tualization. Recent developments, including our own
work on virtualization technology for embedded sys-
tems, show that service-oriented computing through vir-
tualization may also have tremendous potential on mo-
bile sensor networks where the emphasis is on informa-
tion acquisition rather than computation and storage. We
propose to study the notion of information-acquisition-
as-a-service of mobile sensor networks, instead of server
farms, for cyber-physical cloud computing. In particu-
lar, we discuss the potential capabilities and design chal-
lenges of software abstractions and systems infrastruc-
ture for performing information acquisition missions us-
ing virtualized versions of aerial vehicles deployed on a
fleet of high-performance model helicopters.

1 Introduction

Imagine a fleet of autonomously flying high-performance
quadrotor helicopters equipped with cameras and laser
range finders gathering data for information acquisition
tasks such as search-and-rescue missions [13, 16] and
environmental monitoring [9]. Inspired by data center
cloud computing [1], the helicopters do not directly exe-
cute any mission code but instead work as servers hosting
virtual abstractions of networked autonomous vehicles
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that perform the actual missions. Virtual autonomous
vehicles (or virtual vehicles, for short) form virtual mo-
bile sensor networks whose nodes can be created and de-
ployed dynamically at flight time and then migrate from
one real vehicle to another in order to aggregate informa-
tion as efficient and fast as possible before being termi-
nated at the end of their mission. Virtual vehicles spec-
ify their exact resource requirements such as the required
sensors and actuators as well as the necessary CPU and
communication bandwidth. Virtual vehicles, once admit-
ted to fly on a real vehicle by a virtual vehicle monitor
(VVM), are temporally isolated from each other guaran-
teeing their resource and performance requirements. Vir-
tual vehicles will acquire sensor data and may choose to
carry it as their “payload” or stream it live to their client
depending on the available communication resources.

Similar in spirit to virtual machines, virtual vehicles
provide a robust, mobile, secure, and safe execution and
information acquisition platform enabling what we call
cyber-physical cloud computing (CPCC). Here, cloud
computing becomes a metaphor for information acqui-
sition as a service of mobile sensor networks, rather
than the traditional notion of platform- or software-as-a-
service. The distinction of service and platform through
virtualization again enables clients to minimize usage
of resources to what they really need, and providers to
maximize utilization of the resources they actually have.
In particular, CPCC should eventually be able to absorb
hundreds of real vehicles, provided by tens of organi-
zations with different operating procedures, and handle
thousands of concurrent requests for search, surveillance,
tracking, pictures, video feeds, etc.

CPCC has the potential for a number of exciting new
capabilities for clients and providers of mobile sensors
alike but also creates a range of interesting challenges
in software, systems, and control engineering. Poten-
tial capabilities include large-scale, high-level program-
ming and efficient load balancing of mobile sensor net-



Figure 1: The JAviator quadrotor helicopter [6].

works. Interesting challenges are, in software and sys-
tems engineering, virtual vehicle migration to and isola-
tion on real vehicles as well as, in control engineering,
multiplexing flight control. For example, multiple vir-
tual vehicles on the same real vehicle may require dif-
ferent flight plans that need to be properly negotiated by
the VVM. The problem may be simplified by having real
vehicles follow flight plans that are pre-determined by
the vehicle provider. In this case, virtual vehicles do not
alter the flight plans of real vehicles but may still mi-
grate from one real vehicle to another. Vehicle migra-
tion across wireless links is nevertheless challenging and
may only be possible with small-footprint, light-payload
virtual vehicles. Vehicle isolation is another key chal-
lenge that involves non-trivial, real-time process schedul-
ing and management.

Next, we discuss our existing hardware infrastructure,
which we plan to use as CPCC platform: a fleet of
ten high-performance quadrotor helicopters called JAvi-
ators [6]. Then, in Section 3, we describe a Xen-based
version of our virtual machine monitor [4], which we
are currently enhancing for CPCC. Finally, in Section 4,
we discuss potential CPCC capabilities and challenges in
more detail.

2 Helicopter

We have designed and built, entirely from scratch, a
high-performance quadrotor helicopter called JAviator
(Java Aviator) [6] as shown in Figure 1. In particu-
lar, we have designed and built the frame and the on-
board power electronics as detailed below. The motors
were built for us according to our specifications. The
sensors, the rotor blades, the computer board, and the
battery are off-the-shelf components. The JAviator has
originally served as our “flying testbed” to demonstrate
flight control software written in Java with our collabo-
rators at IBM Research. In the meantime, we have also
used the JAviator to demonstrate flight control software

and systems infrastructure written in C. We are currently
able to fly the JAviator navigated manually but with au-
tomatic attitude and altitude control. Right now there are
ten identical machines of which five are fully equipped
and ready to fly. We have recently started working on
automatic position control for autonomous indoor (by
ultra-wide-band localization) and outdoor (by differen-
tial GPS) multi-vehicle flight.

The JAviator is, as the term “quadrotor” suggests, a
4-rotor helicopter. The advantage of a 4-rotor aircraft
is that it can be built without a means for cyclic pitch
control, as required in conventional single-main-rotor de-
signs. A quadrotor is therefore mechanically simpler and
less expensive to build. However, quadrotors can only be
flown by computer, controlling at least its attitude and
altitude, which makes them an ideal platform for demon-
strating software capabilities. Compared to most other
quadrotor research aircraft that are in wide use today,
we aimed to go beyond the prototypical stage of usu-
ally ungainly looking contraptions and tried to provide
something professional looking right from the beginning.
For this purpose, we developed an aircraft that not only
stands out with its high robustness and payload capacity,
but also achieves a high degree of utilization and demon-
strative impact. One special feature of the JAviator that
makes it unique is its fully symmetrical airframe, result-
ing from a similar top and bottom frame. The JAviator
has an overall diameter (diagonal over rotors) of 1.3 m
and an empty weight of 2.2 kg, including the battery
and all onboard electronics. Due to the incorporation
of custom-built brushless motors, which are significantly
stronger than conventional motors, the JAviator’s propul-
sion system generates a maximum lift of 5.4 kg, which
translates into a theoretical maximum payload of 3.2 kg.
Without payload the average flight time is around 30 min,
a maximum of 40 min was achieved during tests while
hovering in ground effect.

The JAviator is currently equipped with an inertial
measurement unit, one ultrasonic and two laser dis-



tance sensors, and a so-called Robostix-Gumstix stack,
which serves as the onboard computer system. The Ro-
bostix contains an Atmel ATmega128 processor clocked
at 16 MHz and provides the necessary communication
interfaces to connect to the many different sensors. It fur-
ther provides the required PWM units for driving the four
motors. The Gumstix features an Intel XScale PXA270
CPU clocked at 600 MHz, a 128-MB RAM, and a 32-
MB flash memory. The operating system on the Gumstix
is a Linux system running a kernel version with real-
time extensions and support of high-resolution timers,
which we modified to work with the Gumstix. Atti-
tude and altitude control is done on the Gumstix, which
receives the necessary sensor data from the Robostix
and then sends the computed actuator updates back to
the Robostix. The JAviator ground station comprises a
laptop computer, a 4-axis joystick for piloting the heli-
copter, and a separate logging workstation. All ground
computers run Linux and are connected via WLAN to
the onboard computers. All relevant material including
hardware blueprints, pictures, and videos is available at
javiator.cs.uni-salzburg.at.

The JAviator is designed to carry significant payload
such as additional sensors and even non-embedded com-
puters. We are now working on mounting at least a
webcam and a small-formfactor server-grade multi-core
board connected to the webcam and the onboard Gum-
stix onto the JAviator. The result is that the JAviator will
become a flying server with two key physical capabilities
that a traditional server does not have: non-trivial sens-
ing and three-dimensional mobility. The JAviator server
will be hosting our VVM as well as any virtual vehicles
“flying” on the JAviator. Ideally, the JAviator server will
eventually replace the Gumstix, if the monitor can pro-
vide sufficient real-time guarantees for low-level control
(in the order of 100Hz rates and 1ms latencies). Attitude,
altitude, and position control will then be performed by a
virtual vehicle rather than the Gumstix. The Robostix is,
however, even more difficult to replace since most sen-
sors and actuators require special I/O devices not avail-
able on off-the-shelf, non-embedded hardware.

3 Virtual Vehicle Monitor

Virtualization allows multiple operating systems to share
a single, physical machine through encapsulation in so-
called domains created by a virtual machine monitor or
hypervisor. A virtual vehicle monitor (VVM) is essen-
tially a virtual machine monitor enhanced for CPCC. The
architecture of our virtualization system is depicted in
Figure 2. The VVM is based on the open-source Xen
hypervisor [2]. Similar to a virtual machine monitor, the
main tasks of the VVM are domain scheduling, I/O han-
dling, and memory isolation.
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Figure 2: Virtualization architecture for CPCC.

In addition to the spatial domain isolation provided by
the Xen hypervisor, the VVM provides temporal domain
isolation using enhanced scheduling mechanisms as de-
scribed below. The VVM runs at least one privileged
domain that contains device drivers and enables other
domains to perform I/O by handling their I/O requests.
Moreover, the privileged domain contains domain man-
agement tools and a CPCC manager. The domain man-
agement tools provide functionality to create and destroy
domains, initiate migration of domains, and modify the
scheduling parameters of domains. The CPCC man-
ager connects the VVM with other VVMs in the cyber-
physical cloud. Based on the domain management tools
its main job is to create and destroy virtual vehicles and
manage migration between different VVMs. The VVM
also supports domains running general purpose operating
system instances, e.g. a Linux system that runs legacy
applications such as a web server.

In the following we discuss the main elements of our
virtualization system in more detail.

CPU Scheduling In the Xen hypervisor the unit of
scheduling is a so-called virtual CPU (vCPU), which is
an abstraction of a physical CPU. The default scheduler
in Xen, called credit scheduler, is tuned for high through-
put and good fairness among all active vCPUs in the sys-
tem. However, the credit scheduler does not provide low
latency or guaranteed CPU shares.

We have developed a hybrid EDF-credit scheduler for
our VVM that can schedule a vCPU using either the stan-
dard credit scheduler (credit-vCPU) or alternatively an
earliest-deadline-first scheduler (EDF-vCPU) [5]. The
hybrid EDF-credit scheduler provides low latency and al-
lows to specify a guaranteed CPU share for EDF-vCPUs
while still achieving high throughput for credit-vCPUs.
The implementation of the hybrid EDF-credit scheduler
uses a run-queue for each physical CPU and applies work
stealing and dynamic migration of vCPUs in order to
balance the workload across all available physical CPU
cores. Moreover, it supports dynamically switching a



vCPU from a credit-vCPU to an EDF-vCPU and vice
versa. All scheduling parameters are adjustable through
the domain management tools.

Virtual Vehicle Domains Virtual vehicles are hosted
inside domains running a special-purpose virtual vehi-
cle operating system (VVOS). The memory footprint of
a virtual vehicle domain, including the VVOS, the ap-
plication code and the data, should be small enough to
achieve minimal down-time when migrating. Addition-
ally, small domains provide fast deployment when creat-
ing and starting new virtual vehicles. Virtual vehicles run
on EDF-vCPUs for temporal isolation, while legacy ap-
plications, which do not require strong temporal guaran-
tees, run in domains that are deployed on credit-vCPUs.

We are currently working on a VVOS to bootstrap and
host the run-time infrastructure for virtual vehicles. It
is a single-address-space operating system that imple-
ments basic thread scheduling and device drivers for vir-
tual I/O devices only. A virtual I/O device provides a
well-defined interface that abstracts the low-level details
of the underlying real I/O device, which is accessible by
privileged domains only. A virtual device connects to a
privileged domain that contains the device driver for the
real I/O device. The privileged domain accesses the I/O
device on behalf of the connected domain. Moreover,
since multiple virtual vehicles can share a single device,
the privileged domain performs I/O scheduling for all in-
coming I/O requests from various virtual vehicles.

I/O Scheduling Virtual vehicles not only require tem-
porally deterministic execution of their program code but
also temporally deterministic handling of their I/O re-
quests. In order to support given latency and through-
put requirements of a virtual device, the privileged do-
main applies I/O scheduling among all virtual devices
currently connected to a real device. The I/O scheduler
in the privileged domain uses a hierarchical token bucket
traffic-shaping algorithm to regulate the packet flow from
a virtual device to the real device.

Virtual Vehicle Migration Domain migration in gen-
eral and virtual vehicle migration in particular is a key
mechanism for CPCC. For example, it is possible for a
single virtual vehicle to change its geographical location
much faster than it is for a real vehicle. A virtual vehicle
can simply migrate at the speed of the communication
link to a real vehicle that is closer to its target location.

Currently, our VVM supports migration of running do-
mains as provided by the Xen hypervisor [3]. Since our
virtual vehicle domains have a small memory footprint
and do not have much dynamically changing state the
live-migration mechanism of Xen should be sufficient.

However, using a low-bandwidth wireless connection be-
tween real vehicles for migration could require more so-
phisticated algorithms. For instance, migration overhead
can be reduced by applying memory compression algo-
rithms on the migrating domain [11].

4 CPCC Capabilities and Challenges

Traditional virtualization technology provides resource
and data isolation and is therefore one of the key enabling
technologies for scalable and secure cloud computing.
Instead of maintaining and running their own machines,
clients are only required to specify (and pay for) their
exact performance requirements, which are then met by
adequate virtual machines in the cloud. For clients, the
advantage, besides reduced costs, is more flexibility and
capabilities and, for providers, more control over system
utilization and reliability. Moreover, virtualization re-
duces the developement and maintainance effort [12, 14].

Virtualization in CPCC, if adapted properly, may also
provide similar benefits but also entirely new capabili-
ties. For example, the notion of a virtual vehicle may
enable multiple clients to share a single real vehicle but
use it for different purposes. A virtual vehicle flying on a
given real vehicle may provide interesting flight dynam-
ics when migrating to other, possibly distant vehicles at
the speed of their communication links. Moreover, the
involved real vehicles may have entirely different flight
and sensor capabilities and even be operated by different
providers. In the event of an imminent real vehicle crash
(as in physical crash), virtual vehicles may “evacuate”
to nearby real vehicles in order to save their potentially
valuable information payload.

Traditional virtualization technology typically imple-
ments machine or process models that are only determin-
istic in terms of functional behavior. Repeated execu-
tion of sequential programs in these models is guaranteed
to compute the same output for the same input. How-
ever, other non-functional properties such as execution
time and energy consumption may vary and may even
be unbounded (mostly due to complex resource shar-
ing). Virtualization technology for CPCC must there-
fore include solutions that provide deterministic behav-
ior beyond computing mathematical functions. Deter-
minism with respect to non-functional properties such as
time, space, and energy is key to compositionality and
thus scalability of the involved engineering methods and
tools [4].

Traditional data centers utilize virtualization technol-
ogy and, in particular, virtual machine migration mostly
for load balancing (LAN migration [3]) but also for ac-
commodating increasing communication demand such
as high throughput and low latency requirements (WAN
migration [17, 18]). With CPCC the actual number and



location of server machines becomes even more rele-
vant since sensor location and live communication are
key factors. Moreover, servers also move in space now,
not just virtual machines. Already challenging problems
related to resource allocation, scheduling, and manage-
ment become even more difficult in this context.

Next, we discuss our plans for developing CPCC on
three levels of abstraction: (1) virtual vehicles as the key
CPCC infrastructure, (2) virtual information aggregators
forming virtual networks of virtual vehicles that provide
information-acquisition-as-a-service for CPCC, and (3) a
mission language for scalable CPCC programming.

CPCC Infrastructure. A virtual vehicle is an abstrac-
tion of a real vehicle. It provides resources for compu-
tation and communication, such as a scripting engine for
our mission language and a wireless link, as well as ac-
cess to sensors and actuators. In order to fly a virtual
vehicle, it must be instantiated by providing a program
implemented in our mission language that determines its
functional and timing behavior. For example, the pro-
gram may specify not only what to do but also how long
a particular activity is supposed to take. During flight,
the vehicle maintains its program state as well as its con-
trol state such as its geographical location and speed. In-
terestingly, similar to virtual machines in data centers,
it may not be necessary for virtual vehicles to know on
which real vehicle they are currently flying, or whether it
is actually sharing a real vehicle with other virtual vehi-
cles.

The real vehicle can be controlled through the privi-
leged domain similarly to other hardware such as CPUs
and wireless cards. Again, I/O scheduling becomes nec-
essary as several virtual vehicles may co-exist on any
real vehicle. However, there are many CPCC applica-
tions, such as search-and-rescue [13, 16] or environmen-
tal monitoring [15], where it is desired to give the virtual
vehicles some authority to change or modify the trajec-
tory of a real vehicle. The correct methods and levels
of abstraction at which to do this is an ongoing area of
research.

One option is to allow scheduled control of individ-
ual actuators by virtual vehicles through the privileged
domain. Each actuator device would have a driver that
the privileged domain exposes to virtual vehicles through
virtual devices. This low-level control approach be-
comes complicated as certain sets of actuators must be
controlled consistently to retain vehicle stability. For
instance, allowing virtual vehicle A to control altitude
while virtual vehicle B controls attitude may result in un-
desired behaviors or even instability and a crash of the
real vehicle.

Alternatively, a virtual vehicle could control the real
vehicle through a set of high-level control behaviors pro-

vided as services by the real vehicle [10]. The privileged
domain would connect the real vehicle’s services to dif-
ferent virtual devices that represent the different control
services. These high-level control services (e.g. track
line, go to point) would have beneath their invocation a
robust and stable low-level real-time controller that the
real vehicle’s operator has developed, tested, and vali-
dated. This allows the real vehicle’s operator to guar-
antee their vehicle’s operation and protect their invest-
ment from poorly written virtual vehicles, while at the
same time allowing more abstract and more compact vir-
tual vehicles to be written, which would ease both de-
velopment and communication. A vehicle scheduler in
the privileged domain would then schedule the access
of the virtual vehicles to the real vehicle. This could
be implemented such that only one virtual vehicle is in
control of the entire real vehicle at any one segment of
time, or it could attempt to execute a combination of non-
conflicting virtual vehicle behaviors simultaneously, e.g.
fly to point A and search area C, which contains point A.

CPCC Service. A network of virtual vehicles may be
used for collaborative missions to gather sensor data. A
virtual vehicle network (VVN) may specify the collabo-
rating virtual vehicles and their requirements on the com-
munication performance in the network. The specified
communication performance, for instance, may limit the
freedom on which real vehicles the virtual vehicles of the
VVN are deployed and migrated since some of the real
vehicles might be too far apart to communicate at the
specified rate. Alternatively, a VVN may also specify
geographical proximity directly as requirement if com-
munication performance is not an issue, e.g. for forma-
tion flight [7].

A VVN is created by instantiating the participating
virtual vehicles on real vehicles based on their perfor-
mance as well as initial geographical location and flight
plan requirements. A virtual vehicle network monitor
(VVNM) running on a central server, similar to a name
server, will be in charge of tracking real vehicles by
maintaining a database of their CPCC managers’ state
(resources, geographical location, flight plan, and iden-
tifiers of the hosted virtual vehicles). The database is
only updated by real vehicles through their CPCC man-
ager, which report their state back to the network moni-
tor across a possibly low-bandwidth but long-range com-
munication link. All other communication, in particular
virtual vehicle communication and migration traffic, may
be done across possibly independent, high-bandwidth yet
short-range links. For this purpose, non-trivial ad-hoc
networking protocols and a distributed VVNM may in-
crease performance and reliability, but may cost addi-
tional communication and computation due to the re-
quired synchronization of information.



In order to find a suitable real vehicle to migrate to,
a virtual vehicle may ask the VVNM for migration tar-
gets based on available resources, location, flight plan,
and other virtual vehicles (but not real vehicles). For
example, a virtual vehicle may migrate because of the
availability of certain sensors in a specific location, or to
follow another virtual vehicle. This is where the distinc-
tion of virtual and real vehicles, that is, service and plat-
form, pays off. Virtual vehicles work with more abstract
and thus more robust notions of resources and control
state while real vehicles may improve robustness inde-
pendently of the virtual vehicles’ behavior.

CPCC Programming. A mission language is a coor-
dination language for describing the information acqui-
sition behavior of mobile sensors. A mission is a dis-
tributed program written in a mission language. The exe-
cution of a mission is successful if the desired sensor data
is made available as data streams with specified transmis-
sion rates in a central location such as a server. For ex-
ample, a search-and-rescue mission may involve multi-
ple mobile sensors streaming high-resolution still images
along with temperature data from a range of different lo-
cations to a central server. The key challenge in the de-
sign of a mission language is to capture the creation, up-
date, and termination of missions for mobile sensors. We
have already obtained promising results with the design
of a mission language called the Collaborative Sensing
Language (CSL) [10]. We are developing CSL by fur-
ther adapting its semantics to a service-oriented notion
of virtual vehicles and networks described above. Here,
the emphasis is on identifying the correct abstractions for
dealing with concurrent and changing sets of real and vir-
tual vehicles and networks. CSL, in its existing form, is
based on the notion of tasks and the assignment of tasks
to vehicles [8]. Virtual vehicles are essentially a richer,
fully programmable and service-oriented form of tasks.
They will allow ’arbitrary tasks’ to be generated from
the provided services of the real vehicles. An extension
of CSL will incorporate the enriched semantics and offer
information-acquisition-as-a-service rather than the ex-
isting platform-oriented view.

5 Summary

We proposed information-acquisition-as-a-service of
mobile sensor networks for cyber-physical cloud
computing (CPCC), and presented a fleet of high-
performance model helicopters as possible target plat-
form and virtualization technology enhanced for CPCC.
We also discussed potential capabilities and design chal-
lenges of software abstractions and systems infrastruc-
ture for CPCC information acquisition missions.
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