
Giotto:
A Time-triggered Language for

Embedded Programming�

Thomas A. Henzinger Benjamin Horowitz Christoph Meyer Kirsch

University of California, Berkeley
{tah,bhorowit,cm}@eecs.berkeley.edu

Abstract. Giotto provides an abstract programmer’s model for the imple-
mentation of embedded control systems with hard real-time constraints. A
typical control application consists of periodic software tasks together with a
mode switching logic for enabling and disabling tasks. Giotto specifies time-
triggered sensor readings, task invocations, and mode switches independent
of any implementation platform. Giotto can be annotated with platform con-
straints such as task-to-host mappings, and task and communication sched-
ules. The annotations are directives for the Giotto compiler, but they do not
alter the functionality and timing of a Giotto program. By separating the
platform-independent from the platform-dependent concerns, Giotto enables
a great deal of flexibility in choosing control platforms as well as a great deal
of automation in the validation and synthesis of control software. The time-
triggered nature of Giotto achieves timing predictability, which makes Giotto
particularly suitable for safety-critical applications.

1 Introduction

Giotto provides a programming abstraction for hard real-time applications which
exhibit time-periodic and multi-modal behavior, as in automotive, aerospace,
and manufacturing control. Traditional control design happens at a mathemati-
cal level of abstraction, with the control engineer manipulating differential equa-
tions and mode switching logic using tools such as Matlab or MatrixX. Typical
activities of the control engineer include modeling of the plant behavior and
disturbances, deriving and optimizing control laws, and validating functionality
and performance of the model through analysis and simulation. If the validated
design is to be implemented in software, it is then handed off to a software engi-
neer who writes code for a particular platform (we use the word “platform” to
stand for a hardware configuration together with a real-time operating system).
Typical activities of the software engineer include decomposing the necessary
computational activities into periodic tasks, assigning tasks to CPUs and set-
ting task priorities to meet the desired hard real-time constraints under the
given scheduling mechanism and hardware performance, and achieving a degree
of fault tolerance through replication and error correction.
� This research was supported in part by the DARPA SEC grant F33615-C-98-3614
and by the MARCO GSRC grant 98-DT-660.



Control design
– plant modeling
– control law derivation

⇓

Giotto program
– functionality and timing
– periodic software tasks and mode switches

⇓

Code for real-time platform
– hardware mapping
– computation and communication scheduling

Fig. 1. Real-time control system design with Giotto

Giotto provides an intermediate level of abstraction, which permits the soft-
ware engineer to communicate more effectively with the control engineer. Specifi-
cally, Giotto defines a software architecture of the implementation which specifies
its functionality and timing. Functionality and timing are sufficient and neces-
sary for ensuring that the implementation is consistent with the mathematical
model of the design. On the other hand, Giotto abstracts away from the realiza-
tion of the software architecture on a specific platform, and frees the software
engineer from worrying about issues such as hardware performance and schedul-
ing mechanism while communicating with the control engineer. After writing
a Giotto program, the second task of the software engineer remains of course
to implement the program on the given platform. However, in Giotto, this sec-
ond task, which requires no interaction with the control engineer, is effectively
decoupled from the first, and can in large parts be automated by increasingly
powerful compilers. The Giotto design flow is shown in Figure 1. The separation
of logical correctness concerns (functionality and timing) from physical realiza-
tion concerns (mapping and scheduling) has the added benefit that a Giotto
program is entirely platform independent and can be compiled on different, even
heterogeneous, platforms.

Motivating example. Giotto is designed specifically for embedded control ap-
plications. Consider a typical fly-by-wire flight control system [LRR92,Col99],
which consists of three types of interconnected components (see Figure 2): sen-
sors, CPUs for computing control laws, and actuators. The sensors include an
inertial navigation unit (INU), for measuring linear and angular acceleration;
a global positioning system (GPS), for measuring position; an air data mea-
surement system, for measuring such quantities as air pressure; and the pilot’s
controls, such as the pilot’s stick. Each sensor has its own timing properties: the
INU, for example, outputs its measurement 1,000 times per second, whereas the
pilot’s stick outputs its measurement only 500 times per second. Three separate
control laws —for pitch, lateral, and throttle control— need to be computed.



accelerometers
gyros and

air data sensor

GPS

tailplane/
elevator

500 Hz

1,000 Hz

pilot stick

sensors

flight control system

pilot stick

air data

GPS

INU

1,000 Hz

20 Hz

pitch control

lateral control

throttle control

500 Hz

250 Hz

250 Hz

control laws

1,000 Hz

1,000 Hz

1,000 Hz

1,000 Hz

sensing actuating

rudder

aileron 2

aileron 1

elevator
tailplane/

rudder

aileron 2

aileron 1

actuators

airplane dynamics

Fig. 2. A fly-by-wire flight control system

The system has four actuators: two for the ailerons, one for the tailplane, and
one for the rudder. The timing requirements on the control laws and actuator
tasks are also shown in Figure 2. The reader may wonder why the actuator tasks
need to run more frequently than the control laws. The reason is that the ac-
tuator tasks are responsible for the stabilization of quickly moving mechanical
hardware, and thus need to be an order of magnitude more responsive than the
control laws.

We have just described one operational mode of the fly-by-wire flight control
system, namely the cruise mode. There are four additional modes: the takeoff,
landing, autopilot, and degraded modes. In each of these modes, additional sens-
ing tasks, control laws, and actuating tasks need to be executed, as well as some
of the cruise tasks removed. For example, in the takeoff mode, the landing gear
must be retracted. In the autopilot mode, the control system takes inputs from
a supervisory flight planner, instead of from the pilot’s stick. In the degraded
mode, some of the sensors or actuators have suffered damage; the control sys-
tem compensates by not allowing maneuvers which are as aggressive as those
permitted in the cruise mode.

The Giotto abstraction. Giotto provides a programmer’s abstraction for spec-
ifying control systems that are structured like the previous fly-by-wire example.
The basic functional unit in Giotto is the task, which is a periodically executed
piece of, say, C code. Several concurrent tasks make up a mode. Tasks can be
added or removed by switching from one mode to another. Tasks communicate



with each other, as well as with sensors and actuators, by so-called drivers,
which is code that transports and converts values between ports. While a task
represents scheduled computation on the application level and consumes logical
time, a driver is synchronous, bounded code, which is executed logically instan-
taneously on the system level (since drivers cannot depend on each other, no
issues of fixed-point semantics arise). The periodic invocation of tasks, the read-
ing of sensor values, the writing of actuator values, and the mode switching are
all triggered by real time. For example, one task t1 may be invoked every 2 ms
and read a sensor value upon each invocation, another task t2 may be invoked
every 3 ms and write an actuator value upon each completion, and a mode switch
may be contemplated every 6 ms. This time-triggered semantics enables efficient
reasoning about the timing behavior of a Giotto program, in particular, whether
it conforms to the timing requirements of the mathematical (e.g., Matlab) model
of the control design.

A Giotto program does not specify where, how, and when tasks are scheduled.
The Giotto program with tasks t1 and t2 can be compiled on platforms that have
a single CPU (by time sharing the two tasks) as well as on platforms with two
CPUs (by parallelism); it can be compiled on platforms with preemptive priority
scheduling (such as most RTOSs) as well as on truly time-triggered platforms
(such as TTA [Kop97]). All the Giotto compiler needs to ensure is that the
logical semantics of Giotto —functionality and timing— is preserved. A Giotto
program can be annotated with platform constraints, which may be understood
as directives to the compiler in order to make its job easier. A constraint may
map a particular task to a particular CPU, it may schedule a particular task in
a particular time interval, or it may schedule a particular communication event
between tasks in a particular time slot. These annotations, however, in no way
modify the functionality and timing of a Giotto program; they simply aid the
compiler in realizing the logical semantics of the program.

Outline of the paper. We first give an informal introduction to Giotto in
Section 2, followed by a formal definition of the language in Section 3. In Sec-
tion 4, we briefly describe annotated Giotto, a refinement of Giotto for guiding
distributed code generation. In Section 5, we relate Giotto to the literature and
mention ongoing application work.

2 Informal Description of Giotto

Ports. In Giotto all data is communicated through ports. A port represents a
typed variable with a unique location in a globally shared name space. We use
the global name space for ports as a virtual concept to simplify the definition
of Giotto. An implementation of Giotto is not required to be a shared memory
system. Every port is persistent in the sense that the port keeps its value over
time, until it is updated. There are mutually disjoint sets of sensor ports, actuator
ports, and task ports in a Giotto program. The sensor ports are updated by the
environment; all other ports are updated by the Giotto program. The task ports
are used to communicate data between concurrent tasks and from one mode to



In t Out

Privf

Fig. 3. A task t

the next. In any given mode, a task port may or may not be used; the used ports
are called mode ports. Every mode port is explicitly assigned a value every time
the mode is entered.

Tasks. A typical Giotto task t is shown in Figure 3. The task t has a set In
of two input ports and a set Out of two output ports, all of which are depicted
by bullets. The input ports of t are distinct from all other ports in the Giotto
program. The output ports of t may be shared with other tasks as long as they
are not invoked in the same mode. In general, a task may have an arbitrary
number of input and output ports. A task may also maintain a state, which
can be viewed as a set of private ports whose values are inaccessible outside the
task. The state of t is denoted by Priv. Finally, the task has a function f from its
input ports and its current state to its output ports and its next state. The task
function f is implemented by a sequential program, and can be written in an
arbitrary programming language. It is important to note that the execution of f
has no internal synchronization points and cannot be terminated prematurely;
in Giotto all synchronization is specified explicitly outside of tasks. For a given
platform, the Giotto compiler will need to know the worst-case execution time
of f on each CPU.

Tasks invocations. Giotto tasks are periodic tasks: they are invoked at regu-
larly spaced points in time. An invocation of a task t is shown in Figure 4. If
the task t is invoked in the mode m, then the output ports of t are included in
the mode ports of m, along with the output ports of some other tasks. The task
invocation has a frequency ωtask given by a non-zero natural number; the real-
time frequency will be determined later by dividing the real-time period of the
current mode by ωtask . The task invocation specifies a driver d which provides
values for the input ports In. The first input port is loaded with the value of some
other port p, and the second input port is loaded with the constant value κ. In
general, a driver is a function that converts the values of sensor ports and mode
ports of the current mode to values for the input ports, or loads the input ports
with constants. Drivers can be guarded: the guard of a driver is a predicate on
sensor and mode ports. The invoked task is executed only if the driver guard
evaluates to true; otherwise, the task execution is skipped.

The time line for an invocation of the task t is shown in Figure 5. The
invocation starts at some time τstart with a communication phase in which the
driver guard is evaluated and the input port values are loaded. The Giotto
semantics prescribes that the communication phase —i.e., the execution of the



ωtask

Priv

td In Out
κ

p
f

Fig. 4. An invocation of task t

driver d— takes zero time. The synchronous communication phase is followed
by a scheduled computation phase. The Giotto semantics prescribes that at
time τstop the state and output ports of t are updated to the (deterministic)
result of f applied to the state and input ports of t at time τstart . The length of the
interval between τstart and τstop is determined by the frequency ωtask . The Giotto
logical abstraction does not specify when, where, and how the computation of f
is physically performed between τstart and τstop . However, the time at which
the task output ports are updated is determined, and therefore, for any given
real-time trace of sensor values, all values that are communicated between tasks
are determined. Instantaneous communication and time-deterministic as well as
value-deterministic computation are the three essential ingredients of the Giotto
logical abstraction. A compiler must be faithful to this abstraction; for example,
task inputs may be loaded after time τstart , and the execution of f may be
preempted by other tasks, as long as at time τstop the values of the task output
ports are those specified by the Giotto semantics.

Communication
Instantaneous Scheduled

Computation

t
κ

p

=

OutInd

τ ′
startτstart τstop

ωtask

Privf

Fig. 5. The time line for an invocation of task t

Modes. A Giotto program consists of a set of modes, each of which repeats the
invocation of a fixed set of tasks. The Giotto program is in one mode at a time.
A mode may contain mode switches, which specify transitions from the mode to
other modes. A mode switch can remove some tasks, and add others. Formally,
a mode consists of a period, a set of mode ports, a set of task invocations, a set
of actuator updates, and a set of mode switches. Figure 6 shows a mode m that
contains invocations of two tasks, t1 and t2. The period π of m is 10 ms; that



t2

t1

f1

f2

Priv1

ω1 = 1

ω2 = 2

Priv2

π = 10ms

d2

i1

i2

i4

i5

i3

d1

o1 o2 o3 o5

ωact = 1
d3

o4

s

a

Fig. 6. A mode m

is, while the program is in mode m, its execution repeats the same pattern of
task invocations every 10 ms. The task t1 has two input ports, i1 and i2, two
output ports, o2 and o3, a state Priv1, and a function f1. The task t2 is defined
in a similar way. Moreover, there is one sensor port, s, one actuator port, a, and
a mode port, o1, which is not updated by any task in mode m. The value of
o1 stays constant while the program is in mode m; it can be used to transfer a
value from a previous mode to mode m. The invocation of t1 in mode m has the
frequency ω1 = 1, which means that t1 is invoked once every 10 ms while the
program is in mode m. The invocation of t1 in mode m has the driver d1, which
copies the value of the mode port o1 into i1 and the value of the output port o4

of t2 into i2. The invocation of t2 has the frequency ω2 = 2, which means that t2
is invoked once every 5 ms, as long as the program is in mode m. The invocation
of t2 has the driver d2, which connects the output port o3 of t1 to i3, the sensor
port s to i4, and o5 to i5. Note that the mode ports of m, which include all task
output ports used in m, are visible outside the scope of m as indicated by the
dashed lines. A mode switch may copy the values at these ports to mode ports
of a successor mode. The mode m has one actuator update, which is a driver d3

that copies the value of the task output port o2 to the actuator port a with the
actuator frequency ωact = 1; that is, once every 10 ms.

Figure 7 shows the exact timing of a single round of mode m, which takes
10 ms. As long as the program is in mode m, one such round follows another.
The round begins at the time instant τ0 with an instantaneous communication
phase for the invocations of tasks t1 and t2, during which the two drivers d1

and d2 are executed. The Giotto semantics does not specify how the compu-
tations of the task functions f1 and f2 are physically scheduled; they could be
scheduled in any order on a single CPU, or in parallel on two CPUs. Logically,



t2 t2

t1

f1

f2 f2Priv2

ω2 = 2 ω2 = 2

Priv2

ω1 = 1

Priv1

o1o1

τ0 = τ ′
0 = τ ′

1 τ2 =τ1 τ ′
2

π = 10ms

aa

ss s

Fig. 7. The time line for a round of mode m

after 5 ms, at time instant τ1, the results of the scheduled computation of f2
are written to the output ports of t2. The second invocation of t2 begins with
another execution of driver d2, still at time τ1, which samples the most recent
value from the sensor port s. However, the two invocations of t2 start with the
same value at input port i3, because the value stored in o3 is not updated until
time instant τ2 = 10 ms, no matter if physically f1 finishes its computation be-
fore τ1 or not. Logically, the output values of the invocation of t1 must not be
available before τ2. Any physical realization that schedules the invocation of t1
before the first invocation of t2 must therefore keep available two sets of values
for the output ports of t1. The round is finished after writing the output values
of the invocation of t1 and of the second invocation of t2 to their output ports at
time τ2, and after updating the actuator port a at the same time. The beginning
of the next round shows that the input port i3 is loaded with the new value
produced by t1.

Mode switches. In order to give an example of mode switching we introduce
a second mode m′, shown in Figure 8. The main difference between m and m′

is that m′ replaces the task t2 by a new task t3, which has a frequency ω3 of 4
in m′. Note that t3 has a new output port, o6, but also uses the same output
port o4 as t2. Moreover, t3 has a new driver d4, which connects the output port o3

of t1 to the input port i6, the sensor port s to i7, and o6 to i8. The task t1 in
mode m′ has the same frequency and uses the same driver as in mode m. The
period of m′, which determines the length of each round, is again 10 ms. This
means that in mode m′, the task t1 is invoked once per round, every 10 ms; the
task t3 is invoked 4 times per round, every 2.5 ms; and the actuator a is updated
once per round, every 10 ms.



t3

t1

f1

f3

Priv1

ω1 = 1

ω3 = 4

Priv3

π′ = 10ms

d4

i1

i2

i7

i8

i6

d1

o1 o2 o3 o4 o6

d3

ωact = 1

s

a

Fig. 8. A mode m′

A mode switch describes the transition from one mode to another mode. For
this purpose, a mode switch specifies a switch frequency, a target mode, and a
driver. Figure 9 shows a mode switch η from mode m to target mode m′ with
the switch frequency ωswitch = 2 and the driver d5. The guard of the driver is
called exit condition, as it determines whether or not the switch occurs. The
exit condition is evaluated periodically, as specified by the switch frequency. As
usual, the switch frequency of 2 means that the exit condition of d5 is evaluated
every 5 ms, in the middle and at the end of each round of mode m. The exit
condition is a boolean-valued condition on sensor ports and the mode ports of m.
If the exit condition evaluates to true, then a switch to the target mode m′ is
performed. The mode switch happens by executing the driver d5, which provides
values for all mode ports of m′; specifically, d5 loads the constant κ into o1, the
value of o5 into o6, and ensures that o2, o3, and o4 keep their values (this is
omitted from Figure 9 to avoid clutter). The explicit mention of the persistence
of o2, o3, and o4 is helpful, because like tasks, with a mode switch these ports
may physically migrate from one CPU to another CPU, and thus may need to
be copied. Like all drivers, mode switches are logically performed in zero time.

Figure 10 shows the time line for the mode switch η performed at time τ1.
The program is in mode m until τ1 and then enters mode m′. Note that until
time τ1 the time line corresponds to the time line shown in Figure 7. At time τ1,
first the invocation of task t2 is completed, then the mode driver d5 is executed.
This finishes the mode switch. All subsequent actions follow the semantics of
the target mode m′ independently of whether the program entered m′ just now
through a mode switch, at 5 ms into a round, or whether it started the current
round already in mode m′. Specifically, the driver for the invocation of task t3 is
executed, still at time τ1. Note that the output port o6 of t3 has just received the



m′

ωswitch = 2

π′π

κ
d5

m

o1 o2 o3 o5o4 o1 o2 o3 o6o4

Fig. 9. A mode switch η from mode m to mode m′

value of the output port o5 from task t2 by the mode driver d5. At time τ2, task t3
is invoked a second time, and at time τ3, the round is finished, because this is
the earliest time after the mode switch at which a complete new round of mode
m′ can begin. Now the input port i1 of task t1 is loaded with the constant κ from
the mode port o1. In this way, task t1 can detect that a mode switch occurred.

For a mode switch to be legal, the target mode is constrained so that all task
invocations that may be logically interrupted by a mode switch can be logically
continued in the target mode. In our example, the mode switch η can occur at
5 ms into a round of mode m, while the task t1 is logically running. Hence the
target mode m′ must also invoke t1. Moreover, since the period of m′ is 10 ms, as
for mode m, the frequency of t1 in m′ must be identical to the frequency of t1 in
m, namely, 1. If, alternatively, the period of m′ were 20 ms, then the frequency
of t1 in m′ would have to be 2.

3 Formal Definition of Giotto

3.1 Syntax

Rather than specifying a concrete syntax for Giotto, we formally define the com-
ponents of a Giotto program in a more abstract way. However, Giotto programs
can also be written in a C like concrete syntax [HHK01]. A Giotto program
consists of the following components:

1. A set of port declarations. A port declaration (p,Type, init) consists of a port
name p, a type Type, and an initial value init ∈ Type. We require that all
port names are uniquely declared; that is, if (p, ·, ·) and (p′, ·, ·) are distinct
port declarations, then p �= p′. The set Ports of declared port names is
partitioned into a set SensePorts of sensor ports, a set ActPorts of actuator
ports, a set InPorts of task input ports, a set OutPorts of task output ports,
and a set PrivPorts of task private ports. Given a port p ∈ Ports, we use
notation such as Type[p] for the type of p, and init[p] for the initial value
of p. A valuation for a set P ⊆ Ports of ports is a function that maps each
port p ∈ P to a value in Type[p]. We write Vals[P] for the set of valuations
for P.



t3 t3t2

ω2 = 2 ω3 = 4ω3 = 4

Priv3f3 f3 Priv3Priv2f2

κ

f1

t1

ω1 = 1

Priv1

o1

τ ′
0 τ1 τ ′

1 τ3τ ′
2τ2 τ ′

3τ0

π = 10ms

o3

o1

o6

s s s

a

s

a

Fig. 10. The time line for the mode switch η at time τ1

2. A set of task declarations. A task declaration (t, In,Out,Priv, f) consists of
a task name t, a set In ⊆ InPorts of input ports, a set Out ⊆ OutPorts of
output ports, a set Priv ⊆ PrivPorts of private ports, and a task function f:
Vals[In∪Priv] → Vals[Out∪Priv]. If (t, In,Out,Priv, ·) and (t′, In′,Out′,Priv′, ·)
are distinct task declarations, then we require that t �= t′ and In ∩ In′ =
Priv ∩ Priv′ = ∅. Tasks may share output ports as long as the tasks are not
invoked in the same mode; see below. We write Tasks for the set of declared
task names.

3. A set of driver declarations. A driver declaration (d,Src, g,Dst, h) consists
of a driver name d, a set Src ⊆ Ports of source ports, a driver guard g:
Vals[Src] → B, a set Dst ⊆ Ports of destination ports, and a driver function h:
Vals[Src] → Vals[Dst]. When the driver d is called, the guard g is evaluated,
and if the result is true, then the function h is executed. We require that
all driver names are uniquely declared, and we write Drivers for the set of
declared driver names.

4. A set of mode declarations. A mode declaration (m, π, ModePorts, Invokes,
Updates, Switches) consists of a mode name m, a mode period π ∈ Q, a set
ModePorts ⊆ OutPorts of mode ports, a set Invokes of task invocations, a
set Updates of actuator updates, and a set Switches of mode switches. We
require that all mode names are uniquely declared, and we write Modes for
the set of declared mode names.
(a) Each task invocation (ωtask , t, d) ∈ Invokes[m] consists of a task frequency

ωtask ∈ N, a task t ∈ Tasks such that Out[t] ⊆ ModePorts[m], and a task
driver d ∈ Drivers such that Src[d] ⊆ ModePorts[m] ∪ SensePorts and
Dst[d] = In[t]. The invoked task t only updates mode ports; the task



driver d reads only mode and sensor ports, and updates the input ports
of t. If (·, t, ·) and (·, t′, ·) are distinct task invocations in Invokes[m],
then we require that t �= t′ and Out[t]∩Out[t′] = ∅; that is, tasks sharing
output ports must not be invoked in the same mode.

(b) Each actuator update (ωact , d) ∈ Updates[m] consists of an actuator
frequency ωact ∈ N, and an actuator driver d ∈ Drivers such that Src[d] ⊆
ModePorts[m] and Dst[d] ⊆ ActPorts. The actuator driver d reads only
mode ports, no sensor ports, and updates only actuator ports. If (·, d)
and (·, d′) are distinct actuator updates in Updates[m], then we require
that Dst[d] ∩ Dst[d′] = ∅; that is, in each mode, an actuator can be
updated by at most one driver.

(c) Each mode switch (ωswitch ,m′, d) ∈ Switches[m] consists of a mode switch
frequency ωswitch ∈ N, a target mode m′ ∈ Modes, and a mode driver
d ∈ Drivers such that Src[d] ⊆ ModePorts[m] ∪ SensePorts and Dst[d] =
ModePorts[m′]. The mode driver d reads only mode and sensor ports,
and updates the mode ports of the target mode m′. If (·, ·, d) and (·, ·, d′)
are distinct mode switches in Switches[m], then we require that for all
valuations v ∈ Vals[Ports] either g[d](v) = false or g[d′](v) = false. It
follows that all mode switches are deterministic.

5. A start mode start ∈ Modes.

The program is well-timed if for all modes m ∈ Modes, all task invocations
(ωtask , t, ·) ∈ Invokes[m], and all mode switches (ωswitch ,m′, ·) ∈ Switches[m], if
ωtask/ωswitch �∈ N, then there exists a task invocation (ω′

task , t, ·) ∈ Invokes[m′]
with π[m]/ωtask = π[m′]/ω′

task . The well-timedness condition ensures that mode
switches do not terminate tasks: if a mode switch occurs when a task may not
be completed, then the same task must be present also in the target mode.

3.2 Operational semantics

The mode frequencies of a mode m ∈ Modes include (i) the task frequen-
cies ωtask for all task invocations (ωtask , ·, ·) ∈ Invokes[m], (ii) the actuator fre-
quencies ωact for all actuator updates (ωact , ·) ∈ Updates[m], and (iii) the mode
switch frequencies ωswitch for all mode switches (ωswitch , ·, ·) ∈ Switches[m]. The
least common multiple of the mode frequencies of m is called the number of
units of the mode m, and is denoted ωmax [m]. A program configuration C =
(τ,m, u, v, σactive) consists of a time stamp τ ∈ Q, a mode m ∈ Modes, an inte-
ger u ∈ {0, . . . , ωmax [m] − 1} called the unit counter, a valuation v ∈ Vals[Ports]
for all ports, and a set σactive ⊆ Tasks of active tasks. The set σactive ⊆ Tasks
contains all tasks that are logically running, whether or not they are physically
running by expending CPU time.

A program configuration is updated essentially as follows: first, some tasks
are completed (i.e., removed from the active set); second, some actuators are
updated; third, a mode switch may occur; fourth, some new tasks are activated.
We therefore need the following definitions:



– A task invocation (ωtask , t, ·) ∈ Invokes[m] is completed at configuration C if
t ∈ σactive and u · ωtask/ωmax [m] ∈ N.

– An actuator update (ωact , d) ∈ Updates[m] is enabled at configuration C if
u · ωact/ωmax [m] ∈ N and g[d](v) = true.

– A mode switch (ωswitch , ·, d) ∈ Switches[m] is enabled at configuration C if
u · ωswitch/ωmax [m] ∈ N and g[d](v) = true.

– A task invocation (ωtask , ·, d) ∈ Invokes[m] is enabled at configuration C if
u · ωtask/ωmax [m] ∈ N and g[d](v) = true.

For a program configuration C and a set P ⊆ Ports, we write C[P] for the
valuation in Vals[P] that agrees with C on the values of all ports in P. The pro-
gram configuration Csucc is a successor configuration of C = (τ,m, u, v, σactive)
if Csucc results from C by the following nine steps. These are the steps a Giotto
program performs whenever it is invoked, initially at time τ = 0 with u = 0 and
σactive = ∅:
1. [Task output and private ports] Let σcompleted be the set of tasks t such

that a task invocation of the form (·, t, ·) ∈ Invokes[m] is completed at con-
figuration C. Consider a port p ∈ OutPorts∪ PrivPorts. If p ∈ Out[t]∪ Priv[t]
for some task t ∈ σcompleted , then define vtask(p) = f[t](C[In[t] ∪ Priv[t]])(p);
otherwise, define vtask(p) = v(p). This gives the new values of all task output
and private ports. Note that ports are persistent in the sense that they keep
their values unless they are modified. Let Ctask be the configuration that
agrees with vtask on the values of OutPorts∪PrivPorts, and otherwise agrees
with C.

2. [Actuator ports] Consider a port p ∈ ActPorts. If p ∈ Dst[d] for some actu-
ator update (·, d) ∈ Updates[m] that is enabled at configuration Ctask, then
define vact(p) = h[d](Ctask[Src[d]])(p); otherwise, define vact(p) = v(p). This
gives the new values of all actuator ports. Let Cact be the configuration that
agrees with vact on the values of ActPorts, and otherwise agrees with Ctask.

3. [Sensor ports] Consider a port p ∈ SensePorts. Let vsense(p) be any value
in Type[p]; that is, sensor ports change nondeterministically. This is not done
by the Giotto program, but by the environment. All other parts of a con-
figuration are updated deterministically, by the Giotto program. Let Csense

be the configuration that agrees with vsense on the values of SensePorts, and
otherwise agrees with Cact.

4. [Target mode] If a mode switch (·,mtarget, ·) ∈ Switches[m] is enabled at
configuration Csense, then define m′ = mtarget; otherwise, define m′ = m.
This determines if there is a mode switch. Recall that at most one mode
switch can be enabled at any configuration. Let Ctarget be the configuration
with mode m′ that otherwise agrees with Csense.

5. [Mode ports] Consider a port p ∈ OutPorts. If p ∈ Dst[d] for some mode
switch (·, ·, d) ∈ Switches[m] that is enabled at configuration Csense, then
define vmode(p) = h[d](Ctarget[Src[d]])(p); otherwise, we define vmode(p) =
Ctarget[OutPorts](p). This gives the new values of all mode ports of the target
mode. Note that mode switching updates also the output ports of all tasks
t that are logically running. This does not affect the execution of t. When



t completes, its output ports are again updated, by t. Let Cmode be the
configuration that agrees with vmode on the values of OutPorts, and otherwise
agrees with Ctarget.

6. [Unit counter] If no mode switch in Switches[m] is enabled at config-
uration Csense, then define u′ = (u + 1) mod ωmax [m]. Otherwise, sup-
pose that a mode switch is enabled at configuration Csense to the target
mode m′. Let σrunning = σactive \ σcompleted . If σrunning = ∅, then define
u′ = 1. Otherwise, let ucomplete be the least common multiple of the set
{ωmax [m]/ωtask | (ωtask , t, ·) ∈ Invokes[m] for some t ∈ σrunning}; this is the
least number of units of m at which all running tasks complete simultane-
ously. Let uactual be the least multiple of ucomplete such that uactual ≥ u; this
is the earliest unit number after u at which all running tasks complete simul-
taneously. Let δ = (π[m]/ωmax [m]) · (uactual − u); this is the duration until
the next simultaneous completion point. Let utogo = (ωmax [m′]/π[m′]) · δ;
this is the number of units of the target mode m′ until the next simultaneous
completion point. Finally, define u′ = (1 − utogo) mod ωmax [m′]; this is the
unit number in mode m′ with utogo−1 units to go until the last simultaneous
completion point in a round of mode m′. Thus a mode switch always jumps
as close as possible to the end of a round of the target mode. Let Cunit be
the configuration with the unit counter u′ that otherwise agrees with Cmode.

7. [Task input ports] Consider a port p ∈ InPorts. If p ∈ Dst[d] for some
task invocation (·, ·, d) ∈ Invokes[m′] that is enabled at configuration Cunit,
then define vinput(p) = h[d](Cunit[Src[d]])(p); otherwise, define vinput(p) =
v(p). This gives the new values of all task input ports. Let Cinput be the
configuration that agrees with vinput on the values of InPorts, and otherwise
agrees with Cunit.

8. [Active tasks] Let σenabled be the set of tasks t such that a task invocation
of the form (·, t, ·) ∈ Invokes[m′] is enabled at configuration Cinput. The new
set of active tasks is σ′

active = (σactive \ σcompleted ) ∪ σenabled . Let Cactive be
the configuration with the set σ′

active of active tasks that otherwise agrees
with Cinput.

9. [Time stamp] The next time instant at which the Giotto program is invoked
is τ ′ = τ +π[m′]/ωmax [m′]. An implementation may use a timer interrupt set
to τ ′. Let Csucc be the configuration with the time stamp τ ′ that otherwise
agrees with Cactive.

An execution of a Giotto program is an infinite sequence C0, C1, C2, . . . of pro-
gram configurations Ci such that (i) C0 = (0, start, 0, v, ∅) with v(p) = init[p] for
all ports p ∈ Ports, and (ii) Ci+1 is a successor configuration of Ci for all i ≥ 0.
Note that there can be a mode switch at time 0, but there can never be two
mode switches in a row without any time passing.

4 Annotated Giotto

A Giotto program can in principle be run on a single sufficiently fast CPU,
independent of the number of modes and tasks. However, taking into account



performance constraints, the timing requirements of a program may or may not
be achievable on a single CPU. Additionally, a particular application may require
that tasks be located in specific places, e.g., close to the physical processes that
the tasks control, or on processors particularly suited for the operations of the
tasks. Lastly, in order to achieve fault tolerance, redundant, isolated CPUs may
be desirable. For these reasons, it may be necessary to distribute the work of
a Giotto program between multiple CPUs. In order to aid the compilation on
distributed, possibly heterogeneous, platforms, we allow the annotation of Giotto
programs with platform constraints. While pure Giotto is platform-independent,
annotated Giotto contains directives for mapping and scheduling a program on
a particular platform. An annotated Giotto program is a formal refinement of a
pure Giotto program in the sense that the logical semantics of the pure Giotto
program, as defined in Section 3.2, is preserved.

Annotated Giotto consists of multiple annotation levels. Conceptually, anno-
tations at the higher levels occur prior to annotations at the lower levels. This
structured approach has several advantages. First, it permits the incremental
refinement of a pure Giotto program into an executable image. Specifically, it
allows a modular architecture for the Giotto compiler, with separate modules
for mapping and scheduling. Second, it enables the generation of formal models
at all annotation levels. These models can be checked for consistency with the
annotations at the higher levels [VB93], in particular, for consistency with the
pure Giotto semantics.

Formally, a hardware configuration consists of a set of hosts and a set of
networks. A host is a CPU that can execute Giotto tasks. A network connects
two or more hosts and can transport values. The passing of a value from one
port to another (e.g., from a sensor port or a task output port to a task input
port) is called a connection. Annotated Giotto consists of the following three
levels of annotations:

Giotto-H (H for “hardware”) specifies a set of hosts, a set of networks, and
worst-case execution time information. The WCET information includes the
time needed to execute tasks on hosts, and the time needed to transfer
connections on networks.

Giotto-HM (M for “map”) specifies, in addition, an assignment of task invo-
cations to hosts, and an assignment of connections to networks. The same
task, when invoked in different modes, may be assigned to different hosts.
The mapping of a task invocation also determines the physical location of
the task output ports.

Giotto-HMS (S for “schedule”) specifies, in addition, scheduling information
for each host and network. For example, every task invocation may be as-
signed a priority, and every connection may be assigned a time slot.

An annotation is complete if it fully determines all assignments at its annotation
level, and is partial otherwise. In particular, a complete HM annotation maps
every task invocation to a host, and maps every connection to a network. The
information that a complete Giotto-HMS program needs to specify may vary
depending on the scheduling strategy of the RTOS on the hosts, and on the



communication protocols on the networks. For instance, a Giotto-HMS program
may specify priorities for task invocations, relative deadlines, or time slots, de-
pending on whether the underlying RTOS uses a priority-driven, deadline-driven,
or time-triggered scheduling strategy.

An annotated Giotto program may be overconstrained, in that it does not
permit any execution that is consistent with the annotations. An annotated
Giotto program is valid if (i) it is not overconstrained, and (ii) it is consistent
with the semantics of the underlying pure Giotto program. A Giotto compiler
takes a partially annotated program and can have one of three outcomes: either
it determines that the input program is not valid, or it produces a completely an-
notated, valid HMS refinement (which can then be turned into executable code),
or it gives up and asks for more annotations from the programmer. For answering
the validity question, a Giotto compiler can generate a formal model on each an-
notation level. For example, the constraints imposed by a Giotto-HM program
can be expressed as a graph of conditional process graphs [EKP+98], one for
each mode, which can be checked for validity. A completely annotated Giotto-
HMS program, provided it is not overconstrained, specifies a unique behavior
of all hosts and networks for every given real-time trace of sensor valuations.
These behaviors can be checked for conformance against the higher-level graph
model to guarantee Giotto semantics. Given a partially annotated Giotto pro-
gram, a compiler can generate the missing HMS-annotations based on holistic
schedulability analysis for distributed real-time systems that use time-triggered
communication protocols [TC94]. Such a compiler can be evaluated along sev-
eral dimensions: (i) how many annotations it requires to generate valid code,
and (ii) what the cost is of the generated code. For instance, a compiler can use
a cost function that minimizes jitter of the actuator updates.

5 Discussion

While many of the individual elements of Giotto are derived from the literature,
we believe that the study of strictly time-triggered task invocation together with
strictly time-triggered mode switching as a possible organizing principle for ab-
stract, platform-independent real-time programming is an important, novel step
towards separating reactivity, i.e., functionality and timing requirements, from
schedulability, i.e., scheduling guarantees on computation and communication.
Giotto decomposes the development process of embedded control software into
high-level real-time programming of reactivity and low-level real-time scheduling
of computation and communication. Programming in Giotto is real-time pro-
gramming in terms of the requirements of control designs, i.e., their reactivity,
not their schedulability.

The strict separation of reactivity from schedulability is achieved in Giotto
through time- and value-determinism: given a real-time trace of sensor valu-
ations, the corresponding real-time trace of actuator valuations produced by
a Giotto program is uniquely determined. The separation of reactivity from
schedulability has at least two important ramifications. First, reactive (i.e., func-



tional and timing) properties of a Giotto program may be subject to formal
verification against a mathematical model of the control design [Hen00]. Second,
Giotto is compatible with any scheduling algorithm, which therefore becomes a
parameter of the Giotto compiler. There are essentially two reasons why even the
best Giotto compiler may fail to generate an executable: (i) not enough platform
utilization, or (ii) not enough platform performance. Then, independently of the
program’s reactivity, utilization can be improved by a better scheduling module,
while performance can be improved by faster hardware or leaner software that
implements the actual functionality (i.e., the individual tasks) more efficiently.

5.1 Related work

Giotto is inspired by the time-triggered architecture (TTA) [Kop97], which first
realized the time-triggered paradigm for meeting hard real-time constraints in
safety-critical distributed settings. However, while the TTA encompasses a hard-
ware architecture and communication protocols, Giotto provides a hardware-
independent and protocol-independent abstract programmer’s model for time-
triggered applications. Giotto can be implemented on any platform that provides
sufficiently accurate clock primitives or supports a clock synchronization scheme.
The TTA is thus a natural platform for Giotto programs.

Giotto is similar to architecture description languages (ADLs) [Cle96]. Like
Giotto, ADLs shift the programmer’s perspective from small-grained features
such as lines of code to large-grained features such as tasks, modes, and inter-
component communication, and they allow the compilation of scheduling code
to connect tasks written in conventional programming languages. The design
methodology [KZF+91] for the MARS system, a predecessor of the TTA, dis-
tinguishes in a similar way programming-in-the-large and programming-in-the-
small. The inter-task communication semantics of Giotto is particularly similar
to the MetaH language [Ves97], which is designed for real-time, distributed avion-
ics applications. MetaH supports periodic real-time tasks, multi-modal control,
and distributed implementations. Giotto can be viewed as capturing the time-
triggered fragment of MetaH in an abstract and formal way. In particular, un-
like MetaH, Giotto specifies not only inter-task communication but also mode
switches in a time-triggered fashion, and it does not constrain the implementa-
tion to a particular scheduling scheme.

The goal of Giotto —to provide a platform-independent programming ab-
straction for real-time systems— is shared also by the synchronous reactive
programming languages [Hal93], such as Esterel [Ber00], Lustre [HCRP91], or
Signal [BGJ91]. While the synchronous reactive languages are designed around
zero-delay value propagation, Giotto is based on the formally weaker notion of
unit-delay value propagation, because in Giotto, scheduled computation (i.e.,
the execution of tasks) takes time, and synchronous computation (i.e., the exe-
cution of drivers) consists only of independent, non-interacting processes. This
decision shifts the focus and the level of abstraction in essential ways. In partic-
ular, for analysis and compilation, the burden for the well-definedness of values
is shifted from logical fixed-point considerations to physical constraints about



platform resources and performance (in Giotto all values are, logically, always
well-defined). Thus, Giotto can be seen as identifying a class of synchronous
reactive programs that support (i) typical real-time control applications as well
as (ii) efficient schedule synthesis and code generation.

5.2 Giotto implementations

We briefly review the existing Giotto implementations. The first implementa-
tion of Giotto was a simplified Giotto run-time system on a distributed platform
of Lego Mindstorm robots. The robots use infrared transceivers for communi-
cation. Then we implemented a full Giotto run-time system on a distributed
platform of Intel x86 robots running the real-time operating system VxWorks.
The robots use wireless Ethernet for communication. We also implemented a
Giotto program running on five robots, three Lego Mindstorms and two x86-
based robots, to demonstrate Giotto’s applicability for heterogeneous platforms.
The communication between the Mindstorms and the x86 robots is done by an
infrared-Ethernet bridge implemented on a PC. For an informal discussion of
this implementation, and embedded control systems development with Giotto in
general, we refer to the earlier report [HHK01].

In collaboration with Marco Sanvido and Walter Schaufelberger at ETH
Zürich, we have been working on a high-performance implementation of a Giotto
run-time system on a single-processor platform that controls an autonomously
flying model helicopter [San99]. The implementation language is a subset of
Oberon for embedded real-time systems [Wir99]. The existing helicopter con-
trol software has been reimplemented as a combination of a Giotto program
and Oberon code that implements the controller tasks. We have implemented
a Giotto compiler that generates, from such a Giotto program, the Giotto exe-
cutable as Oberon code. The executable uses the Giotto run-time system on the
helicopter to control the hard real-time scheduling of the navigation and con-
troller software. We have also been working on an implementation of a virtual
hard real-time scheduling machine [Kir01], as an alternative to the Giotto run-
time system on the helicopter. The Giotto compiler can generate machine code
of the virtual machine instead of Giotto executables in Oberon. This approach
has two advantages: (i) code generation is more flexible, because the virtual ma-
chine semantics is finer-grained than the API of the Giotto run-time system, and
(ii) increased portability of the generated code.

Acknowledgments. We thank Rupak Majumdar for implementing a prototype
Giotto compiler for Lego Mindstorms robots. We thank Dmitry Derevyanko and
Winthrop Williams for building the Intel x86 robots. We thank Edward Lee and
Xiaojun Liu for help with implementing Giotto as a “model of computation”
in Ptolemy II [DGH+99]. We thank Marco Sanvido for his suggestions on the
design of the Giotto drivers.



References

[Ber00] G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M. Tofte,
editors, Proof, Language and Interaction: Essays in Honour of Robin Milner, pp.
425–454. MIT Press, 2000.

[BGJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous program-
ming with events and relations: The Signal language and its semantics. Science of
Computer Programming, 16:103–149, 1991.

[Cle96] P. Clements. A survey of architecture description languages. In Proc. 8th Inter-
national Workshop on Software Specification and Design, pp. 16–25. IEEE Computer
Society Press, 1996.

[Col99] R.P.G. Collinson. Fly-by-wire flight control. Computing & Control Engineer-
ing, 10:141–152, 1999.

[DGH+99] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E.A. Lee, J. Liu, X. Liu, L. Mu-
liadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong. Ptolemy II: Het-
erogeneous Concurrent Modeling and Design in Java. Technical Report UCB/ERL-
M99/44, University of California, Berkeley, 1999.

[EKP+98] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Process scheduling
for performance estimation and synthesis of hardware/software systems. In Proc.
24th EUROMICRO Conference, pp. 168–175, 1998.

[Hal93] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer, 1993.
[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language Lustre. Proc. IEEE, 79:1305–1320, 1991.

[Hen00] T.A. Henzinger. Masaccio: A formal model for embedded components. In
Proc. First IFIP International Conference on Theoretical Computer Science, LNCS
1872, pp. 549–563. Springer-Verlag, 2000.

[HHK01] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Embedded control systems
development with Giotto. In Proc. SIGPLAN Workshop on Languages, Compilers,
and Tools for Embedded Systems, ACM Press, 2001.

[Kir01] C.M. Kirsch. The Embedded Machine. Technical Report UCB/CSD-01-1137,
University of California, Berkeley, 2001.

[Kop97] H. Kopetz. Real-time Systems: Design Principles for Distributed Embedded
Applications. Kluwer, 1997.

[KZF+91] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and W. Schütz.
The design of real-time systems: From specification to implementation and verifica-
tion. IEE/BCS Software Engineering Journal, 6:72–82, 1991.

[LRR92] D. Langer, J. Rauch, and M. Rößler. Real-time Systems: Engineering and
Applications, chapter 14, pp. 369–395. Kluwer, 1992.

[San99] M. Sanvido. A Computer System for Model Helicopter Flight Control; Tech-
nical Memo 3: The Software Core. Technical Report 317, Institute of Computer
Systems, ETH Zürich, 1999.

[TC94] K. Tindell and J. Clark. Holistic schedulability for distributed hard real-time
systems. Microprocessing and Microprogramming, 40:117–134, 1994.

[VB93] S. Vestal and P. Binns. Scheduling and communication in MetaH. In Proc.
14th Annual Real-Time Systems Symposium. IEEE Computer Society Press, 1993.

[Ves97] S. Vestal. MetaH support for real-time multi-processor avionics. In Proc. Fifth
International Workshop on Parallel and Distributed Real-Time Systems, pp. 11–21.
IEEE Computer Society Press, 1997.

[Wir99] N. Wirth. A Computer System for Model Helicopter Flight Control; Technical
Memo 2: The Programming Language Oberon SA, second edition. Technical Report
285, Institute of Computer Systems, ETH Zürich, 1999.


